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3.1 Using Linear Programming (LP) in Design of Approximation
Algorithms

In this lecture we will see how linear programming (LP) can be useful in the design of approximation
algorithms. Recall that LP is the problem of optimizing (i.e., minimizing or maximizing) a linear function
of variables z1,...,2, subject to a set of linear inequalities. The standard LP for a minimization problem
has the following form:

minimize Y. | ¢;
subject to Y7 ajjz; > b; (1<i<m)
Zj Z 0

and for a maximization problem:

maximize Y ¢
subject to E?:l Q5T 5 S bt 1(5 ) S m)
Z; Z 0

Definition 3.1 A feasible solution is a solution (assignment to the variables) that satisfies all the constraints.

If we require the variable z;’s to be integers (e.g. from {0,1}), then we have an Integer Program (IP). If we
relax the integrality condition the we obtain an LP which is called the LP-relaxation of the corresponding IP.
Solving IP’s in general is NP-complete whereas we can solve linear programs in polynomial time (for example
by using the Ellipsoid method or one of the interior point methods). We can solve LP’s in polynomial time,
even if the number of constraints is exponential, as long as there is a polynomial time representation for the
LP, and there is a polynomial time separation oracle for the problem:

Separation oracle: Given any assignment to the variables, it tells if it is a feasible solution or not and if
not, finds the violated constraint(s).

Consider an IP/LP formulation of a minimization problem. Trivially the optimal solution to the LP is a
lower bound for the optimal solution to IP. Similarly, the optimal fractional solution for a maximization
problem is an upper bound for the optimal integral solutions. These trivial bounds are sometimes used to
bound the approximation ratios of algorithms.

3.1.1 IP/LP Formation for Set Cover

Here is one possible IP formulation of the Set Cover problem. Note that there may be several IP formulations
for a problem. We will have one indicator variable zs for every set S:
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minimize ) g C.Zs
subject to Ve e U : Y osecs Ts > 1
z, € {0,1}

Now relax the integrality constraint to obtain the corresponding LP.

Solution to an LP-relaxation is usually called the fractional solution (vs the solution) and is denoted by
OPTy.

Our first algorithm using LP for Set Cover is an f-approximation, where f is the frequency of the most
frequent element in U.

3.1.2 An f-approximation using LP Rounding

Consider the IP/LP formulation of Set Cover given above.

e Take the LP relaxation, and solve it.

o Let &* be the optimal fractional solution, pick every set S; for which z§ > %, (i.e. round x5, up to

#s; = 1). Otherwise assign &5, = 0. So & = (&s,,...,Zs,) is the integral solution.

e return Z.
The following two lemmas show that this algorithm is an f-approximation for the Set Cover problem.
Lemma 3.2 The solution of this algorithm is a set cover.

Proof: Let I = {j|&s, = 1}, i.e. those indices whose corresponding set is picked. By way of contradiction,
assume that for some e ¢ Ujc;S;. Thus, for each set S; which contains e: #5; = 0. This implies that:

1
x§j<?: > oay <1
j:e€S;

which contradicts the constraint in LP corresponding to e. Therefore, the solution is a set cover. [ |
Lemma 3.3 The approximation ratio of the algorithm is f.

Proof: For each Zg; in the final solution,

Gs; < fxay =Y csis < f-Y ezl =f-OPTs < f-OPT.
SeS

3.1.3 Randomized Rounding Algorithm for Set Cover

In this section we give another O(logn)-approximation for Set Cover using a powerful technique called
randomized rounding. The general idea is to start with the optimal fractional solution (solution to the LP)
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and then round the fractional values to 1 with some appropriate probabilities (that often depends on the
value of the variable itself).

Here is the algorithm for the Set Cover:

e Take the LP relaxation and solve it.

e For each set S, pick S with probability P; = z¥ (i.e. round z* up to 1 with probability z?¥), let’s call
the integer value %),

Consider the collection C' = {S; | #5; = 1}:

E[cost(C)] = Z Pr[S; is picked] - cs; = ngj cs; = OPTy (3.1)
S; €S

Let a be large enough, such that (1)*!°en < -L_ Repeat the algorithm above alogn times and let C' =
g g e 4n

Uf‘:kl’g” C; be the final solution, where C; is the collection obtained after round ¢ of the algorithm. We will

show that with sufficiently large probability C' is a Set Cover and is not larger than the optimal solution by
a factor larger than O(logn).

Suppose that e; belongs to Si,...S; (for some g and some ordering of the sets). By the constraint for e;, in
any fractional feasible solution:
s, +xs, +..ws, > 1

This is true in particular for the optimal fractional solution. It can be shown that the probability that e; is
covered is minimized when

s, =TSy = ... = XTS5, = %
= Prfe; is not covered in C;] < (1 — %)q <1

= Prle; ¢ O] < (M)rlosn < L
Sum over all e;:

Pr[3ej,e; ¢ C’, (i.e. C' is not a set cover)] <n- — <

I

1
4n
Let’s call the event “C’ is not a Set Cover”, E1. By above:

Pr[E;] <

N

On the other hand, by (3.1) and by summing over all rounds:
E[cost(C")] < alogn - OPTy

E[X]

Markov’s inequality says for any random variable X: Pr[X > t] < == Define the bad event E; to be the

event that cost(C') > 4alogn - OPT. Thus:

logn - OPT 1
Pr[E,] = P > dalogn - OPT] < 28N V127 2
r[E»] = Pr[cost(C") > 4alogn - O ]_4alogn-OPTf <2

(3.3)
By (3.2) and (3.3), the probability that either C' is not a set cover (i.e. E; happens) or that C’ is a set
cover with large cost (i.e. E; happens) is at most: Pr[E;]+ Pr[E,] < 1. Therefore, with probability > 1, C’
is a set cover with cost(C") < 4alogn - OPT; < 4alogn - OPT. Repeating this ¢ times, the probability of
failure at all rounds is at most 2% Therefore, the probability of success for at least one run of the algorithm
is1— 2% For large enough ¢, this is arbitrarily close to 1.
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3.1.4 Integrality Gap

As we mentioned earlier, comparing the integral solution obtained by the algorithm with the optimal frac-
tional solution gives a bound on approximation factor of the algorithm. But how good/bad this bound can
be? Is the optimal integral solution always within some small factor of the optimal fractional solution?

Definition 3.4 Let I be an instance of a (minimization) problem m and let OPTy(I) be the cost of optimal
fractional solution to I. The integrality gap (sometimes also called the integrality ratio) of this problem is:

OPT(I)
MO PT I

i.e, the supremum of the ratio of the optimal integral and fractional solutions.

Example: Consider th vertex cover problem and let I be K, (the complete graph on n vertices). The
optimal fractional solution is z = (%, %, %, vy %) = OPT; = %, while in the optimal integral solution we
must pick at least n — 1 vertices (if there are two vertices not picked then the edge connecting them is not
covered). Clearly n — 1 vertices cover all the edges. Thus, the integrality gap is 2 — %

Obtaining bounds on the integrality gaps is important. Generally, any rounding algorithm (based on linear
programming), which does not consider the structure of the instance cannot have an approximation factor
better than the integrality gap. In general, it is usually more difficult to find approximation algorithms with
ratio better than the integrality gap. Sometimes this is the border for hardness of the problem.



