CMPUT 675: Approximation Algorithms Winter 2005
Lecture 8: Feb 7

Lecturer: Mohammad R. Salavatipour Scribe: Xiaozhen Niu

SAT is perhaps the most well-known NP-complete problem. There are several variations of this problem
that have been studied. Today and the next lecture, we will consider an optimization version of SAT which
is called Max-SAT.

8.1 Max-SAT

The Max-SAT problem is defined as follows:

Input: A boolean formula 7 over variables z1, ...,z, in CNF which has clauses C1,...,Cu, each clause C}
has a weight w; > 0.

Question: Find a truth assignment to the variables that maximizes the total weight of satisfied clauses.

Special cases: if all the weights w; are 1 (unit-weight) then we essentially have to maximize the number
of satisfied clauses. The Max-k-SAT problem is the restriction of Max-SAT to the instances in which every
clause has at most k literals. The Max-Ek-SAT is the restriction of the problem to the instances in which
every clause has exactly k literals.

Theorem 8.1 Max-k-SAT is NP hard for any k > 2.

Note that 2-SAT is polynomially solvable and k-SAT (for k > 3) is NP-hard.

Today, we will see 3 approximation algorithms for Max-SAT. The first one is good when the sizes of clauses
are large. Then we show how to improve upon this algorithm. The third algorithm (seen next lecture) will
be good when the clauses are small. At the end we show how the combination of first and third algorithm
yields a better approximation algorithm.

8.1.1 Simple Randomized Algorithm

This is perhaps the most obvious randomized (and maybe the dumbest possible randomized) algorithm. Flip
a fair coin for every variable (independently) to choose the value True or False for that variable, i.e. set
it to True/False with probability of % and return this truth assignment. We call this algorithm Algl for
Max-SAT.

Theorem 8.2 (Johnson’74) Algl is a %—approximation for Max-SAT.

Proof: Let 7 be the solution returned by this algorithm. For every clause C; we define a random variable
Y; which is 1 if clause Cj is satisfied, and 0 otherwise. Let W; be the random variable which shows the
contribution of the clause C; to the total weight of the solution and let W = Z;"zl W; = ZTzl w;Y;. Then:

W] = Y wE)]

8-1

8-2 Lecture 8: Feb 7

= ijPr[Cj is satisfied]

J

10
= Y- ()
J
1
320
i

1
-OPT
2O

v

v

Note: if [C;] > k for all 1 < j < m, then this is a (1 — Zik)—approximation algorithm. This is a good

algorithm if all the clauses are large. In particular, if all clauses have size 3 (Max-E3SAT) then this is a
%—approximation. Surprisingly, for Max-E3SAT, this is the best possible approximation:

Theorem 8.3 (Hastad’97) There is no a-approximation for Max-SAT (and in particular for Maz-E3SAT)
for a < %, unless P = NP.

Now we show how we can turn this randomized algorithm to a deterministic one using a general tool called
the method of conditional probability.

8.1.2 De-randomization Using the Method of Conditional Probability

This is a general technique developed by Erdés and Spencer and can be used for many other problems. For
this problem, we will use the following important property:

Lemma 8.4 Suppose that we have assigned values t1 = a1, ...,x; = a;. Then we can compute the expected
value of the solution in polynomial time.

Proof: Let ¢’ be the reduced formula on variables x;y1,...,%, obtained from ¢ by substituting the values
from z; ...z; and deleting the clauses that are already satisfied. Also, we remove variables z1,...,z; from
every clause if the current assignment of that variable does not satisfy that clause. Clearly the expected
value of solution for any random truth assignment to ¢' can be computed in polynomial time (as in Theorem
8.2). Now we just add to this value the weights of the clauses of ¢ that were already satisfied by z; . ..xz; we
obtain the expected value of ¢.]

This suggests a simple algorithm.

e Consider the first variable 1. It can be True or False. For each of True/False we can compute the expected
value of the solution (assuming that all other variables’ are assigned True/False uniformly randomly.

e If E[W|z1 = T] > E[W|z1 = F], then we set z1 =T, otherwise, we set z1 = F.
e Let v be the value assigned to x; in the previous step.
EW] = E[W|zy =T]-Prlzy =T]+ E[W|z1 = F] - Pr[z; = F]
= SEW|es =)+ B[W|es = F)

So if we set x; as above then:)
E[W|z1 =v] > E[W] > §OPT

Lecture 8: Feb 7 83

e In general (by induction on i) if we have assigned the values for z; ...z; then the expected value of the
solution if ;11 = T and if 2;41 = F' can be computed in polynomial time by Lemma 8.4.

e Asin for i =1:

E[W'.Zl =QA1y...,L; = ai] = E[W|IL'1 =QA1y.. .y T; = A3y Tj41 = T] . PI‘[:UH_l = T]
+E[W|$1 =Qa1,...-,L; =03, Tj4+1 = F] - PI‘[Z‘H_l = F]

If we set x;41 as said, then:

EWl|z1 = a1,...,2; = a5, Tiy1 = aiy1] > E[Wlr1i =a1,...,2; = aj]
by induction > E[W]
1
> -OPT
2 20

We can use the same technique even if probability distance used is other than uniform.

Key points: We should be able to compute the conditional expected value for any possible outcome in
polynomial-time.

Derandomized Algl:
fori<« 1tondo
WT <«— E[W|.Z‘1 =VlyeeoyTi—1 = Vj—1,T; = T],

We + E[W|.CL’1 =V1,y---,Tj—1 = Vj—1,T5 = F];
if W > Wg, then v; =T
else v; «+ F;

According to the algorithm now we can compute:

m
E[W|x1 =a1y...,L4 :U,'] = ZU)]' E[Y}'.’El =ary...,T; :U,']
7j=1

So we only need to compute E[Yj||z1 = a1,...,z; = v;]. We have:

E[Yj|z1 = a1,...,2; = v;] = Pr[C}; satisfied|x1 = a1,...,2; = v4]
Therefore, if one of 1 = a1,...,2; = v; satisfies C; then E[Yj|x1 = a1,...,2; = v;] = 1, otherwise
ElYj|z1 = a1,...,z; = v;)) = 1 — (3)*, where k is the number of variables from z;11,...,z, in clause C;.

8.1.3 A Better Algorithm Using Biased Coins

Now we introduce a better algorithm using biased coins. First, let’s assume that all 1-clauses (i.e. clause of
size 1) have non-negated variables. We set each z; = T with probability p (> % to be defined). Then we
return the truth assignment as the solution of the algorithm.

If C; is a 1-clause, it is satisfied with prob p. If C; is a > 2-clause then let a be the number of negated
variables in C;, and 3 be the number of positive variables in C;. So Pr[C} is satisfied] = 1 — p® - (1 — p)® >
1 —p*t# > 1 — p? (where we have used the fact p > 1 — p). This implies that:

Lemma 8.5 Pr[C; is satisfied] > min[p, 1 — p?].

8-4 Lecture 8: Feb 7

If we set p=1—p? then p = @ ~ 0.618. So with this value for p:

E[W] = ZWJPT[C]- is satisfied] > p - ij >p- OPT.
J i

Therefore:
Theorem 8.6 If all 1-clauses are non-negated then this is a p-approrimation algorithm.

What if there are some 1-clauses that have negated variables? For instance, if C; = 73?7 One easy fix is to
define a new variable z; = Z; and then replace Z; with = and replace z; with ;. The only problem is when

there are two 1-clauses, one containing z; and one containing ¥, let’s say C; = z; and C; = T;. How can we
handle that?

Without lose of generality, assume the w; > w; (otherwise we first replace Z; with z}). Let’s say w) = w,
(i.e. w} is the weight of the smaller 1-clause). Let U be the set of indices of all clauses excluding those
unit clauses that have negative literal (like Cjabove), and V be the indices of the 1-clauses where a variable
appears in negative forms in them. The key observation here is that the optimal solution cannot satisfy both
Cj and Cj. So at best, we loose a weight equal to w; (which is w;) from the lower bound of °; w;. That is:

OPT < ij —Zw;
J

i€V

Therefore:

EW] = ij - Pr[C; is satisfied]

=1
> Z wj - Pr[C} is satisfied]
jeu
2 p
cdotsumjcyw;
S D S
J =%
> p-OPT

Therefore, the algorithm works even if we don’t have the assumption on 1-clauses.

Theorem 8.7 This is a p-approzimation for Max-SAT with p defined above.

