CMPUT 675: Approximation Algorithms Winter 2005
Lecture 9: Feb 9

Lecturer: Mohammad R. Salavatipour Scribe: Junfeng Wu

Today we will continue studying Max-SAT. The main result presented today is a %—approximation for Max-
SAT.

9.1 MAX-SAT (Continued)
Recall the Max-SAT problem defined in the last lecture:

Definition 9.1 Max-SAT: Given a boolean formula ¢ in CNF over boolean variables x1,...,x, plus non-
negative weights w; for each clause Cj, 1 < j < m, find a truth assignment to z;’s, that mazimizes the total
weight of satisfied clauses.

Last time, we presented two algorithms. The first one was a simple randomized algorithm (called Algl)
based on flipping fair coins. We saw that this is a %—approximation. Also, if clauses are all large, say at least
k, then this algorithm is a (1 — %)—approximation. Algorithm 2, which was based on flipping a baised coin,
was a p-approximation algorithm, where p ~ 0.618. Now we present a different algorithm that works well
if clauses are small. This algorithm is based on an IP/LP formulation of Max-SAT and LP-rounding. First
we show how to formulate the problem as an IP/LP.

Let P; (N;) be the indices of variables in clauses C; that are in positive (negative) form. For every z;, we
have an indicating variable y; which is set to 1 (0) iff 2; is set to Ture (False). Also, for every clause C;, we
have a variable z; which is 1 iff C; is satisfied. Then the Max-SAT problem can be stated as:

maximize) w;z;

subject to Vj : Ziepj y; + ZieN]- (1—yi) >z
Vj:z; € {0, 1}
Vi:y; € {0, 1}

The LP-relaxation is:
maximize)Y w;z;
subject to Vj : Ziepj Yi + ZieNj (1—-y) >z
Vji:0<2; <1
Vi:0<y; <1

Alg 3 (Randomized-Rounding):
- Solve the LP; let (y*,2*) be the optimal solution
- For each z;, set it to True with probability y;
- Let ¥ (vector) be the integer solution obtained.

Theorem 9.2 (Gocmans&Williamson '94): Randomized-Rounding is a (1 — %)-approzimation algorithm
for MAX-SAT.

9-1

9-2 Lecture 9: Feb 9

Proof: We will use the following two facts:

Fact 1 (Arithmetic-Geometric inequality): If ay, ..., a, are numbers then:
ai+..+a, > Yay-as...a,

Fact 2: If f(z) is a real-valued function and is concave in [0,1] (i.e. f"(z) <0), f(0) =0, and f(1) = a
then the function is lower-bounded in [0, 1] by the line that goes through (0,0) and (1, @).

Let W; be the contribution of C; to the total weight of the solution and let W be the total weight of the
solution returned by the algorithm.

Lemma 9.3 For every clause C; with size k, E[W;] > [1 — (1 — %)k]W]zJ*

Let B, =[1-(1— %)k] First we show why proving this lemma implies the theorem. Suppose that all clauses
have size < k. Then

EW] = Z W; - Pr[C; is satisfied]

= Z E[W;]

> By Wiz
J

— Bi-OPT;

> Br-OPT

When k goes to infinity, (1 — £)* goes to £ from below. Therefore (1 —+)¥ <1 and 1—8; > 1—1 and this
completes the proof of theorem []

Remark: we can turn this algorithm into a deterministic algorithm by using the method of conditional
probability.

Proof of Lemma 9.3:

Pr[C} is satisfied] = 1-— H (1-y;) H Yi

i€ P; ieN;
(by Fact 1 above) > 1-— (EiEPj (1-wi)+ Zier i‘/;'k)k
B k
_ 1 (Eier Yi + Yiep,(1- y;."))k
k
(by constraint for C; in the LP) > 1—(1— %J)k

Let’s define g(z) =1 — (1 — %)k, g(0) = 0, g(1) = By, and g is concave. So by fact 2: g(z) > By - z. Therefore
Pr[Cj is satisfied] > By, - ;. From the definition of E[]:

E[W;] = wj-Pr[C; is satisfied]

,Bkwjz}‘

Y

Lecture 9: Feb 9 9-3

and this completes the proof of lemma.
|

Note that 1 — 2 ~ 0.632 which is greater than 0.618 in algorithm 2. Also, if all clauses have 51ze at most k
and k is relatlvely small, then the approximation ratio of this algorithm is 1 — (1 — —) >1-—=. So we get
better approximation factor for smaller k’s while Algl gives better approximation factor for larger k’s. So
it seems reasonable to run both algorithms and return the better solution. This is the main idea of our 3rd
algorithm which gives a ——approxunatlon ratio.

Suppose we flip a coin and based on the outcome (a = 0 or a = 1) we run algorithm 1 (simple randomized)

or algorithm 3 (randomized-roundinig).

Lemma 9.4 For each C;, E[W;] > 3w; z5.

Proof: Let’s assume that C; has k variables and define oy = 1 — 5. From the proof of Theorem 8.2 (in
lecture 8):

1 *
E[Wjla=0] > (1 - Q—k)w] > apw;zj

and
E[Wjla =1] > Brzjw;.

Therefore, combining these two:

E[W;] = E[Wj|a = 0]Pr[a = 0] + E[W}|a = 1]Pr[a = 1] > %(ak + Br)w;z]

Since a; + 1 = %+1 = %, as + B2 = %+% = %, and for k£ > 3: o = 1—2% > 1—% = 0.875,
,Bkzl—(l—%)k 21—%;ak+ﬂk2%for all values of k. Therefore,

N 3
E[W]:;E[42'“)1 JZZ

We can easily derandomize this algorithm:

Deterministic %-approximation Alg3
- use derandomized version of algorithm 1
- use derandomized version of algorithm 3

- return whichever is better

Theorem 9.5 (Goemans& Williamson '94) This is a %—approwimatz’on algorithm.

Proof: At least one of E[W|a = 0] or E[W|a = 1] must be as large as E[W] which is > 30PT. |

The following example shows that the analysis of Algorithm 3 is tight, i.e. the integrality gap of the given
LP is at least %.

9-4 Lecture 9: Feb 9

Example: Consider the following instance of Max-SAT: (z1 V 22) A (T1 V 22) A (21 V T2) A (1 V T3), and
assume that all the weights are 1. Clearly the cost of OPT is 3. On the other hand, if we set y; = 1/2 and
z; = 1 for every i, j we get a feasible fractional solution with weight 4. Therefore, the integrality gap is at
least 2.

3

The best known approximation factor for MAX-SAT is 0.7846 using semi-difinite programming. Based on
a conjecture (by Uri Zwick), which is supported by experimental results, we can get 0.8331-approximation.
Recall that the lower bound (from the hardness of MAX-E3SAT) is 7/8, i.e. we cannot get an (I — ¢)-
approximation for any € > 0, unless P=NP.

