
CMPUT 675: Approximation Algorithms Fall 2011

Lecture 16 (Nov 1, 2011): Approximation of metrics by Tree metrics
Lecturer: Mohammad R. Salavatipour Scribe: Amritpal Saini

16.1 Introduction

A common and useful technique to simplify some problems given in a metric space (V, d) is to approximate the
metric with a simpler metric. An exact embedding of a metric space (V, d) into another metric space (V ′, d′)
is a mapping f : V → V ′ such that for all x, y ∈ V , d(x, y) = d′(f(x), f(y)). Typically we cannot get an exact
embedding and we settle for embeddings that preserve the distances approximately.

Tree metrics have proved to be a very useful tool for deriving approximation algorithms for several problems
on graphs. The idea is that we embedd a metric graph into a tree and we use the distances between the points
in the tree to approximate the distances of the corresponding vertices in the original graph. A tree metric
(V ′, T) approximates distance metric dG on a set of vertices V with V ⊆ V ′ if for each pair of vertices u, v ∈ V
dG (u, v) ≤ dT (u, v) ≤ αdG (u, v) for some value of α. α is known as the distortion of the embedding of dG in
the tree metric. Since the distances on the tree are a relatively good approximation of the distances of the nodes
in the original graph, we can typically get a good approximation for the problem on hand if we can solve the
problem exactly (or with a good approximation) on the tree. Unfortunately, we cannot always embed a graph
into a tree with low distortion. For example, it is easy to prove that for Cn (a cycle on n vertices) embedding it
to any tree metric has distortion at least Ω(n). However, if we produce a tree randomly, we can show that the
expected distances of the nodes in the tree are not much bigger than their distances in the original graph. More
specifically, we see a randomized algorithm for producing a tree T such that for u, v ∈ V , dG (u, v) ≤ dT (u, v)
and E [dT (u, v)] ≤ O (log n) dG (u, v).

16.2 Basic Idea

The basic idea behind the method of approximating graph metric with tree metric is hierarchical decomposition
of the metric d. Let ∆ = maxu,vdG (u, v). We partition the graph G into pieces with small diameters such that
no pair of u, v ∈ V is spread with too high probability. We associate a tree with our decomposition. The nodes
at each level of the tree corresponds to some partition of V . The root of the tree corresponds to V itself. Every
leaf corresponds to a single vertex. A node at some level corresponds to some subset of the vertex set V . For
a node in tree T that corresponds to a set S, the vertices in S will be vertices in a ball of radius less than 2i

and at least 2i−1 centered on some vertex. Each node of the tree will be a vertex in V ′. For each edge in the
tree the length of the edge joining children at level i− 1 to i is 2i. Figure 16.1 depicts the tree constructed from
hierarchical decomposition of the graph metric.

16.3 Algorithm

The randomized algorithm for generating a random tree metric is given in Figure 16.2.

Our goal in the rest of this lecture is to prove that the algorithm for tree metric indeed achieves E [dT (u, v)] ≤
O (logn) dG (u, v).

16-1

16-2 Lecture 16: Approximation of metrics by Tree metrics

Figure 16.1: A hierarchical cut decomposition of the metric space. Image source: The Design of Approximation
Algorithms by Williamsons and Shmoys

Lemma 1 For any tree produced by hierarchical cut decomposition dG (u, v) ≤ dT (u, v) for all pairs of u, v.

Also if the least common ancestor of u, v is at level i, then dT (u, v) ≤ 2i+2.

Proof. In the tree T for any pair of vertices u, v in a set S corresponding to a node in the tree, the distance is less
than 2i+1, since the radius of the ball corresponding to S is less than 2i. Thus vertices u, v cannot be in a set at
level ⌊log (dG (u, v))⌋− 1 or smaller as the distance between them would be less than dG (u, v). Thus the lowest

level at which u, v can belong to same node is ⌊log2 dG(u, v)⌋. Thus, dT (u, v) ≥ 2
∑⌊log dG(u,v)

j=1 2j ≥ dG(u, v). If

the least common ancestor of u, v is at level i then dT (u, v) = 2
∑i

j=1 2
j = 2i+2 − 4 ≤ 2i+2.

Definition: A vertex w settles the pair u, v on level i if w is the first vertex in the random permutation π of
vertices such that at least one of u, v is in the ball B (w, ri).

Definition: A vertex w cuts the pair u, v on level i if exactly one of u, v is in the ball B (w, ri).

Lemma 2 If Xiw be the event that w cuts (u, v) on level i then
∑log ∆

i=1 Pr [Xiw] · 2i+3 ≤ 16 · dG (u, v).

Proof. Suppose dG(u,w) ≤ dG(v, w). Then the probability that w cuts (u, v) on level i is the probability that
u ∈ B (w, ri) and u /∈ B (w, ri) or that dG(u,w) ≤ ri < dG(v, w). Now ri ∈

[

2i−1, 2i
)

uniformly at random.

Pr [Xiw] =

∣

∣

[

2i−1, 2i
)

∩ [dG(u,w), dG(v, w))
∣

∣

|[2i−1, 2i)|
(16.1)

=

∣

∣

[

2i−1, 2i
)

∩ [dG(u,w), dG(v, w))
∣

∣

2i−1
(16.2)

(16.3)

Lecture 16: Approximation of metrics by Tree metrics 16-3

Algorithm to create hierarchical tree decomposition

1. Pick a random permutation π of V
2. Set ∆ to the smallest power of 2 greater than 2 ·maxu,vdG(u, v)
3. Pick r0 ∈ [1/2, 1) and set ri = 2ir0 for 1 ≤ i ≤ log2 ∆
4. C(log∆) = V be the root. Create a node corresponding to V .
5. for i← ∆ downto 1 do
6. C(i− 1)← ∅
7. for all C ∈ C(i)do
8. S ← C
9. for j ← 1 to n do
10. if B(π(j), ri−1) ∩ S 6= ∅ then
11. Add B(π(j), ri−1) ∩ S to C(i− 1)
12. Remove B(π(j), ri−1) ∩ S from S
13. Create tree nodes for sets in C(i− 1).

Figure 16.2: Algorithm hierarchical tree decomposition

Then

2i+3Pr [Xiw] =
2i+3

2i−1

∣

∣

[

2i−1, 2i
)

∩ [dG(u,w), dG(v, w))
∣

∣ (16.4)

= 16
∣

∣

[

2i−1, 2i
)

∩ [dG(u,w), dG(v, w))
∣

∣ (16.5)

(16.6)

Now the interval
[

2i−1, 2i
)

for i = 0 to log2 ∆− 1 partition the interval [1/2,∆/2). Thus

log
2
∆−1

∑

i=0

2i+3Pr [Xiw] ≤ 16 |[dG(u,w), dG(v, w))| (16.7)

= 16 (dG(v, w) − dG(u,w)) (16.8)

≤ 16dG(u, v) (16.9)

Lemma 3 If w is the j’th closest node to u, v then Pr [Siw |Xiw] ≤ 1/j

Proof. If event Xiw happens then either u is in the ball B (w, ri) or v. So in order for w to settle the pair
u, v given that it cuts u, v on level i, it must come before all the closer vertices z in the random permutation
of vertices. If w is the jth closest vertex to the vertex, it settles the pair u, v with probability 1/j. Now for j,
1 ≤ j ≤ n there is some vertex w, jth closes to the pair u, v, thus

∑

w∈V

bw =

n
∑

j=1

1/j (16.10)

= O (logn) (16.11)

Theorem 1 Given a distance metric (V, d), such that dG(u, v) ≥ 1 for all u 6= v, u, v ∈ V , there is a randomized

, polynomial time algorithm that produces a tree metric (V ′, T), V ⊆ V ′, such that for u, v ∈ V , dG (u, v) ≤
dT (u, v) and E [dT (u, v)] ≤ O (logn) dG (u, v).

16-4 Lecture 16: Approximation of metrics by Tree metrics

Proof. Consider any vertex pair u, v. The first claim follows from Lemma 1. Now we prove that E [dT (u, v)] ≤
O (logn) dG (u, v). By Lemma 1, if they have a common ancestor at level i+ 1 then dT (u, v) leq2i+3. For this
u, v must be in different sets at level i. So there must be some w such that exactly one of u and v must be in
the set corresponding to the ball centered on w on level i. Now let Xiw be the event that w cuts (u, v) on level
i, and let Siw be the event that w settles (u, v) on level i. Therefore:

dT (u, v) ≤ max
i=0,...,log∆

2i+3 where ∃w ∈ V : Xiw ∧ Siw

Thus the expected distance between vertex pair u, v in the tree metric is

E [dT (u, v)] ≤
∑

w∈V

log ∆−1
∑

i=0

Pr [Xiw ∧ Siw] · 2
i+3 (16.12)

=
∑

w∈V

log ∆−1
∑

i=0

Pr [Siw|Xiw] · Pr [Xiw] · 2
i+3 (16.13)

≤
∑

w∈V

bw

log∆−1
∑

i=0

Pr [Xiw] · 2
i+3 (16.14)

≤ 16dG(u, v)
∑

w∈V

bw [from Lemma 2] (16.15)

≤ 16dG(u, v)O (logn) [from Lemma 3] (16.16)

