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This lecture continues our previous discussion on matrolds includes some new definitions and theo-
rems on the relation of matroids with submodular functiond greedy algorithms.

1 Matroids ( cont.)

Suppose we are given a set systém= (F,7Z) whereFE is a ground set and is a collection of subsets of
of E. We sayM is a matroid if

1. 7 is close under subset operation.

2. ForanyX,Y €7, | X| < |Y|wehavede € Y\X s.t. X +e € T.

Some of the examples we saw included: linear matroids armghgranatroids. We also proved the following
theorem

Theorem 1.1 For I € 7 ande € F, either] + e € Z or it contains a unique circuit.
Therank functionr,, : 2/”| — N of a matroidM = (E,Z) was defined as:
rm(A) =max{|X|: X CAandX € 7}
Definition 1.2 For any subset of elements C F, of a matroidM = (E,Z) the spanof A is the maximal
supersetS of A such thatr(S) = r(A).
Alternatively, we have the following definition.
Definition 1.3 For any subset of elements C FE, of a matroidM = (E,Z) thespanof A is defined as
Sp(A) = {elr(A+e) =r(A)}
Theorem 1.4 These two definitions are equivalent.
Proof: Let.S be the span ofl as defined by the first definition, arftl the span as defined by the second
definition. Then
VeeS: r(A+e)=r(A) 1)
This is because if(A + e) > r(A), sinceA + e C S we haver(S) > r(A + e) < r(A) and therefore
which contradicts the first definition. Eq(1) implies that € S : e € S” and therefores C 5.

Now it remains to show that(S’) = r(A). Itis not hard to see that a common basis of two sets is a basis
of their union (prove this!). So a basis dfis a basis ofSp(A) = S/, since it is a basis afl + e for each
ee s

Example: A partition matroidis defined as follows. Lef = F; U F» U ... U E, be a partitioning of
E. SaylI is an independent set if no two elements/dielong to the same parte. |[I N E;| < 1 for all
1 <i<p.ThenM = (E,7) is a matroid because:



1.V IeZ; I'CIalsobelongst@. This is because here by definition of independent set, bpvamg
any element, it remains an independent set 47 N E;| < 1 still holds by removing elements from
1.

2. ForX,Y € ZTsuchthatX| < |Y| 35 st |YNE;|=1 and |X N E;| = 0. Because otherwise
|X] > |Y|. Now by adding any € E; to X, X + e it remains independent. This shows that the
second axiom of definition of matroid holds féf as we defined.

ForAC EletJ(A) = {i s.t. |AN E;| # 0} denote the partitions in which elements4participates. We
haver(A) = [J(A)| andSp(A) = U, () Ei- For this example any circuite is a set of any two elements
from the same seft;. [}

Lemma 1.5 Let M = (E,Z) be a matroid andB;, B, be two bases and let € B;\ B, then:

Jy € Bo\By s.t. By —x +y and By — y + x are both bases.

Proof: Exercise. m

Theorem 1.6 Letr : 2/Z1 — N, thenr is a rank function of a matroidff for all T.U C E:
1. 7(T)<rU)L|U|IfTCU
2. rissubmodularr(T'NU) +r(TUU) <r(T)+r(U)
Proof: First we show that for any matroid, these relations hold lier ¢orresponding rank function:

1. +(T)<rU)<|UIIfTCU.
This relation holds by definition of the rank. Sin@éis a subset o/ the size of the maximum
independent set contained’ihshould be at most as big as the corresponding séf farhis maximal
independent set is always contained’irand therefore:(T) < »(U) < |U|.

2. We want to show that any rank function is submodutd® N U) + r(T UU) < r(T) + r(U). Let
I C T NnU be amaximum independent set®fn T'N U and also let/ C T U U be a maximal
independent set such thatC J C T'U U. From the definition off and.J follows r»(T"U U) = |J|
andr(T'NU) =|I|.

SinceJ is independent any subset of it would be independent toefirer/ N U andJ N T are in-
dependent subsets ®fandU. Since by definition(7") andr(U) are the size maximum independent
subset off" andU, we have:

r(T) > |JNT)
r(U) > | AU

and therefore

r(T)+rU) > |JNT|+[JNU]
=[JNTNU)|+|JNTUU)|
>[I +J]
=r(TNU)+r(TUU)
where in the last inequality we hayé N (7'N U)| > |I| because/ contains! by construction. Here

the first equality follows by application of another equatitat state$A| + |B| = |AU B| + |AN B|
(by settingA =T nJandB =U N J).



Now we want to prove that given a functien: 2/”| — N satisfying the conditions of the theorem it is the
rank function for a matroid. We construct such matroid. SiggpthatZ is a collection of subsets df such
that

r(I)=I| VIeT

Claim 1.7 (E,Z) is a matroid with the rank function.
We show that two requirements for matroid hold for $etVe do this by induction. Clearlff € 7.

e GivenI € 7 with »(I) = |I|, we want to show that for any C I alsor(J) = |J| and therefore
JeT.

Consider two disjoint set§ and/ — J and assume fof\J we already have/(1\J) = |I\J| (as-
sumption of the induction). By submodularity ofve have
r(J)+r(I\J) zr(I) +r(0) =
r(J) =[] = [I\J| = |J]

On the other hand by the first property:ofve haver(.J) < |J| and therefore:(J) = |J|.

e To prove the satisfaction of second requirement in defimiGbmatroid we use the following substi-
tution

Lemma 1.8 Axiom 2 of definition of matroid is equivalent to the follogiirFor any X, Y € 7 such
that| X\Y| =1and|Y\X| = 2 then

JyeY\X st X+yeZl

Proof: Can be proved by induction. [

Now we show the condition of this lemma holds {dr, Z) constructed using. Let X, Y € 7 with
|IX\Y|=1and|Y\X| =2whenY\X = {y1,y2}.

Now considerX + y; and X + ys, if one of them belongs t@ the requirement of previous lemma
holds. Suppose none of them belongq teherefore

r(X +y1) =r(X +y2) = [X]
From the assumptions we have
r(X+y1)+r(X +y2) >r(X +y1+y2) +r(X).
But sinceY C X U {y1,92},

r(Y) <r(X +vy1 +y2)

r(X +y1) +7r(X +1y2) —r(X)
= |X]|

<
<

Which contradicts the fact that € 7 and therefore:(Y') = |Y| > | X]|.
It is not hard to prove that the rank function fbiis the same as.



2 Matroid Optimization

The problem of matroid optimization is defined as followsvéi a matroid/ = (E,7) and a cost function
C : E — R=2%find an independent set of maximum (minimum) weight.

If the cost of an element is negative then droping it from thiettion independent set gives another feasible
set with larger cost; so we can assu@ig) > 0 and any optimum solution is a maximum independent set
(i.e. a basis). The following greedy algorithm finds such basis.

Matroid Optimization Algorithm

Start with an empty sef§ « ()
Sort elements so that(e;) > C(e2) > ... > C(ey)
for 1 — 1to ndo
if SU{e;i} €Zthen
S «— SuU {e,}
return S

Theorem 2.1 The pair (E,Z), whenZ is a collection of subsets df closed under taking subset, is a
matroidiff for each functionC' : E — R=° the given greedy algorithm returns a setc 7 with maximum
cost.

Proof: The proof has two directions. First we prove that gién 7) is a matroid the greedy algorithm
gives the optimum solution. Then we prove that if for evergtdanctionC : E — R=Y the algorithm finds
the set with maximum cost theil’, 7) is a matroid.

e Suppos€ E,7) is a matroid. LetS; be the value of after iteration:. We says; is goodif there is an
optimum base3 such thatS; C B and eacte; € B\S; hasj > i + 1.

We prove by induction omthat.S; is good.

Base StepS = () is subset of all optimum solutions.
Induction Step Suppose there is an optimum ba3esuch thatS; C B and we consideg;

— Case 1:S; = S;11; meaninge; .1 + S; has a circuit. Therefore;,; ¢ B (or we will have
circuit.)

— Case 2:5;41 = S; U {eit1}. If e;41 € B then we are fine becasiég; remains a subset
of B. Assumee; 1 ¢ B. ThenB + ¢;1; has a circuit and there is an elementsuch that
B’ = B + ;11 — ¢j is abase; in this casg € B\S;;. Note thatS;; C B’.

Claim2.2 C(B') > C(B).

For this, it is enough to show that(e;1) > C(e;) ori+ 1 < j. We know that any
e; € B\S;41 hasj > i+ 2 and at least one of them is in the circuitih+ e;; because
otherwiseS; 1 has a circuit. By choosing; to be that element we havé(e; 1) > C(e;).

e Suppose the greedy algorithm gives the optimum set for asy foactionC. The goal is to show
(E,7) is a matroid. By assumptiof¥,Z) is a set system closed under subset operation. Therefore
the first axiom of matroid is by assumption satisfied.

To prove the second axiom is satisfied we drive a contradidtip assuming the existence hfJ €
I, |J|>|I| st.VeeJ\I: [+e¢l.



Letk = |I|. DefineC : E — R=" as

k+2 eel
Cle)=4q k+1 ecJ\I
0 ee E\(IUJ)
Greedy algorithm stops witl§ = I, because adding any element.bfto the set/ will result in

a circuit. This set §) has a cost of(k + 2) while there is an independent set with cost at least
(k + 1) > k(k + 2), namely by picking/. This contradiction completes the proof of the theorem.

3 Matroid Polytope

For the matroidM = (E,T), let x(S) € {0,1}/”! denote the incident vector for the sgt(i.e. this is a
vector that has a one for an element if it is a membe$ ahd zero otherwise.)

The convex hull ofy(S) for S € 7 is the matroid polytope foi/:
Py (M) = Convex(x).

As we see shortly this is the same polytope as the followinghvtve call P,

Theorem 3.1 (Edmonds)P; is the matriod polytope i.eP; = Ps.

Proof:

e Itis easy to see that every pointif (M) also belongs td>, (i.e. P, C ) because for any indepen-
dent setl € 7 the incident vector of satisfies the conditions d%,. Herez(I) = |I| which is always
greater than or equal tqU).

e Now we want to show? C P;(M). For this we show that for any cost functi@ri(e), P, and
its dual D, have a feasible solution that coincide with each other aedridependent set that gives
the optimum solution forP; is the setS returned by the greedy algorithm. Since every vertex of
a polytope is an optimal solution for some cost functions fihiplies that all the vertices df, are
answers to some independent set returned by the greedytlalg@nd therefore?, C P (M).

ThePrimal program reads as

maxZC(e)xe
VUCE Y z<rm(U)
ecU
Te >0



and theDual program is

min Z a0 (U)yu
UCE
Vee E ZyU > C(e)
Use
Yu = 0

We prove that for any cost'(e) we can find a se5 and a dual solution such thét” y(S) =
> v yur(U)—thatis the solution to primal and dual coincides.

Suppose we run the greedy algorithm and find theSset {s1, s2, ..., 55, ..., sx }. This is a feasible
N———

S
solution for2,. We build a feasible dual solution.

DefineU; = {ey,...,e;} such thak;,; = s;,1. In other words[J; includes all the elements in the
ordering of ¥ just befores; ;. We we claim:

r(Uj) =r(S;) =[Sl =7

Clearly we have(S;) = |S;| = j. Also, sinceS; C Uj;, we haver(S;) < r(U;). On the other hand
we can not have (U;) > r(S;) because it means the basis for the{sgt ..., ¢; } has more elements
thanS;. This is contradictory because by constructiorSpfve would have selected those elements.

Now we define the dual solution:
yu, = C(e;) — Clejy1) fori=1,...n—1
yo = 0 forevery other set

Claim 3.2 yy as defined above is a feasible solution for the dual prograh (

Thisis becaus& e; : > g5, ys > C(e;). Now we want to show costs are equal for the primal and
dual and therefore optimal.

C(S) =) Cle) =) Cle) (r(Ui) = r(Ui1))
i=1

e€s —1iff e;€8

n—1
= Clen)r(Uy,) + Z (C(ei) — Cleir1)) r(Ui)
=1
n—1
= yu,r(Un) + > yu,r(Us)
=1

= Z yu,r(Us)
=1

The fact that the optimum solution coincide with the resilgeedy algorithm shows that for any
arbitrary cost function the corners @% are subsets of the corners Bf(M) which completes the
proof.



