CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)
Lecture 4: Primal Dual Matching Algorithm and Non-Bipagti¥latching

Lecturer: Mohammad R. Salavatipour Scriber: Idanis Diaz
Date: Sept 15 and 17, 2009

We start by recalling the formulation of the maximum weigltfpct matching in bipartite graphs as an
integer program and the minimum weight vertex cover probksrthe dual. We will see a Primal/Dual
Matching Algorithm. Then we start the topic of matching imgeal graphs.

1 Primal/Dual Algorithm for weighted matchings in Bipartit e Graphs

Recall the problem of maximum weight perfect matching invegibipartite graph grap(AU B, E) with
edge weightsy; ; > 0. The objective is to find out a maximum weight perfect matghiif we define an
indicator variabler; ; for each edge betweenc A andj < B then the integer program formulation of the
weighted matching problem is:

then forz; ; to represent the maximum matching, we want ; z; jw; ; to be maximized. Therefore maxi-
mum weighted matching has the following Integer Prograrmfdation:

max in,jwi,j Q)
2%
st. YV oa, in’j < 1
J

v bj, in’j < 1
zij € {0,1}

By relaxing the integrality constraint of IP to, ; > 0 we have a linear program. A weighted vertex cover
for a graph with weighted edges is a functipn V' — R™ such that for all edges = uv: 1, + y, > Wyo.
Note that for any weighted matching and vertex covel’:

Y w(e) =w(M)<CY) = "u, 2)

eeM yeV

whereC'(Y") is the cost of the vertex cover Y. The vertex cover is actutly dual problem of maximum
matching. If one considers the dual program to the LP relemaif maximum matching problem we obtain
the formulation of LP relaxation of the weighted vertex copsoblem:

min Zyi 3
i
st. Ve=abj: ya, typ; = wij
yi = 0

According to equatior{2), for any vertex covEr C(Y") is an upper bound fow (M) for any matching\/.
So if a vertex cover is founded and has the same value as ainmatodth are optimal solutions, i.e.

Lemma 1.1 For a perfect matching/ and a weighted vertex covgr
Cly) > W(M)

AlsoC(y) = W (M) iff M consists of edges;b; such thaty; + y; = w; ;. In this caseM is optimum.

1.1 The Primal/Dual Algorithm

The algorithm starts wittl/ = () and a trivial feasible solution for the weighted vertex aowich is the
following one:

Vo oa;€A; Yy, =max w(a;bj)
J

V bjeB; y, =0

At any iteration of the algorithm we build an equality grapfided below.

Theequality graph G, = (AU B, E,)) is built based on thg values such that it only contaitight edges
CLibj € Ey < Yy + Yj = Wi j

Let us cally,, + Yo, — Wi theexces®f a;b;.

Observation 1.2 If M is a perfect matching idr, thenW (M) = >, 4 Ya;, + ijEB yp, @nd by previous
lemma that matching 67 is an optimum solution.

Based on this observation, the goal of the algorithm is to dimerfect matching in the equality graph. For
this we update; to make more edges tight to be addedHp (until it contains a perfect matching) while
keepingy a vertex cover. Now we present an algorithm to add an edgeualigggraph.

Suppose we are at some iteration of the algorithm &ht a maximum matching id, but is not perfect.
Construct digraptD as befor. Let L be a set of nodes accessible from any exposed node Recall that
C* = (A—L)U(BnNL)is avertex cover. Therefore there is no edge betwéen. and B — L (otherwise
that edge is not covered ldy*). However, we know that we start with a complete grdphThus there are
edges inG' betweenA N L and B — L but they are not irGG,; which means all those edges have positive
excess (i.e. are not tight). We update thealues to make one of these edges go tight. Let

€= min{yai + Yb; — Wi st., a; € ANL, bj € B-L}

be the minimum excess value of all such edges (these are ¢jes ¢laat could be added @,). Then we
update vertey values to tighten the edges wittexcess value by defining:

_ Ya, a; € A—L
Yai = Yo, — € a; €ANL

and

_ Yo, bjEB—L
Yb; yp, +€ bjEBNL

Note that by this change every edge that waS'jiremains tight. Also by the choice efno edge constraint
is going to be violated, sg remains a vertex cover. Furthermore, at least one edge betwe) L and

= (AU B, E'), whereE" is the union of edges af/ directed fromB to A and edges of2 — M directed fromA to B.

2

Maximum Weighted Bipartite Matching Algorithm; Primal-Du al Method

For eachu; € A let Ya; = MaXp,cB w(aibj);
For eachh; € B let Yo, = 0;
Build graphG,, and letA/ be a maximum matching i@,
Construct DigraphD
repeat
let L be the set of nodes (i) accessible from any exposed nodedin
Lete = min{y,, +yp, —w(ij): a; € ANL, bj€B~—L}
Decreasey,, for eacha; € AN L by e and increasg,, for eachb; € B — L by e
Add the tight edges t6r,, and recompute matchingy.
Until M is a perfect matching.

B — L goes tight and therefore is addeddq. We can repeat this operation until eith@y;, has a perfect
matching, or there is no edges left betwegnm L and B — L. The latter happens only if both these sets are
empty, which implies that we have a perfect matching. Thusntally we find a perfect matching @,
which by the previous lemma corresponds to an optimum mdahiG. At this point the solutiory is also

an optimum vertex cover. The following pseudo code sumreatiz Primal/Dual Algorithm:

At each iteration of the algorithm at least one edge is add€d,t so there ar@(n?) iterations. To update
the maximum matching i6¥,, and re-computé. we have to spend at moSt(»?) time; thus the total running
time is bounded by)(n*). In fact a more careful analysis shows that the running tierelze bounded by
O(n3). Thus:

Theorem 1.3 Given a complete bipartite grapf with edge weightss(e), the primal/dual method finds a
maximum matching and a minimum vertex cover in tinie?).

2 Non-Bipartite Matching

So far we have been talking about matchings (and weightedhimgts) in bipartite graphs. Finding match-
ings in general (non-bipartite) graphs is substantiallyedifficult.

In bipartite graphs, Konig's theorem is a min-max theorestween the maximum size of a matching and
the minimum size of a vertex cover. Although vertex covehis dual problem, this min-max relation does
not hold in general graphs (a simple example being a cyclengjth 3). However we can still give min-max

theorems for general graphs.

Definition 2.1 Given a set of vertice§ C V, G — U is the subgraph obtained by deleting all the nodes of
U and their incident edges.

Definition 2.2 An odd component is a connected component with odd numberdetn We use(G) to
denote the number of odd components of gr&ph

SupposeM is a matching inG — U and consider an odd component@f— U. There is at least one
un-matched node in this component. Therefore, to have ageniatching inz, each such vertex (in an
odd component) must be matched to a nod& irBut we can add at mogf matching edges of this type.
Therefore we must hawg G — U) < |U]| in order to have a perfect matching.

Tutte proved that this necessary condition is also sufficien

Figure 1: a matching id — U and the odd components 6f— U

Theorem 2.3 (Tutte) A graphG has a perfect matching (G — U) < |[U| YU C V.

What if G does not have a perfect matching? Itis easy to see that edchingainG has atleast(G—U) —
|U| unmatched edges. This shows that the size of a maximum mgtishat most|V|+|U|—o(G—U))/2.

It turns out that the minimum value of this (over all séf3 is actually equal to the size of a maximum
matching. If we use/(G) to denote the size of a maximum matchingtthen:

Theorem 2.4 (Tutte-Berge Formula)

v(G) max |M| = min Vi=olG=U) + U] 4)

Ucv 2

Proof: Assume thaty is connected (otherwise we can prove it for each connectetbonent ofG). It is
clear that the r.h.s. is an upper bound for the size of anymaic We prove the other direction by induction
on|V|]. The case$V| < 1is trivial. So we assumg/| > 24. Two cases are considered:

Case 1:If G has a vertex € V saturated by all maximum matchings Gf Then the size/(G — v) =
v(|G|) — 1 and by induction there is a set C V' — v such that:

1
v(G—v) = §(|V — o] +|U'| —o(G —v—U").
DefineU = U’ |J{v}. Then:

v(G) = v(G—-v)+1
|V —v|+|U| —0o(G—-v—-U"))+1

(V=14 U] —1—o(G—U)) +1

N RN~ -

(V[+ U] = o(G = U)).

Case 2:So suppose that there is no such vertexthe for eachv € V' there is some maximum matching
not coveringu. Thereforev(G) < %|V|. We show that there is exactly one vertex missed in any maximu
matching and therefore there is a matching of %25/! — 1) which implies the theorem wit/ = (). By

way of contradiction, suppose there are two distinct veginot covered by a maximum matching, call
themwu,v. Among all such triplesV/, u, v choose one such tha{u,v) is the smallest. Ifl(u,v) = 1,
thenu andv are adjacent, so we can augmertby the edgeuv, contradicting the maximality ol ; so
d(u,v) > 2. Therefore, there is an intermediate vertean the path between andv. Because we are in
case 2, there is a maximum matchingmissingt and N # M (otherwiseM misses both: andt which
contradicts definition of\/, u, v). Among all such maximum matchindg missingt choose one such that
|M () N| is the largest. Observe that must cover, andv. Since bothV and M are maximum matchings
the number of vertices covered by both is the same. Constyguthiere is a vertex: # ¢ covered byM but
not by N. Lete = xy € M, y must be saturated hy (otherwisee could be added t&V). In other words
y is covered by some edgee N, e € M, ande ¢ N. Now we can modifyN to N’ = N — f + e in this
case the intersection @f’ with M increases is larger than that df, contradicting the choice a¥. [

One might think that the idea of using augmenting paths torfiagtimum matchings could be extended to
general graphs. This is true as shown below:

Theorem 2.5 (Berge) A matching is maximum iff there is not/-augmenting path.

Proof: Clearly if there is anM-augmenting path it is not a maximum matching. We prove tleerot
direction. Suppose that/ is not maximum and there is not any augmenting path. Métbe a maximum
matching with the largest\ () M*|. Consider the uniod/ | J M*. Observe that this union cannot have
even paths or cycles (as otherwise we could reverse the efigfesm to makel/* N M larger). Therefore,
there can only be odd paths with more edges flafhthen M. Such a path is clearly is al -augmenting
path. [

The major question is how to find ai -augmenting path. A natural approach could be to try to use th
same idea as in bipartite graphs to find an augmenting patle. difficulty is that since the graph is not
bipartite we don’t know how to orient the edges to find the aeigting path. The presence of odd cycles in
a general graphs makes it particularly difficult as an al#ing path can cross itself. It was Jack Edmonds’
who came up with a clever idea to handle this difficulty.

Definition 2.6 Let M be a matching inz, and X be the set of vertices missed b¥. An M -alternating
walk P = (v, v1,...,v¢) is called anM-flower if t is odd and(vg, vy, ..., v,—1) are distinct,vy € X, and
v; = v; for some even < t. With this condition the set of vertices, ..., v; are called blossom and the
verticesvy, .., v; are called stem.

Figure [2) shows a flower. The vertices, ..., v, represent the stem part while the vertiegs. . ., vg
represent the blossom part. We can easily reverse the eddke stem so that; = v; € X without
changing the size of the matching; this way we obtain\asilower which consists of just a blossom (i.e.
the stem is empty).

O
O
O
O

Figure 2: A graph containing a stem and blossom

The core of Edmonds’ algorithm is based on the following om@on. LetB C V be a subset of vertices.

5

ThenG/B is the graphG’ obtained by shrinking the sét into a single nodé; G’ consists of V — B) [J{b}

and each edge € G’ is obtained by replacing an end-vertexhwith the new nodé. We call the new
edges of?’ the images of the original edges@ As an example, consider the graph in Figlird (3a). In the
figure [3&) the vertices, 7, 8 constitute a cycle while the figurE{3b) illustrates how teeticest, 7, 8 were
shrunk in a single node which correspond to a new node

(a) Cycle

(b) Shrunk nodes

Figure 3: Graphs containing the illustration of passingrfra cycle to shrunk node

For any matchingV/, let M /B denote the set of edges @/ B that are images of edges M not spanned
by B (i.e. have at least one end-point noti). If M intersects)(B) in at most one edge thel /B is a
matching inG/B. So if we can find a blossom & and shrink it into a single node and find a maximum
matching in graplz/ B then we can extend it to a maximum matchinginWe formally prove this.

Theorem 2.7 Let B be anM -Blossom inG. ThenM is a maximum matching i iff ///B is a maximum
matching inG/B.

Proof: Let B = (vy,...,v;:) (we assume this is a blossom of a flower with empty stem). kgstime that
M/ B is not a maximum size matching @#/B. So there is aid// B-augmenting patt® in G/B. If P does
not involve vertexb of G/B then it is anM -augmenting path iz and soM is maximum. So suppose
entersh using some edgeb not in the matching//B. thenuv; € E for somej € {0, 1, .., t}.

e If jis even then replackin P with vj,v;_1,...,v9

e if jis odd then replacgin P with v, vj41,..., vy

In both cases an augmenting path is obtained.in

Now suppose thal/ is not maximum, butM /B is maximum. There is ad/-augmenting pathP =

ug,u1,...,us. If P does notinvolveB then it is an augmenting path @&/B and we are done. So sdy
it intersectsB and letu; be the first vertex of” in B. Thenug, u1, ... ,u; is anM/B-augmenting path in
G/B; thusM/ B is not maximum. |

The following theorem combined with the previous two willneplete the tools needed for our matching
algorithm.

Theorem 2.8 Let M be a matching inG and P = vy, v1,...v; be a shortest\/-alternating walk from a
node inX to another node inX (i.e. a shortestX — X walk). Then eithelP is an M -augmenting path or

6

Vo, ..., ¢ IS @an M -flower for some < ¢

Proof: Assume thatP is not a path. So there aie< j with v; = v;; let j be the smallest such index.
Thereforewy, ..., vj; are all distinct. We prove that, . .., v; is anM-flower. If j — ¢ is even then we can
deletev; 1, ..., v; from P to obtain a shortef/-alternatingX — X walk. Soj — i is odd. Ifj is even and
is odd, therv; 1 = vj_ (itis a the vertex matched tq = v;), contradicting the minimality of. Thusj is
odd and: is even and thereforey, v1, ..v;) is anM -flower.]

Using these theorems we can describe Edmonds’ blossomithfgofor general matching. We use the
following procedure to iteratively find augmenting pathdaw as there is one:

The Matching Augmenting Algorithm

X «— Exposed nodes
If there is no alternating — X walk then
return No augmenting path
Else
Let P be a shortesK — X alternating walk
If Pis a path returnP
Else
It contains a blosson®
ComputeG/B and find anM / B-augmenting patt#®’ in G/B
ExpandP’ to an augmenting path i&
Return P

Theorem 2.9 Given a graphZ, a maximum matching can be foundin?m).

Proof: Theorem$Z]H, 21 T4.8 prove the correctness of the aboweeitalyp. An M -alternating walk can
be found inO(m) time using a BFS. This either yields &f-augmenting path or a blossob In the latter
case the shrunk grapi/B can be built inO(m) as well. The number of recursive calls is at moXi)
since each time the size of the graph decreases by a coriBtastinO (mn) we can find an/-augmenting
path if one exists. There are a total@fn) iterations of calling this procedure and so the total rugrtime
is O(n?m). This can be improved tO(n?) as well. n

References

1. Combinatorial Optimization, Schrijver, (Volume 1) Spyer-Verlag, 2003.

	Primal/Dual Algorithm for weighted matchings in Bipartite Graphs
	The Primal/Dual Algorithm

	Non-Bipartite Matching

