
CMPUT 675: Topics in Algorithms and Combinatorial Optimiza tion (Fall 2009)

Lecture 4: Primal Dual Matching Algorithm and Non-Bipartite Matching

Lecturer: Mohammad R. Salavatipour Scriber: Idanis Diaz
Date: Sept 15 and 17, 2009

We start by recalling the formulation of the maximum weight perfect matching in bipartite graphs as an
integer program and the minimum weight vertex cover problemas the dual. We will see a Primal/Dual
Matching Algorithm. Then we start the topic of matching in general graphs.

1 Primal/Dual Algorithm for weighted matchings in Bipartit e Graphs

Recall the problem of maximum weight perfect matching in a given bipartite graph graphG(A∪B,E) with
edge weightswi,j ≥ 0 . The objective is to find out a maximum weight perfect matching. If we define an
indicator variablexi,j for each edge betweeni ∈ A andj ∈ B then the integer program formulation of the
weighted matching problem is:

then forxi,j to represent the maximum matching, we want
∑

i,j xi,jwi,j to be maximized. Therefore maxi-
mum weighted matching has the following Integer Program formulation:

max
∑

i,j

xi,jwi,j (1)

s.t. ∀ ai,
∑

j

xi,j ≤ 1

∀ bj ,
∑

i

xi,j ≤ 1

xi,j ∈ {0, 1}

By relaxing the integrality constraint of IP toxi,j ≥ 0 we have a linear program. A weighted vertex cover
for a graph with weighted edges is a functiony : V → R

+ such that for all edgese = uv: yu + yv ≥ wuv.
Note that for any weighted matchingM and vertex coverY :

∑

e∈M

w(e) = w(M) ≤ C(Y) =
∑

y∈V

yv (2)

whereC(Y) is the cost of the vertex cover Y. The vertex cover is actuallythe dual problem of maximum
matching. If one considers the dual program to the LP relaxation of maximum matching problem we obtain
the formulation of LP relaxation of the weighted vertex cover problem:

min
∑

i

yi (3)

s.t. ∀e = aibj : yai
+ ybj

≥ wi,j

yi ≥ 0

According to equation (2), for any vertex coverY , C(Y) is an upper bound forw(M) for any matchingM .
So if a vertex cover is founded and has the same value as a matching both are optimal solutions, i.e.

1

Lemma 1.1 For a perfect matchingM and a weighted vertex covery:

C(y) ≥W (M)

AlsoC(y) = W (M) iff M consists of edgesaibj such thatyi + yj = wi,j . In this caseM is optimum.

1.1 The Primal/Dual Algorithm

The algorithm starts withM = ∅ and a trivial feasible solution for the weighted vertex cover which is the
following one:

∀ ai ∈ A; yai
= max

j
w(aibj)

∀ bj ∈ B; ybj
= 0

At any iteration of the algorithm we build an equality graph defined below.

Theequality graph, Gy = (A ∪B,Ey) is built based on they values such that it only containstight edges

aibj ∈ Ey ⇔ yi + yj = wi,j

Let us callyai
+ ybj

− wi,j, theexcessof aibj.

Observation 1.2 If M is a perfect matching inGy thenW (M) =
∑

ai∈A yai
+

∑

bj∈B ybj
and by previous

lemma that matching inG is an optimum solution.

Based on this observation, the goal of the algorithm is to finda perfect matching in the equality graph. For
this we updatey to make more edges tight to be added toEy (until it contains a perfect matching) while
keepingy a vertex cover. Now we present an algorithm to add an edge to equality graph.

Suppose we are at some iteration of the algorithm andM is a maximum matching inGy but is not perfect.
Construct digraphD as before1. Let L be a set of nodes accessible from any exposed node inA. Recall that
C∗ = (A−L)∪ (B∩L) is a vertex cover. Therefore there is no edge betweenA∩L andB−L (otherwise
that edge is not covered byC∗). However, we know that we start with a complete graphG. Thus there are
edges inG betweenA ∩ L andB − L but they are not inGy; which means all those edges have positive
excess (i.e. are not tight). We update they values to make one of these edges go tight. Let

ǫ = min{yai
+ ybj

− wi,j s.t., ai ∈ A ∩ L, bj ∈ B − L}

be the minimum excess value of all such edges (these are the edges that could be added toGy). Then we
update vertexy values to tighten the edges withǫ excess value by defining:

yai
=

{

yai
ai ∈ A− L

yai
− ǫ ai ∈ A ∩ L

and

ybj
=

{

ybj
bj ∈ B − L

ybj
+ ǫ bj ∈ B ∩ L

Note that by this change every edge that was inGy remains tight. Also by the choice ofǫ, no edge constraint
is going to be violated, soy remains a vertex cover. Furthermore, at least one edge between A ∩ L and

1D = (A ∪ B, E′), whereE′ is the union of edges ofM directed fromB to A and edges ofE − M directed fromA to B.

2

Maximum Weighted Bipartite Matching Algorithm; Primal-Du al Method

For eachai ∈ A let yai
= maxbj∈B w(aibj);

For eachbj ∈ B let ybj
= 0;

Build graphGy and letM be a maximum matching inGy

Construct DigraphD
repeat

let L be the set of nodes (inD) accessible from any exposed node inA.
Let ǫ = min{yai

+ ybj
− w(ij) : ai ∈ A ∩ L, bj ∈ B − L}

Decreaseyai
for eachai ∈ A ∩ L by ǫ and increaseybj

for eachbj ∈ B − L by ǫ

Add the tight edges toGy and recompute matchingM .
Until M is a perfect matching.

B − L goes tight and therefore is added toGy. We can repeat this operation until eitherGy has a perfect
matching, or there is no edges left betweenA ∩ L andB − L. The latter happens only if both these sets are
empty, which implies that we have a perfect matching. Thus, eventually we find a perfect matching inGy

which by the previous lemma corresponds to an optimum matching inG. At this point the solutiony is also
an optimum vertex cover. The following pseudo code summarize the Primal/Dual Algorithm:

At each iteration of the algorithm at least one edge is added to Gy, so there areO(n2) iterations. To update
the maximum matching inGy and re-computeL we have to spend at mostO(n2) time; thus the total running
time is bounded byO(n4). In fact a more careful analysis shows that the running time can be bounded by
O(n3). Thus:

Theorem 1.3 Given a complete bipartite graphG with edge weightsw(e), the primal/dual method finds a
maximum matching and a minimum vertex cover in timeO(n3).

2 Non-Bipartite Matching

So far we have been talking about matchings (and weighted matchings) in bipartite graphs. Finding match-
ings in general (non-bipartite) graphs is substantially more difficult.

In bipartite graphs, König’s theorem is a min-max theorem between the maximum size of a matching and
the minimum size of a vertex cover. Although vertex cover is the dual problem, this min-max relation does
not hold in general graphs (a simple example being a cycle of length 3). However we can still give min-max
theorems for general graphs.

Definition 2.1 Given a set of verticesU ⊆ V , G− U is the subgraph obtained by deleting all the nodes of
U and their incident edges.

Definition 2.2 An odd component is a connected component with odd number of nodes. We useo(G) to
denote the number of odd components of graphG.

SupposeM is a matching inG − U and consider an odd component ofG − U . There is at least one
un-matched node in this component. Therefore, to have a perfect matching inG, each such vertex (in an
odd component) must be matched to a node inU . But we can add at mostU matching edges of this type.
Therefore we must haveo(G− U) ≤ |U | in order to have a perfect matching.

Tutte proved that this necessary condition is also sufficient.

3

U

Figure 1: a matching inG− U and the odd components ofG− U

Theorem 2.3 (Tutte) A graphG has a perfect matching iffo(G− U) < |U | ∀ U ⊆ V .

What if G does not have a perfect matching? It is easy to see that each matching inG has at leasto(G−U)−
|U | unmatched edges. This shows that the size of a maximum matching is at most(|V |+ |U |−o(G−U))/2.
It turns out that the minimum value of this (over all setsU) is actually equal to the size of a maximum
matching. If we useν(G) to denote the size of a maximum matching ofG then:

Theorem 2.4 (Tutte-Berge Formula)

ν(G)max
M
|M | = min

U⊆V

|V | − o(G− U) + |U |

2
(4)

Proof: Assume thatG is connected (otherwise we can prove it for each connected component ofG). It is
clear that the r.h.s. is an upper bound for the size of any matching. We prove the other direction by induction
on |V |. The cases|V | ≤ 1 is trivial. So we assume|V | ≥ 24. Two cases are considered:

Case 1: If G has a vertexv ∈ V saturated by all maximum matchings ofG. Then the sizeν(G − v) =
ν(|G|) − 1 and by induction there is a setU ′ ⊆ V − v such that:

ν(G− v) =
1

2
(|V − v|+ |U ′| − o(G− v − U ′).

DefineU = U ′
⋃

{v}. Then:

ν(G) = ν(G− v) + 1

=
1

2
(|V − v|+ |U ′| − o(G− v − U ′)) + 1

=
1

2
(|V | − 1 + |U | − 1− o(G− U)) + 1

=
1

2
(|V |+ |U | − o(G− U)).

Case 2:So suppose that there is no such vertexv. The for eachv ∈ V there is some maximum matching
not coveringv. Thereforeν(G) < 1

2
|V |. We show that there is exactly one vertex missed in any maximum

matching and therefore there is a matching of size1

2
(|V | − 1) which implies the theorem withU = ∅. By

4

way of contradiction, suppose there are two distinct vertices not covered by a maximum matchingM , call
themu, v. Among all such triplesM,u, v choose one such thatd(u, v) is the smallest. Ifd(u, v) = 1,
thenu andv are adjacent, so we can augmentM by the edgeuv, contradicting the maximality ofM ; so
d(u, v) ≥ 2. Therefore, there is an intermediate vertext on the path betweenu andv. Because we are in
case 2, there is a maximum matchingN missingt andN 6= M (otherwiseM misses bothu andt which
contradicts definition ofM,u, v). Among all such maximum matchingsN missingt choose one such that
|M

⋂

N | is the largest. Observe thatN must coveru andv. Since bothN andM are maximum matchings
the number of vertices covered by both is the same. Consequently, there is a vertexx 6= t covered byM but
not byN . Let e = xy ∈ M ; y must be saturated byN (otherwisee could be added toN). In other words
y is covered by some edgef ∈ N , e ∈ M , ande /∈ N . Now we can modifyN to N ′ = N − f + e in this
case the intersection ofN ′ with M increases is larger than that ofN , contradicting the choice ofN .

One might think that the idea of using augmenting paths to findmaximum matchings could be extended to
general graphs. This is true as shown below:

Theorem 2.5 (Berge)A matchingM is maximum iff there is notM -augmenting path.

Proof: Clearly if there is anM -augmenting path it is not a maximum matching. We prove the other
direction. Suppose thatM is not maximum and there is not any augmenting path. LetM∗ be a maximum
matching with the largest|M

⋂

M∗|. Consider the unionM
⋃

M∗. Observe that this union cannot have
even paths or cycles (as otherwise we could reverse the edgesof them to makeM∗ ∩M larger). Therefore,
there can only be odd paths with more edges fromM∗ thenM . Such a path is clearly is anM -augmenting
path.

The major question is how to find anM -augmenting path. A natural approach could be to try to use the
same idea as in bipartite graphs to find an augmenting path. The difficulty is that since the graph is not
bipartite we don’t know how to orient the edges to find the augmenting path. The presence of odd cycles in
a general graphs makes it particularly difficult as an alternating path can cross itself. It was Jack Edmonds’
who came up with a clever idea to handle this difficulty.

Definition 2.6 Let M be a matching inG, andX be the set of vertices missed byM . An M -alternating
walk P = (v0, v1, ..., vt) is called anM -flower if t is odd and(v0, v1, ..., vt−1) are distinct,v0 ∈ X, and
vt = vi for some eveni < t. With this condition the set of verticesvi, ..., vt are called blossom and the
verticesv0, .., vi are called stem.

Figure (2) shows a flower. The verticesv0, . . . , v4 represent the stem part while the verticesv4, . . . , v8

represent the blossom part. We can easily reverse the edges of the stem so thatvi = vt ∈ X without
changing the size of the matching; this way we obtain anM -flower which consists of just a blossom (i.e.
the stem is empty).

υ1υ0 υ2 υ3

υ5 υ6

υ7υ8

υ4

υ9

Figure 2: A graph containing a stem and blossom

The core of Edmonds’ algorithm is based on the following observation. LetB ⊆ V be a subset of vertices.

5

ThenG/B is the graphG′ obtained by shrinking the setB into a single nodeb; G′ consists of(V −B)
⋃

{b}
and each edgee ∈ G′ is obtained by replacing an end-vertex inB with the new nodeb. We call the new
edges ofG′ the images of the original edges inG. As an example, consider the graph in Figure (3a). In the
figure (3a) the vertices6, 7, 8 constitute a cycle while the figure (3b) illustrates how the vertices6, 7, 8 were
shrunk in a single node which correspond to a new nodeb.

2

1 3

4

5 6 8

7

(a) Cycle

6 7 8, ,

2

1 3

4

5

(b) Shrunk nodes

Figure 3: Graphs containing the illustration of passing from a cycle to shrunk node

For any matchingM , let M/B denote the set of edges inG/B that are images of edges inM not spanned
by B (i.e. have at least one end-point not inB). If M intersectsδ(B) in at most one edge thenM/B is a
matching inG/B. So if we can find a blossom inG and shrink it into a single node and find a maximum
matching in graphG/B then we can extend it to a maximum matching inG. We formally prove this.

Theorem 2.7 LetB be anM -Blossom inG. ThenM is a maximum matching inG iff M/B is a maximum
matching inG/B.

Proof: Let B = (v0, . . . , vt) (we assume this is a blossom of a flower with empty stem). Firstassume that
M/B is not a maximum size matching inG/B. So there is anM/B-augmenting pathP in G/B. If P does
not involve vertexb of G/B then it is anM -augmenting path inG and soM is maximum. So supposeP
entersb using some edgeub not in the matchingM/B. thenuvj ∈ E for somej ∈ {0, 1, .., t}.

• If j is even then replaceb in P with vj, vj−1, . . . , v0

• if j is odd then replaceb in P with vj , vj+1, ..., vt

In both cases an augmenting path is obtained inG.

Now suppose thatM is not maximum, butM/B is maximum. There is anM -augmenting pathP =
u0, u1, . . . , us. If P does not involveB then it is an augmenting path inG/B and we are done. So sayP
it intersectsB and letuj be the first vertex ofP in B. Thenu0, u1, . . . , uj is anM/B-augmenting path in
G/B; thusM/B is not maximum.

The following theorem combined with the previous two will complete the tools needed for our matching
algorithm.

Theorem 2.8 Let M be a matching inG and P = v0, v1, ...vt be a shortestM -alternating walk from a
node inX to another node inX (i.e. a shortestX −X walk). Then eitherP is anM -augmenting path or

6

v0, ..., vt is anM -flower for somej < t

Proof: Assume thatP is not a path. So there arei < j with vj = vi; let j be the smallest such index.
Therefore,v0, ..., vj1 are all distinct. We prove thatv0, . . . , vj is anM -flower. If j − i is even then we can
deletevi+1, ..., vj from P to obtain a shorterM -alternatingX −X walk. Soj − i is odd. Ifj is even andi
is odd, thenvi+1 = vj−1 (it is a the vertex matched tovi = vj), contradicting the minimality ofj. Thusj is
odd andi is even and therefore(v0, v1, ..vj) is anM -flower.

Using these theorems we can describe Edmonds’ blossom algorithm for general matching. We use the
following procedure to iteratively find augmenting paths aslong as there is one:

The Matching Augmenting Algorithm

X ← Exposed nodes
If there is no alternatingX −X walk then

return No augmenting path
Else

Let P be a shortestX −X alternating walk
If P is a path returnP
Else

It contains a blossomB
ComputeG/B and find anM/B-augmenting pathP ′ in G/B
ExpandP ′ to an augmenting path inG
Return P

Theorem 2.9 Given a graphG, a maximum matching can be found inO(n2m).

Proof: Theorems 2.5, 2.7, 2.8 prove the correctness of the above algorithm. An M -alternating walk can
be found inO(m) time using a BFS. This either yields anM -augmenting path or a blossomB. In the latter
case the shrunk graphG/B can be built inO(m) as well. The number of recursive calls is at mostO(n)
since each time the size of the graph decreases by a constant.Thus inO(mn) we can find anM -augmenting
path if one exists. There are a total ofO(n) iterations of calling this procedure and so the total running time
is O(n2m). This can be improved toO(n3) as well.

References

1. Combinatorial Optimization, Schrijver, (Volume 1) Springer-Verlag, 2003.

7

	Primal/Dual Algorithm for weighted matchings in Bipartite Graphs
	The Primal/Dual Algorithm

	Non-Bipartite Matching

