CMPUT 675: Randomized Algorithms Fall 2005
Lecture 10: Oct 11

Lecturer: Mohammad R. Salavatipour Scribe: Tim Furtok

10.1 Applications of the Lovasz Local Lemma

Recall the simple LLL from last lecture.

Lemma 10.1 Assume that Ay, As, ..., A, are bad events such that each A; is mutually independent of all
but at most d other events. If

1. PI‘[A,] <p Vl,
2. 4pd < 1,

then Pr[), 4;] > 0

10.1.1 Packet routing in with low congestion

There is a surprising application of LLL in packet routing in general networks. Consider a network with
source/sink pairs (s;,¢;), 1 <4 < N. For every pair s;,t;, we are also given an (edge simple) path P; from
s; to t;. There is a packet that has to travel along P; from s; to t;. We assume that we are in a synchronous
system, i.e. each packet can move along an edge in one time step or stay in a queue. No two packets can
travel the same edge at the same time step. We assume that there is a queue at the end of each edge and
the edges that travel that edge wait in that queue until the next edge they want to travel in the next step
is free. Once they travel that edge they enter the queue of that edge. There is also an initial queue at every
s;. The packet of s; can wait in that queue for as long as we want. Our goal is to find a feasible schedule
for the packets to minimize the longest travel time.

Let d (dilation) be the length of the longest path P; and ¢ (congestion) be the maximum number of paths
using any edge in the network.

Clearly d and ¢ are both lower bounds for the total time. So an obvious lower bound is Q(c + d) and a loose
upper bound is ¢ * d, since each packet will wait at most for ¢ — 1 other packets along each step of the path
which has at most d steps. The following interesting result was proved by Leighton, Mags, and Rao in 1994:

Theorem 10.2 (Leighton,Maggs,Rao) There is a schedule of O(c + d) time steps with constant queue
size at each edge, independent of network topology, the paths P;, and the number of packets.

This result heavily relies on the LLL. It also has applications in Job shop scheduling. Suppose we are given
jobs ji,...,7, and machines my,...,ms. Each job must be performed on a specified sequence of machines
in that order, each of which takes a unit amount of time. We assume that no machine needs to work on any
job twice. Our goal is to find a schedule for performing this jobs that will finish the earliest possible time.
In this problem, it is easy to see that jobs correspond to the packets and machines correspond to the edges.

10-1

10-2 Lecture 10: Oct 11

The dilation is the maximum number of machines needed to work on any single job and the congestion is
the maximum number of jobs that need to work on any single machine. Theorem 10.2 implies that there is
an schedule that takes O(c + d) time only.

We start by proving a somewhat weaker result which uses only the first moment method.
Theorem 10.3 Let N be the number of packets (paths). There is a schedule of length O(c + d x log(dN))

Proof: To every packet assign an initial delay that is a u.r. selected number from [1, ﬁ] for some

constant « (to be specified). Every packet waits for this amount at the initial queue and then start going
along its path without ever waiting in any queue. Of course, this may result in an infeasible schedule (because
several packets may want to travel the same edge). We first bound the number of packets that want to travel
the same edge at the same time. For edge f € E, let A’} be the bad event that more than log(Nd) packets
go through f at time t. Then

-5, ()2 (-2)”

k=log(Nd)+1

LGN

k=log(Nd)+1

Xc: (eloi(kNd))k

k=log(Nd)+1

IA

IA

c—log(Nd)

(g)log(Nd)—l—l kz:% (g)k

IA

y

5 (Z)log(Nd)-i-l

o
number of choices for t is < d + ﬁ. Therefore:

because Zz;l(;)g(Nd) (E)k < %= < 2if @ > 2e. The number of choices for picking edge f is < Nd and the

e\ log(Nd)+1 ac
Pr[more than log(Nd) packets go through some edge] < 2 (E) -Nd - (d + W)

1
— 1
< Nd € o(1)
Thus, w.h.p. no more than O(log(Nd)) packets travel any edge at any time. Each step of this schedule can

be simulated by O(log(NNd)) legitimate step by delaying the packets so that they go through an edge one by
one. So the total time will be O(c + dlog(Nd)). [|

Now we prove a result similar to Theorem 10.2 that uses LLL.

Theorem 10.4 There is a schedule with length O ((c—l—d)ZO(ln*(C‘*‘d))) and mazimum queue size log(c +
d)210g* (c+d) .

Proof: wlog say ¢ = d. Given an initial delay to each packet that is u.r. from [1,ad] for some constant a.
Each packet then goes without interruption (waiting at a node) toward its destination. The total time is
then < (1 + a)d.

Lecture 10: Oct 11 10-3

Partition the time into frames, each frame having Ind steps. We show that with positive probability each
edge has congestion < Ind = Inc in each frame. We can think of each subproblem (defined by a frame)
independently of a problem with dilation In d. Repeating the same algorithm for each subproblem recursively
In* d times we get to an instance where the time frame size is constant and so is the congestion. For such
a small problem we can find a constant approximation; the naive O(ed) solution is also O(c + d) because ¢
and d are constant. So the total delay is 290" (¢ + d).

Therefore, we only need to prove the following (main) lemma.
Lemma 10.5 With positive probability, every frame has congestion < Ind

Proof: For every edge f let Ay be the bad event that f has congestion > Ind in some time frame. Our goal
is to prove

Pr[(") 47 > 0.
fEE

Whether or not A, happens only depends on the delays assigned to the packets that used edge e. Note
that Ay and A, are independent unless some packet goes through both edges. This implies that dependency
< c¢xd=d* What is the probability of a bad event A?

Consider some time frame F. The number of delays that will cause a frame to go through a particular edge
f at time frame F' is at most Ind (for larger or smaller delays the time at which the packet goes through

f will be outside the time frame F'). Thus the fraction of relevant delays is %. Since there are at most d
packets that go through each edge:
Ind
E[# of packets that go through f in some time frame F] < % -d
_ Ind
o«

Since the paths for the packets are edge-simple, the number of packets going through f in time frame F' is
a binomial R.V. determined by d independent R.V.’s and p = %. So:

Pr[congestion of f in Fis > 1+ (a— 1)u]

IN
/N
o

+
S| %,

=

+

<
N—
*©

IN

)
o

< d~* if a is large enough
We have O(d) time frames, so

Pr(A;) < O(d) - O(d %) € O (dis) .

Using the Local Lemma, with positive probability no bad events occur. [|

Therefore, this completes the proof of theorem. []

