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12.1 A randomized algorithm for 2-SAT

Consider the 2-SAT problem. In this problem, we are given a formula ¢ in 2-CNF format (i.e. two variables
per clause). Assume that the variables of ¢ are z1, ..., 2, and the clauses are C4,...,Cp,. We wish to find
(if there exists one) a truth assignment to the variables that satisfies ¢. The following is a simple randomized
algorithm.

Start with an arbitrary truth assignment. As long as there is some unsatisfied clause do:

1. Pick an unsatisfied clause C; uniformly randomly.

2. Pick one of the variables of C; uniformly randomly and flip its value.

Suppose ¢ is satisfiable and let A be a fixedsatisfying assignment. Value a; for variable z; is called “correct”
if A sets x; = a;. Let X; be the number of variables in current assignment that are correct. It is easy to see
that with each step, the value of X; changes by 1:

| X — Xip1| =1

The algorithm stops when X; = n, i.e. all variables have correct value (or maybe even before that by finding
a truth assignment different from A that satisfies ¢). In the case that all the variables are incorrect, flipping
any variable will move us closer to A.

PI‘[XZ'_H = 1|Xl = 0] =1.

In all other cases, a change could move us closer to A or further away. The process is like a random walk on
integers with a barrier at 0; each step either increases or decreases the number of correct values by one. We
stop when we get to n. Let 1 < X; <n — 1, and consider a random unsatisfied caluse C;. It disagrees with
A in at least one variable. With probability at least % we pick that incorrect variables and once we flip it
the number of incorrect variables decreases by one. So

Pr[X; 1 =5 +1|X; =j4] > 1/2.

We will show that the expected number of steps to get to A is n2. Is this a Markov chain? not exactly.
Because the probability of going from one state to another depends on the assignment of clauses (and
therefore on the previous states). Instead, we define another random walk which is a pessimistic estimatore
of X;’s and is indeed a Markov Chain. Let Yy = X, and for every ¢ > 1:

PrYi+1=1]Y;=0]=1
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PrlYi+1=j+1Y;=4]=1/2
PrlYi+1=j-1Y; =j]=1/2
Clearly, the expected time for Markov chain Y to reach n is greater than or equal to the expected time

required for X. We bound the expected time for Y (which in turn gives an upper bound for the expected
time before X hits n). Let Z; be the number of steps to reach n from state Y. Then:

h; = E[Z;] E[%(l + Zit1) + %(1 + Zi1)]

hici+1  hiy +1
2 * 2
hi—1 | hiya
2 + 2
We also have hg = hy + 1 and h,, = 0. By induction we show h; = h;y1 + 2¢ + 1 The base case i = 0 is
trivial. For induction step:

+1

h]’ = % + hj2+1 +1
= 2h; = hj_1+hj1+2
= hjp1 = 2hj—hj_1 -2
= 2h;j—(hj+2(j—-1)+1) -2
= h;j—2j-1

So hg = E?:_ll(% + 1) = n?. Thus if ¢ is satisfiable and we run the algorithm for 2n? steps, by Markov’s
Inequality: Pr[failure] < 1/2. Since we run the trial ¢ times, in 2tn? steps we find a solution with prob >
1 — 27t if there is any.

12.2 Random Walk on Graphs

The algorithm in the previous problem was an example of a random walk on a graph (on a path). In general,
we can define a simple random walk on a graph as follows: Start at a vertex u. Pick one of the d(u) neighbors
uniformly randomly and go to that neighbor. Keep doing this. When analysing, there are specific quantities
of interest:

e H,, : hitting time from u to v = E[ number of steps to first reach v|start atu]

e (Cyp : commute time from u to v and back to u = Hyy + Hyy

e C, : cover time = E[number of steps to visit all vertices|start u] for entire graph: Cg = max, C,
Random walks on graphs have several applications. For instance, we can show how to figure out if there

is a path between two given vertices s,t in a graph (s, t-connectivity) in only O(logn)-space in randomized
polytime.

12.2.1 Analysis of random walks using resistence graph

We will model our graph by representing as a circuit. Recall the following two fundamental laws from
physics:
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Definition 12.1 Kirchoff’s Law:

Total current going into any point = total coming out

Definition 12.2 Ohm’s Law:
V =RI

Consider G is a circuit and assume every edge has Resistance 1. When resisters are aligned as follows, total
resistance R is

e Series: R =R, + R»

Ri1Ro
Ri+R2

e Parallel: %z R%+Ri2 — R =
Definition 12.3 Effective Resistance Ry, between u and v is the potential difference V between u and v
when one unit of flow is going from u to v.

Theorem 12.4 Given a graph G. Think of each edge as a unit resistence and let Ry, be the effective
resistence between u and v. Then:

Cuv =2m * Ry,

Proof: Take a battery and inject d(z) units of flow into each node z and remove 2m units of flow from v.
Let ¢y, be the difference of voltage between u and v. Then:

du) = Z (current from u to x)
ur€E
= Z Duz
urelE
= Z Duv — Do
ur€E
= d(u)¢uv - Z v
uz€E
w = 1 zv 12.1
— ¢ +WX€:E a) (12.1)

Note that we have one such equation for every pair uv, i.e. we have a system of equations. Now consider
the Random walk experiment. Starting at a vertex u there are d(u) possible paths. If we take a step from
u to = then:

Huv:]-+ Z Hu

Since system of equations 12.1 and 12.2 are identical, the systems have the same solutions. Therefore:

Hy, = ¢uv
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We can perform the exact same experiment, this time injecting flows to the vertices and taking the total 2m
units of flow from w. This implies that

Hyy = ¢;;u

Now in this second experiment, reverse all the flows. In this case, we have a 2m units of flow going in from
u and d(z) units is coming out from all vertices. Now if we combine the first experiment with the last one,
i.e. add the flows injected and taken out in the two experiment, we have:

e a total of 2m units of flow is going into u
e a total of 2m units of flow is goint out from v

e the net flow going in and out from every other vertex is zero.

Thus:
Guv + ¢;)u = Hyy + Hyy =2m * Ryy = Cyy

Example: For a random walk on a path P, (points 0,...,n —1): m = n and for any two points ¢ and j:
Rij =j—iand Hy + Hj; = 2(n — 1)(j —i). Thus Ho,, + HnO = 2n?. Since a path is symetric: Ho, = n?.

Note that H,, does not necessarily equal H,,. Consider the following example.

Example: Lollipop graph L, which consist of a path of length n/2 hanging from a vertex v in the complete
graph K, /5. Let u be the other end-point of this path. We have: Ry, = 5, m = § —1+ ("42) € O(n?).
So Hyy + Hyy = 2mR,, = nm € ©(n?). From the previous example we know that H,, = (g)2 = ”Tz. So
H,, € ©(n?).

The following easy fact is used in the next theorem.

Fact: If uv € E then R,, < 1.

Theorem 12.5
C(G) <2m(n—1)

Proof: Let T be some spanning tree of G and do a depth first search (DFS) traversal of T. Let u =
Vg, V1, ..-V2n—1 be the sequenceo f visits to the verticies (note that each edge is travelled exactly twice, once
in every direction). So

Cu = Hvo'ul + Hv1v2 + ot Hv2n—3v2n—2

= Z Cuv

uwv€ET

= z 2m x Ry,

wveE
2m(n —1)

IA

For example, on a complete graph with n vertices, i.e. K,, we have: C(K,) € ©(n®)



