CMPUT 675: Randomized Algorithms Fall 2005

Lecture 17: November 3

Lecturer: Mohammad R. Salavatipour Scribe: Bruce Fraser

17.1 Bloom Filters

Hash table is good to find the object given its key. What if we only want to check the existence of the object?
In general, with hash tables of size n, with a universe U with |U| = m, logm bits are needed to store each
key in the table, so total size is O(nlgm) bits.

To save space, we can map each item to a single bit. The problem with this approach is that collisions cause
false positives (saying an item is in the set while it really is not). Another approach is to use bit vectors
of size n, and many (k) random hash functions. The multiple functions add redundancy to algorithm, and
form a method for dealing with the inevitable collisions in such a small hash table.

Given item x, compute h; (x) up to hg(x) and set all set these bits in the bit vector to 1. To lookup an item:
Check all h;(z) locations. If any is 0, say no, otherwise say yes.

Clearly if the algorithm returns no then z is not in the set. What is the probability of false positives?

For m distinct items we have km bit changes. Probability that a fixed bit remains 0:

Expected number of 0-bits is thus approximately np, and (1 — p)*¥ = f is the probability of false positives.
We have to optimize k to minimize f.

e—km/n

Let f = €9 then g = kln(1 — e~*m/n), 98 — In(1 — e~km/n) 4 km .

dg . 7 The zero is at k = In2(n/m).

Thus with this value p =1 and f ~ %k = (0.6185)™/™. If n is approximately 8m, the probability of a false
positive is less than 2%.

17.2 Fingerprinting

Basic idea is simple and we saw it in Lecture 1: to compare two items z,y from a huge universe U, any
deterministic algorithm clearly needs O(log |U|) bit comparisons. However, we can map u to a smaller set
V and then compare images of z,y in V. This will require only O(log|V]) bits.

Some preliminaries: recall the algebraic definition of a field, F a set over which two operations are defined,
addition and multiplication. We will be working with fields in this topic.

17-1

17-2 Lecture 17: November 3

17.2.1 Freivalds technique

Consider the following simple problem: given matrices A, B and C, it would be desirable to have an efficient
decision procedure for confirming if AB = C. Checking the equality in the obvious brute force manner would
be in O(n?), dominated by the cost of multiplying A and B (this can be improved to O(n2-376-)). We want
a faster (simple) algorithm to check AB = C, this is good as a test at the end of complex multiplication
programs.

Consider r € 0,1". We could instead check if ABr = Cr. If AB = C there is no problem with this procedure,
but what if AB # C but ABr = Cr? To rephrase, let D = (AB — C). What if Dr = 0 but D is non-zero?
If D is non-zero there is a non-zero row, without loss of generality assume d; # 0.

— Y, dirg

Zdﬂ“,':()iT'i: dy
=1

Assume that all r; > 2’s are chosen before rq, then there is a unique value v € F' for r, and the probability

that r; takes that value is less than % If r € S C F then probability is less than |1?|

17.2.2 Comparing Polynomials

Given polynomials P, @), R over F, we want to check if P(z)Q(x) = R(z), where P and) have degree at
most n, and R has degree of at most 2n. Using FFTs you can multiply in O(nlgn) time to evaluate R(z).

Random test:

e Let S CF, and pick r € S.
e Compute P(r)Q(r) — R(r).
e If non-zero we know that the original equality does not hold,
e otherwise we conclude the equality does hold.
What is the probability of error? if D(z) = P(z).Q(z) — R(z) is not identically zero but the value r that

we chose is one of its roots. Since degree of R(x) is at most 2n, degree of D(z) is at most 2n and so has at
most 2n roots. Thus the probability of error is at most %"‘

Now consider multivariate polynomials, composed of n variables. The degree of a term is defined as the
sum of included variables degree. For example, deg(x2yz*) = 6. We may have an implicit representation of
these polynomials (e.g. given an matrix A, with variables being the entries, the polynomial might be the
permanent of this matrix).

Theorem 17.1 (Shwartz and Zippel) Let Q(z1,...,2,) be a multivariate polynomial of total degree d.
Fix S CF and r1,r2, ...,7y be selected uniformly randomly from S. Then

d

Pr[Q(r1,--;n) = 0|Q(x1, ..., 2p) Z 0] < E

There is no known deterministic polytime algorithm for identity checking for multivariate polynomials.

Lecture 17: November 3 17-3

Proof: We prove by induction on n. Base Case: n = 1, was done in the previous subsection.

Consider () and pick one variable, say z; that affects @) and factor it:

Q = szle(:L.Z; 5$n)

i<k

where k is largest exponent of z1. We have Q(x2, . .., %,) Z 0 by the choice of z; and the total degree of @y, is
at most d — k. First assume that Q(r2,...,rn) # 0. Let ¢(z1) = Q(x1,72,...,7n) = Ef:o 2iQi(ra,...,0).
Since ¢(x1) is a singe variable polynomial, the probability that g(x1) equals to zero is at most I%I Also, by
induction hypothesis and since total degree of @)y, is at most d — k:

Pr[Qk (13, .., 7) = 0] < d%{“.
Thus: i
PQu(rz, v a) = 0] < o

PrQ(r1, .,) = 0| Qi (r1, ooy) 7 0] < %

For any two events: F; and FEjs:

Pr[E;] = Pr[E; N Es] + Pr[E; N Ey] < Pr[Ey|Es] + Pr[Es).

Thus Pr[Q(r1,...,m) =0] < % + % = %, as claimed.]

17.3 Perfect Matchings

In this section, we look at efficient randomized algorithms for checking existence of and finding perfect
matchings in bipartite graphs. The algorithm uses the results on polynomial identity checking described
before.

A bipartite graph G(U UV, E) is a graph in which the vertex set is partitioned into two parts U and V and
all the edges have exactly one end point in each of U and V. With |U| = |V| = n, a perfect matching M C E
is a set of n edges such that the subgraph of G induced by M is 1-regular.

Definition 17.2 A Tutte matriz of a bipartite graph G(U UV, E) is an n by n matriz M, such that:

= {0 ifui,v; ¢ E

v Tij z'fui,vj ek
The determinant of the Tutte matrix can be used to check existence of perfect matchings in G.

Lemma 17.3 Det(M) # 0 < G has a perfect matching

17-4 Lecture 17: November 3

Proof: Using the definition of determinant, Det(M) =} p (=1)%9m™ [T, M; (s, where P, is the set
of all permutations of {1,...,n}. There is a trivial one-to-one correspondence between perfect matchings in
G and permutations of {1,...,n}: {(v1,Ur1));- -+ (Vn,Ur(n)) }- Thus:

Det(M) = Z (—1)*in(m ﬁflfi,w(i)-

TEPn i=1

This implies that, every term in the above summation is non-zero iff and only if it corresponds to a perfect
matching of G. Since every produce in the summation is unique, no two terms cancel each other out.]

This gives an easy way of checking for the existence of a perfect matching in G. Det(M) is a degree n
polynomial, so if we pick S with |S| = 2n then

Pr[G has no perfect matching and we accept] = 1

Pr[G has a perfect matching and we reject] <

N =

This topic is continued in the next lecture.

