CMPUT 675: Randomized Algorithms Fall 2005

Lecture 3: Sept 15
Lecturer: Mohammad R. Salavatipour Scribe: Zac Friggstad

3.1 Random Variables and Markov’s Inequality

The proofs of all of the results in this section can also be found in [1]. Consider the following experiment:
we a set of n coins each of which comes up heads with probability p. The random variable of the number of
coins the come up heads is a special kind of random variable kind Binomial random variable.

Definition 3.1 A binomial random variable X with parameters p and n, denoted B(n,p), has the property
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Lemma 3.2 If X is a binomial random variable with parameters p and n then E[X] = np.
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Where the second last equality follows from the binomial theorem
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Now consider the following experiment: we flip a coin comes up heads with probability p until the first time
we see heads. The random variable of the number of coin flips before the first heads is a special kind of
random variable kind geometric random variable.

Definition 3.3 A geometric random variable X with parameter p has the property

[ a=ptiYp ifi=1,2,...,
Pr{X =j]= { 0 otherwise.

Lemma 3.4 For X a geometric random variable with parameter p,

E[X] = i Pr[X > i].

Proof:
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The second equality is justified by noticing that each of Pr[X = j] appears exactly j times as a term in the
second expression. [ ]

Lemma 3.5 For X a geometric random variable with parameter p,
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by summing both an infinite and a finite geometric series. So
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by summing another infinite geometric series. ]

3.2 Deviation Bounds

Just saying that the expected value of something is X is often not satisfactory. We would like to bound the
probability that we are far from the expected value. For this there are a variety of tools. Perhaps the most
basic (and so the weakest) one is Markov’s inequality.

Theorem 3.6 (Markov’s Inequality) Let X be a random variable that only assumes non-negative values.
Then, for all a > 0,

E[X]

Pr[X >a] <
a

Proof: Define I as

7= 1 if X >a,
1 0 otherwise.

Since X > 0, then

<X
Also,
E[Il=1-Pr[I =1]+0-Pr[I =0] = Pr[X > a).
So,
PrX >a]=E[I] <E [g] = E[(;X]

Another form of Markov’s Inequality is
1
Pr{X > aBIX]] < ~
a

where a and X are as in the above theorem.
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3.3 Complexity Classes

Definition 3.7 A language L C X* is a set of finite strings over some fized (finite) alphabet ¥ where ¥* is
the set of all finite words that can be formed with letters from . An algorithm is said to decide a language
L when it accepts a word z if and only if x € L. If x ¢ L then the algorithm is said to reject x.

Some of the familiar complexity classes are presented first.

Definition 3.8 The class P is the set of all languages L such that there is a deterministic polynomial time
algorithm that decides L.

Definition 3.9 The class NP consists of all languages L that have a witness that can be regognized by a
deterministic polynomial time algorithm. Formally, for o language L € NP we have x € L if and only if
there is a y such that |y| < c|z|? for constants ¢,d and P(x,y) where P is a polynomial time computable
predicate.

We now discuss randomized complexity classes.

Definition 3.10 The class RP (Randomized Polynomial time) is the class of all languages L that have a
polynomial time algorithm A such that

N | =

x € L = Pr[A accepts z] >
z ¢ L = A always rejects .

Such an algorithm A is a Monte Carlo with one-sided error. It is important to note that the % acceptance

probability is not important since any constant, non-zero acceptance probability can be inflated arbitrarily
close to 1 with a constant number of repetitions of the algorithm.

Definition 3.11 The class co-RP consists of all languages L that have a polynomial time algorithm A such
that
z € L = A always accepts z

1
x ¢ L = Pr[A rejects z] > 3

Definition 3.12 The class ZPP (Zero-error Probabilistic Polynomial time) is the class of all languages L
that have a Las Vegas algorithm running in expected polynomial time.

Theorem 3.13 ZPP = RPN co-RP

Proof: If L € RP N co-RP then there are algorithms A and B such that

1
z € L = Pr[A accepts z] > 2 and B always accepts

N =

x ¢ L = A always rejects  and Pr[B rejects z] >

Consider the following algorithm.
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make_ZPP(z)
do forever
if A(z) = accept then return accept
if B(z) = reject then return reject.

If the algorithm returns accept then A(z) = accept so x € L. Likewise if the algorithm returns reject then
B(z) = reject so x ¢ L. Since the probability of either of these happining is > 1 on a fixed input z, then the
expected number of iterations is at most 2. This is the expectation of a geometric random variable where
each trial has probability at least % Therfore, RP N co-RP C ZPP.

Finally, if L € ZPP then there is an algorithm M running in expected polynomial time p(n) on an input of
size n that always returns the correct answer. Consider the following algorihm.

make_RP(x)
run the algorithm M on z for 2p(|z|) steps
if M halted on z then return the computed result M (x)
otherwise return reject

If x ¢ L then this algorithm will always reject. If z € L then this algorithm will accept if and only if
M (z) halts in at most 2p(|z|) steps. Let ¥ be the random variable that is the execution time of M (z). By
the Markov inequality, Pr[Y” > 2p(|z)] < 1 so the algorithm accepts z with probability at least 1. Since
simulating an algorithm can be done with polynomial time overhead then the algorithm runs in polynomial
time. Therefore L € RP so ZPP C RP. ZPP C co-RP can be shown by similar arguments which proves

ZPP C RP N co-RP. Equality follows from both inclusions. ]

Definition 3.14 The class BPP (Bounded error Probabilistic Polynomial time) consists of all languages L
that have a polynomial time algorithm A such that

| W

xz € L = Pr[A accepts z] >

=]

x ¢ L = Pr[A rejects z] >

Some important open questions involving complexity classes are the answers to the predicates BPP C NP
and NP C BPP. Note that if the latter is true then all problems solved by randomized polynomial time
algorithms can be solved by deterministic polynomial time algorithms. It is known that if NP C BPP then
NP = RP.

3.4 Coupon Collector’s Problem

The Coupon Collector’s Problem deals with the problem of collecting all of n types of coupons. The collector
picks a random coupon uniformly from all of the n coupons and repeats this process until all types have
been collected at least once. We would like to know the expected number of selections before the collector
gets all n types coupons.

Formally, let X be the number of trials to collect all coupon types. The question is to determine the value
of E[X]. To simplify the problem we break up the selection process and only look at the expected number of
picks to get another coupon when i different types of coupons are already collected. Foreachi =0,1,...,n—1
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this will be denoted by the random variable X;. By linearity of expectation we have

Bx)= Y BlX] = B[y x|

The probability of drawing a different type of coupon from n coupons when already holding i types of
coupons is
n—1
Di =

n
for one draw. Notice that X; is a geometric random variable with parameter p; so

E[X] = plz - n’il
Therefore, the total expected number of trials is
o "1
EX]= ; — =n; z =nH, =nlnn+ O(n).

The deviation from this expected value is also interesting to determine. The probability that a fixed coupon,
say c¢;, is not picked in a single trial is 1 — % Thus the probability that ¢; is not picked after r trials is

1\" -
(1——) <enm.
n

If, for some constant k, we pick knlnn coupons uniformly at random then the probability that we don’t
collect coupon ¢; is bound from above by

_knlnn _ _
e - —e klnn:n k_

Recalling that the union bound states that for any countable sequence of events F1, Es, ...,
Pril Ei]| <) Pr(E)
i>1 i>1

we have the probability that there is some coupon that is not picked in knlnn trials is upper bound by
n-n~F = n'~%_ This probability can be made arbitrarily small by selecting larger values of k. We say in
this case that “with high probability” (w.h.p.) that the number of trials to collect all coupons is O(nlnn).
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