CMPUT 675: Randomized Algorithms Fall 2005

Lecture 6: Sept 27

Lecturer: Mohammad R. Salavatipour Seribe: Jun Ma

6.1 Packet Routing Problem

6.1.1 Properties of the Network

Recall the definition of problem from previous lecture. We have a network with N nodes. The nodes
communicate with each other through directed edges. Every node ¢ has a packet to be sent to a distinct
destination d(i), i.e. the destinations form a permutation of the nodes. The system is synchronous and
works in rounds. In every round vertices may send some packets to some of their neighbors. Every edge can
transmit only one packet in every time step and it takes exactly one time step for a packet to travel an edge.
If there are several packets at a node that want to go through an edge we buffer them (queue) and send them
one by one. We usually use FIFO queuing at buffers. We are looking for a routing scheme for these packets
with minimum number of rounds. The scheme must be oblivious; i.e. every packet is routed independently,
without regard to where other packets are routed. At every node we decide where to send each packet based
only on its destination d(i). The model of network we consider is a k-dimensional hypercube.

Definition 6.1 A hypercube or k-cube has 2% nodes, with k-bit binary strings as labels for each node. Two
nodes are connected with directed edges if and only if their labels differ in exactly one bit. Thus in a k-cube,
each node is of degree k.

Given packet v; to be sent to destination d(¢), assuming the current node is o (i), the bit-fixing algorithm
compares d(i) and o(i) and finds the leftmost bit that they differ, say bit j. Then sends the packet along
the edge from o (%) to the node that differs from o () in bit j. Thus bit j of the new node is the same as d(7).
Clearly by this scheme, the total number of rounds for a single packet (not considering delays that may be
caused by other packets) is at most k (i.e. diameter of a k-cube).

Theorem 6.2 For any deterministic algorithm, there is an instance that requires €0 (\ / %) steps.

In the case of the hypercube, the bound is {2 (@) Our goal is to route all the packets in O(log N) rounds,

where N = 2% (i.e. O(k) rounds). The idea was to first route every packet to an arbitrary location in the
network and then route it from that intermediate destination to its original destination. So we will have the
following two-phase algorithm:

Two Phase Algorithm
Phase 1: Route packets to a random location (not a permutation!) using bit-fixing.
Phase 2: Route packets from the random intermediate locations to their destination using bit-fixing.

Let’s assume that all the packets finish phase I before any packet starts phase II and focus on phase I. We
show that w.h.p. all packets will arrive at their intermediate destination (finish phase I) in O(k) rounds.
Phase II is symmetric to phase I in analysis.

6-1

6-2 Lecture 6: Sept 27

Definition 6.3 For any edge e;, let T'(e;) be the number of routes that use edge e;.

By Symmetry, E[T'(e;)] is independent of e;. Expected length of a path is %, and total length of paths for

all packets is ¥, Since total number of edges is kN, we get E[T'(e;)] = L. We will use the following fact
2 2

(whose proof is simple).
Fact: Once two routes that intersect separate from each other, they cannot intersect again.

Consider a fixed packet v; and assume that p; = e1,es, ..., e is the route for v;. Denote the set of packets
that intersect p; by S.

Lemma 6.4 The delay for v; is at most |S|.

Proof: Charge each delay that we have for packet v; to the separation of a route from p;. A packet that is
waiting to follow edge e; at time ¢ is called to have lag ¢ — j. The delay for v; is the lag when crossing ey.
Note that when the delay for v; goes up from [/ to [+ 1, some packet from S has lag I because some packet
from S is using edge e; instead of v; at time ¢ (otherwise v; would have used e;). Let time ¢’ be the last
time step where there is some packet w with lag I. Say w crosses some edge ej at time ¢’ and has lag [. All
other packets that were waiting to cross e; the lag is increased by 1. We claim that w departs in this step.
Otherwise, in the next time step w still has lag t', contradicting the definition of ¢'. Thus we can charge w
the one increase in the lag value. u

Define an indicator random variable H; ; = 1, if and only if packet ¢ and packet j share an edge. Let D; be
the value of delay for packet . Then D; = |S| and

N N
E[D;]=E | Hi;| = Y E[Hi,]
J=];
< ZE[T(el)]
=1
< F
= 2

Note that now H;; are independent random variables because the intermediate destinations are selected
randomly. So we can apply Chernoff bound:

Pr[D; > 6k]] < 276,

Lemma 6.5 With probability at least 1 — 275%, every packet gets to its intermediate destination in at most
7k steps.

Proof: We have N = 2F packets each is delayed by more than 6k steps with probability at most 2-6* (By
Chernoff Bound). Thus the probability of at least one delay being more than 6k is at most 2¥2-6% = 2-5k,
| |

For phase II, similar analysis applies. Thus the total number of time steps is w.h.p. 14k € O(k).
6.2 Randomized Rounding

Consider the following multicommodity network problem. Given a graph G = (V, E), and k pairs of vertices
(source/sink) {(s1,t1), (s2,t2),-..,(Sn,tn)}. The problem is to find a feasible solution which consists of a

Lecture 6: Sept 27 6-3

set of n paths p1,pa, ..., pr such that p; is a path from s; to ¢;. The congestion of each edge e is the number
of paths using the edge. Our goal is to minimize the maximum number of paths that use any edge, that is
find a feasible solution with minimum maximum congestion.

Denote the set of all paths between s; and ¢; by P; and let z; , be the indicator variable that is 1 if we pick
path p € P;. Our goal is to assign 0/1 values to these variables and minimize the parameter C such that:

subject to Y- cp, Tip =1 Vi
pEPizecp Tip <C VeeFE
wi:P € {07 1}

This is an integer program formulation of our problem. If we relax the constraint on z;, to be real value
between 0 and 1, i.e. 0 < z;, <1 (instead of z; , € {0,1}) we obtain a linear programming relaxation of
the problem. Note that the solution to linear program (LP) is no more than the solution to the integral
program (IP). Now we can solve this LP using LP solvers in polynomial time. One property of the solution
to this LP is that it has only a polynomially many number of nonzero variables z; p.

Denote by vector x* the optimal fractional solution and denote by C* the value of the optimal fractional
solution. For every i, we are going to choose exactly one path from P;. The probability that we choose
p € P; is exactly equal to zj (note that the sum of these values is 1). Let random variable Y = 1 if and
only if the selected path for s;,t; contains edge e. Thus, the congestion of edge e is Y, = Y7 | Y/

E zn: i
i=1

E[Ye] =

> B[]
= i Pr

i=1

> 2

< C*

If 4 = E[Y] > 1thenlet 1+a = 2 for some constant d > 0 wheren = |V|. So (1+a)In(1+a)—a > 3Inn
if d is large enough, which implies:

— nn 1
PrfVe > (1+a)u] <e O < —. (6.1)

Since p < C* < OPT, (6.1) implies that Pr[Y, > (1 + a)OPT] < L. If p < 1 then let ap = B for large
enough d. Then ((1+ a)In(1 + a) —a)p > 31nn for large enough d Therefore:

— nn 1
PrfY, > (1+a)u] <e O < —. (6.2)

Note that in this case the congestion in optimal (integral) solution is at least 1. So the probability that

congestion of e is larger than O(hﬁ" OPT) is at most % by (6.2). In either case, the probability that for

edge e, the congestion is larger than OPT by a factor of O(lhl‘r?n) is at most n1—3 Summing this probability
over all edges, we see that with probability at least 1 — n2n1 = 1— 0o(1) every edge has congestion at most

o(2n OPT).

Inlnn

