CMPUT 675: Randomized Algorithms Fall 2005
Lecture 7: Sept 29

Lecturer: Mohammad R. Salavatipour Seribe: Jun Ma

7.1 Balls and Bins

Suppose we have n bins and n balls. We throw each ball into one of the bins that is selected uniformly at
random and independet of choices of other balls. The load of a bin is the number of balls in that bin after
all balls have been thrown. We are interested in finding the average load and maximum load of any bin.
Clearly the expected number of balls (load) in a bin is 1.

7.1.1 What is the maximum number of balls (load) in any bin?

First we compute the probability that a fix bin i contains at least k balls. Let £F be the event that bin i

contains k balls, then
prier = (") - (1 oyt
Tk n n '

The first term is to choose k£ out of n balls to be placed in bin i, the second term is the probability that
those k go to bin i, and the third term is the probability that none of the rest go to bin i. Thus probability
of the the event £-* that bin i contains at least k balls is
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Therefore, using the union bound over all bins, the probability of the event £¥ that any bin has at least k

balls is at most n
<Y priet] <

i=1

S

Thus we can conclude with high probability (ore more precisely with probability at least (1 - %)) all bins
have load of at most ;7--. It can be shown that with high probability the maximum load of all bins is at
least 2 ($222-). Thus this bound is tight.

Inlnn

3lnn

Suppose we were to use Markov’s inequality to upper bound the maximum load. Then since expected load
in any bin is 1, with £k = Ilnn, Pr [Eizk] < ﬁ which is not useful as we cannot upper bound the probability
of &k,

If we were to use Chebychev inequality, for one ball, variance is p (1 — p) = = (1 — £), thus for n independent

balls variance is no more than 1. Let X be the number of balls in bin ¢, and ¢ = v/nlnn. Then
1
PrX -1 >t < el

and thus,

1
t
Pr [S] < o

Compare this bound for ¢t with the one we obatined earlier.

Finally, if we were to use Chernoff bound we would have: Pr[|X — 1| > t] < 27t With ¢t = logn:

1
Pr[X > 2logn] < 2

thus, with ¢ =logn,
This is still weaker than the bound we obtained.

7.1.2 How many bins are empty?

First, let’s compute the expected number of empty bins. Let b; be the event that bin i is empty. Then

Pr[b;] = (1 - 1)” ~ 1

n e

Define random variable X; as:
X = { 1 if bin i is empty;
¢ 0 otherwise.
Then we have:

E[X]=E lix] :iE[X,-] ~ %

Can we use Chernoff bound to show that w.h.p. the number of empty bins is about e~ '? Note that
conditional on the event that bin 4 is empty the probability that some other bin is empty is different. So the
events are not independent and we cannot apply Chernoff bound. Fortunately, there is another lemma which
can be used to prove concentration of random variables around their mean when the amount of dependency
of mean on each single varible is limited.
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Lemma 7.1 (Azuma’s Inequality) Let X be a random variable that is determined by n trials T1, T, ..., T;,

such that for each i and any two sequence of possible outcomes t1,t2,...,t;—1,t;, and t1,t2, ..., ti—1,t;,

|E[X|T1 = tl, ,Tz = tz'] - E[X|T1 = tl, ,Tz = t:]l S Cj.

In other words changing the outcome of trial i given we have fized the outcomes of trials 1,...,1 — 1, does
not change the mean by more than c;. Then

2

Pr|X —B[X]| > ] < 2~ /? 2w et

Azuma’s inequality is one of most powerful inequalities for the tail of martingales. In the case of Balls and
Bins, the n trails are throwing the n balls and the expected value of number of empty bins does not change
by more than one if the outcome of one trial is changed. More formally, let T; be the trial of throwing ball
i and X be the number of empty bins. Changing the outcome of T; does not change E [T* = ¢!, ..., T = t/]
by more than 1. So we can apply Azuma’s inequality

Pr[|X—u|>\/nlnn] < 2 %
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Thus with high probability the number of empty bins X =2 +© (\/nln n)

7.2 The Power of Two Choices

Again suppose we have n bins and n balls. Instead of choosing a single bin for each ball, two bins are picked
uniformly at random (with replacement). Then the ball will be placed in the bin with lower load. We want
to show that with this simple modification, the maximum load of bins drops significantly from O(I;‘}n"n) to
O(Inlnn).

Definition 7.2 Ball i is said to have height i if it was the i’th ball to be thrown into that bin. Height of a
bin is the mazimum height of a ball in it.

First let’s see the intution why we expect to have a maximum load of O(Inlnn). Denote h; the event that
a ball gets height i. Note that always there are at most 7 bins with height at least 4. Thus when we throw
ball 4 the probability that it gets height at least 5 is equal to the probability that both bins selected for that

have at least 4 balls each: )
1
P <{=]) .

Therefore: E[number of bins with height > 5] <n (%)2. Similarly:

Pr[he] < (i) 4 ;

1 2’l—1
Prlhit1] < (Z)

and in genral:
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For i ~ loglogn, (%)2 ~ L. These argument are not quite correct, since each time we assume that the

number of bins of height i is the same as its expected value. Below we make the formal arguments. We will
use the following two lemmas in our proof. The first one follows directly from Chernoff bound. The second

one is also easy to prove and is left as an exercise.

Lemma 7.3 Pr[B(n,p) > 2np| < e75 .

Lemma 7.4 Letxy,x2, ..., T, be arbitrary random variables, and Y1,Ys, ..., Y, is such that Y; = Y;(x1, z2, ..., Tp)
with Pr[Y; = 1|21, ...,2;] <p. Then Pr[}.Y; > k] < Pr[B(n,p) > k].

Definition 7.5 Denote by v;(t) the number of bins of height no less than i after time t (i.e. t balls have
been thrown). Also let p;(t) be the number of balls of height no less than i after time t, and hy be the height
of ball t.

Note that always: v;(t) < p;(t). Define event &; to be the event that: v;(t) < Bin, where 4 = 1, B8i41 = 25;
(for i > 4). We prove by induction that &; happens w.h.p. for all ¢ > 4.

Base case: For i = 4, as we mentioned earlier, always the number of bins with at least 4 balls is at most 7.
So &4 happens with probability 1.

Induction Step: Assume that the statement is true for all values up to i, that is v;(t) < Bin (w.h.p). We
prove that for i + 1: v;41(t) < Biy1n (w.h.p).

Define indicator random variable Y; as follows: Y; = 1 if and only if h; > i+ 1 and v;(t — 1) < Bin.

Note that if the second condition is true then Pr[Y; = 1] < 8?2 and if the second condition is not true then
Pr[¥; = 1] = 0. Thus we can say Pr[¥; = 1] < 82, always. So Y; is dominated by B(n, 3?) and we can apply
Lemma 7.4. Now using Lemma 7.3:

< e Bin/3 = g=Pitan/6,

n
> Y. >26n

t=1

Pr

Assume that 3,111 > 12Inn. Then using the fact that for any two events A and B: Pr(A|B) = PriA(15) <

Pr(B) —
i:ggg, we have:
Pr{~&41l&] < Pr ZYt > ﬂi+1”|€i]
t=1
1
<
- Pr(E,)
This implies that:
Pr(~&i4+1) = Pr(~&11|&)Pr(&;) + Pr(~ Eiya| ~ &) Pr(~ &)

1
S ﬁ + PI‘(N g,)
Since Pr(~ &) = 0, Pr(~ &;) increases by no more than - for every increase in i. Thus, using a simple
induction Pr(~ Eiogiogn) < log;#. It is straightforward to check that that for i ~ loglogn steps:

12lnn
Bit1in < .
n
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So we should argue what happens when g;in < 121% Let ¢* be the first time whn §; < 121%, Then
Pr(any fixed ball enters a bin with no less than ¢* balls) < O <1“2 ") Similarly,

n2

In* In*
Pr(any two balls enter a bin with no less than ¢* balls) < (g) (0] (%) <0 ( X;:) .

This implies that the probability that any bin has more than ¢* + 2 balls is at most 0(1:—;) which is o(1).
Thus w.h.p. the maximum load of bins is O(Inlnn).



