
Lecture 4: Merge Sort & Asymptotic
Notations

Agenda:

• Merge sort (analysis later)

– a quick review

– recursion

– correctness

• Asymptotic notations

Reading:

• Textbook pages 28 – 61

Merge sort pseudocode

Merge(A; lo, mid, hi) **p 29
**pre-condition: lo ≤ mid ≤ hi
**pre-condition: A[lo, mid] and A[mid + 1, hi] sorted
**post-condition: A[lo, hi] sorted

MergeSort(A; lo, hi) **p 32
if lo < hi then

mid← b(lo + hi)/2c
MergeSort(A; lo, mid)
MergeSort(A;mid + 1, hi)
Merge(A; lo, mid, hi)

1

Lecture 4: Merge Sort & Asymptotic Notations

Algorithm analysis issues (review):

• Issues:

– correctness

– resources used (time & space)

– optimality

• Estimating resources used

– input size n: time T (n) & space S(n)

– worst/best/average case (WC/BC/AC)

– machine independent — computational model

• Model of computation

– simple (architecture, instruction set)

– reflective (typical machine, accurate estimates)

– our choice — RAM (random access machine)

– two versions: uniform cost & log cost

∗ choose version depending on applications

∗ astronomical numbers — log cost RAM

∗ reasonable size numbers — uniform cost RAM

2

Lecture 4: Merge Sort & Asymptotic Notations

Algorithm running time analysis

— what have been counted?

E.g.,

• RAM instructions?

• log RAM instructions?

• Data moves?

• Data comparisons?

• Arithmetic operations?

– additions? subtractions?

– multiplications? divisions?

• Pentium IV clock cycles? etc.

3

Lecture 4: Merge Sort & Asymptotic Notations

Merge sort, the big idea — divide-and-conquer:

• Divide the whole list into 2 sublists of equal size;

• Recursively merge sort the 2 sublists;

• Combine the 2 sorted sublists into a sorted list.

Make sure you do know how to combine !

• This is the idea of recursion.

– a programming technique (not really a design technique)

– recursion trees

– recurrence relations

4

Lecture 4: Merge Sort & Asymptotic Notations

Example:

1 2 3 4 5 6 7 8 9 10 11 12 13

A [31 23 01 17 19 28 09 03 13 15 22 08 29]

1 : 13

1 : 7 8 : 13

1 : 4 5 : 7 8 : 10 11 : 13

1 : 2 3 : 4 5 : 6 7 : 7 8 : 9 10 : 10 11 : 12 13 : 13

01 03 08 09 13 15 17 19 22 23 29 31

01 09 17 19 23 28 31 03 08 13 15 22 29

01 17 23 31 09 19 28 03 13 15 08 22 29

23 31 01 17 19 28 09 03 13 15 08 22 29

31 23 01 17 19 28 09 03 13 15 22 08 29

5

Lecture 4: Merge Sort & Asymptotic Notations

Asymptotic notations, motivations:

• Analysis of algorithms becomes analysis of functions:

– e.g.,

f(n) denotes the WC running time of insertion sort

g(n) denotes the WC running time of merge sort

– f(n) = c1n2 + c2n + c3

g(n) = c4n logn

– Which algorithm is preferred (runs faster)?

• To simplify algorithm analysis, want function notation which
indicates rate of growth (a.k.a., order of complexity)

O(f(n)) — read as “big O of f(n)”

roughly, The set of functions which, as n gets large, grow no faster
than a constant times f(n).

precisely, (or mathematically) The set of functions {h(n) : N → R} such

that for each h(n), there are constants c0 ∈ R+ and n0 ∈ N
such that h(n) ≤ c0f(n) for all n > n0.

examples: h(n) = 3n3 + 10n + 1000 logn ∈ O(n3)

h(n) = 3n3 + 10n + 1000 logn ∈ O(n4)

h(n) =
{

5n, n ≤ 10120

n2, n > 10120 ∈ O(n2)

6

Lecture 4: Merge Sort & Asymptotic Notations

Have you understood the lecture contents?

well ok not-at-all topic

� � � alg analysis in general

� � � divide-and-conquer: merge sort idea

� � � merge sort algorithm

� � � why asymptotic notations

� � � what O(f(n)) means

7

