Lecture 10: Heaps
Agenda:

e Heap
— a data structure
— an array of keys organized in some specific way

— viewing heap as a (binary) tree
e Heap property maintaining

e Heap building

Reading:

e [Textbook pages 127 — 135



Lecture 10: Heaps

(Binary-)Heap data structure:

e An array A[l..n] of n comparable keys
either ‘>’ or ‘<’

e An implicit binary tree, where
— A[2j] is the left child of A[j]
— A[25 + 1] is the right child of A[j]
_ A[L%J] is the parent of A[j]

e Keys satisfy the max-heap property: A[L%j] > Alj]

e Examples:
j 1 2 3 4 5 6 7 8 9 10

Alj] 4 1 3 2 16 9 10 14 8 7 heap 7 no.

Alj] 16 14 10 8 7 9 3 2 4 1 heap 7 yes.
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Lecture 10: Heaps

Some heap properties:

e T here are max-heap and min-heap. We use max-heap.

e A[l] is the maximum among the n keys.

e Viewing heap as a binary tree, height of the tree is h = [lgn].
[— the number of edges on the longest root-to-leaf path]

Call the height of the heap.

e Question:

How many keys can be held into a heap of height k7
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Max-Heapify:

e Pre-condition: Suppose we have an array that is almost a
heap, except the first key does NOT satisfy the heap property.

e Goal: Suppose we want to make it into a heap.

How 7

e Compare its two children and exchange the larger with the
parent.

This process

1. does not violate the heap property of the subtree rooted
at the unexchanged child,

2. makes the first position satisfy the heap property,
3. ‘trickle-down” the problem to the larger child

e Therefore, repeat this ‘“trickle-down’ process will eventually
resolve the problem.

e How many steps?
WC: Ign
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Max-Heapify (cont'd):

e Pseudocode:

procedure Max-Heapify(A,1) **p 130
*xturn almost-heap into a heap
x*pre-condition: tree rooted at A[i] is almost-heap
*x*post-condition: tree rooted at A[i] is a heap

lc — leftchild(7)

rc «— rightchild(i)

if lc < heapsize(A) and Allc] > Ali] then
largest « lc

else
largest <« 1

if rc < heapsize(A) and A[rc] > Allargest] then
largest «— rc

if largest # i then
exchange A[i] < Allargest]
Max-Heapify(A, largest)
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Max-Heapify (cont'd):

e Pseudocode:

procedure Max-Heapify(A,1) **p 130
*xturn almost-heap into a heap
x*pre-condition: tree rooted at A[i] is almost-heap
*x*post-condition: tree rooted at A[i] is a heap

lc — leftchild(7)

rc «— rightchild(i)

if lc < heapsize(A) and Allc] > Ali] then
largest « lc

else
largest <« 1

if rc < heapsize(A) and A[rc] > Allargest] then
largest «— rc

if largest # i then
exchange A[i] < Allargest]
Max-Heapify(A, largest)
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Lecture 10: Heaps

Building a heap from an array:
e Given: an array of n keys A[1], A[2],..., A[n]
e Output: a permutation which is a heap

e Ideas:

1. Consider the bottom-level nodes in the binary tree:
Each of them is a single-key heap!

2. So, the subtrees rooted at the nodes at the second last
level are almost-heaps:

Max-Heapify them into heaps!

3. So, now the subtrees rooted at the nodes at the third
last level are almost-heaps:

Max-Heapify them into heaps!
4. ......

5. The whole tree becomes an almost heap:

Max-Heapify it into a heap!

DONE!



Building a heap from an array (cont’'d):

e Pseudocode:

procedure Build-Max-Heapify(A) #**p 133
**xturn an array into a heap

heapsize(A) < length[A]

for 7 «— L%J downto 1

do Max-Heapify(A,1)

A[1..10] = {4,1,7,9,3,10,14,8,2,16}
1(4)
21)  s(7)
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Building a heap from an array (cont’'d):

e Pseudocode:

procedure Build-Max-Heapify(A) #**p 133
**xturn an array into a heap

heapsize(A) < length[A]

for 7 «— L%J downto 1

do Max-Heapify(A,1)

A[1..10] = {4,1,7,9,3,10,14,8,2,16}
1(4)
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Building a heap from an array (cont’'d):

e Pseudocode:

procedure Build-Max-Heapify(A) #**p 133
**xturn an array into a heap

heapsize(A) < length[A]

for 7 «— L%J downto 1

do Max-Heapify(A,1)

A[1..10] = {4,1,7,9,3,10,14,8,2,16}
1(4)
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Building a heap from an array (cont’'d):

e Pseudocode:

procedure Build-Max-Heapify(A) #**p 133
**xturn an array into a heap

heapsize(A) < length[A]

for 7 «— L%J downto 1

do Max-Heapify(A,1)

A[1..10] = {4,1,7,9,3,10,14,8,2,16}
1(4)
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Building a heap from an array (cont’'d):

e Pseudocode:

procedure Build-Max-Heapify(A) #**p 133
**xturn an array into a heap

heapsize(A) < length[A]

for 7 «— L%J downto 1

do Max-Heapify(A,1)

A[1..10] = {4,1,7,9,3,10,14,8,2,16}
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Lecture 10: Heaps

Have you understood the lecture contents?

well ok not-at-all topic

O O O what is a (binary, max-) heap

U] U] U] what is an almost-heap

U] U] U] how Max-Heapify works

U] U] U] using Max-Heapify to build a heap
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