
Lecture 23: Disjoint Sets

Agenda:

• 2nd implementation — forest of rooted trees (re-
view)

• Improvements:

– Union by rank rUnion

– Compressed find cFind

Reading:

• Textbook pages 505 – 522

1

Lecture 23: Disjoint Sets

2nd implementation — forest of rooted trees

• Forest of rooted trees:

– elements of a set ←→ nodes in the rooted trees

– representative of a set ←→ root of the tree

– each node needs only ‘parent’ −→ implement via an array

– P (x) — parent of x, for x = 1,2, . . . , n

• procedure MakeSet(x) **initialize parent for x

P (x)← x

• procedure Find(x) **return root of the tree containing x

while P (x) 6= x do
x← P (x)

return x

• procedure Union(x, y) **make root of x’s tree
**a child of root of y’s tree

rx← Find(x)
ry ← Find(y)
P (rx)← ry

• Running time per operation — Θ(n)

2

Lecture 23: Disjoint Sets

Union by rank — rUnion:

• Observation: running time affected by the depth of the ele-
ment(s) in both find and union

• Goal: to reduce the height of the tree

• Tree height determined by how we do the union

• Improvement — union by rank (denoted as rUnion)

– idea: when union two sets, root of shorter tree becomes
a child of the root of higher tree

– rank of an element x — height of subtree rooted at x

– pseudocode:

procedure rUnion(x, y) **make smaller rank root
**child of the other root

rx← Find(x)
ry ← Find(y)
if rank(rx) > rank(ry) then

P (ry)← rx
else

P (rx)← ry
if rank(rx) = rank(ry) then

rank(ry) ← rank(ry) +1

• Need to initialize the rank for every element:

procedure MakeSet(x) **initialize parent for x

P (x)← x
rank(x)← 0

3

Lecture 23: Disjoint Sets

Finding connected components of a graph:

• procedure ConnectedComponents(G)

for each vertex v ∈ V (G) do
MakeSet(v)

for each edge (x, y) ∈ E(G) do
if not SameComponent(x, y, G) then

rUnion(x, y) ** previously, Union(x, y)

• procedure SameComponent(x, y, G)

return Find(x) = Find(y)

• An example:

t1
�

�
��

A
A
AAt3 t6

t5
�

�
��

t2
t8

t4 t9
t7

V = {1,2,3,4,5,6,7,8,9}
E = {{1,3}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,9}, {5,8}}

4

Lecture 23: Disjoint Sets

Finding connected components of a graph:

• Graph G = (V, E):

V = {1,2,3,4,5,6,7,8,9}
E = {{1,3}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,9}, {5,8}}

• After MakeSets:

y����
1 y����

2 y����
3 y����

4 y����
5 y����

6 y����
7 y����

8 y����
9

5

Lecture 23: Disjoint Sets

Finding connected components of a graph:

• Graph G = (V, E):

V = {1,2,3,4,5,6,7,8,9}
E = {{1,3}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,9}, {5,8}}

• After considering edge (1,3):

y����
2 y����

3

y��
��

1

y����
4 y����

5 y����
6 y����

7 y����
8 y����

9

6

Lecture 23: Disjoint Sets

Finding connected components of a graph:

• Graph G = (V, E):

V = {1,2,3,4,5,6,7,8,9}
E = {{1,3}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,9}, {5,8}}

• After considering edge (1,6):

by original union:

y����
2 y����

4 y����
5 y����

6

y��
��

3

y��
��

1

y����
7 y����

8 y����
9

by rUnion:

y����
2 y����

3

y��
��

1 yA
A

AA

6

y����
4 y����

5 y����
7 y����

8 y����
9

7

Lecture 23: Disjoint Sets

Finding connected components of a graph:

• Graph G = (V, E):

V = {1,2,3,4,5,6,7,8,9}
E = {{1,3}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,9}, {5,8}}

• After considering edge (2,5):

y����
3

y��
��

1 yA
A

AA

6

y����
4 y����

5

y��
��

2

y����
7 y����

8 y����
9

• After considering edge (2,6):

y����
3

y��
��

1 y6 y@
@

@@

5

yA
A

AA

2

y����
4 y����

7 y����
8 y����

9

8

Lecture 23: Disjoint Sets

Finding connected components of a graph:

• Graph G = (V, E):

V = {1,2,3,4,5,6,7,8,9}
E = {{1,3}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,9}, {5,8}}

• After considering edges (3,5) and (3,6)

y����
3

y��
��

1 y6 y@
@

@@

5

yA
A

AA

2

y����
4 y����

7 y����
8 y����

9

(no change since 3,5,6 are already in a same component):

• After considering edge (4,9) and (5,8):

y����
3

y��
�

�
��

1 y��
��

6 yA
A

AA

5

yA
A

AA

2

yQ
Q

Q
Q

QQ

8

y����
7 y����

9

y��
��

4

• Therefore, there are 3 connected components

9

Lecture 23: Disjoint Sets

Analysis of (rUnion + Find):

• n MakeSet and (m− n) Union/Find

• Each MakeSet — Θ(1) time

• Each Find — Θ(depth(x)) time

– Tx — the tree containing x

– #elements in Tx ≥ 2height(Tx) — proof? by induction

– so, depth(x) ≤ height(Tx) ≤ lg(#elements in Tx) ≤ lgn

• Each rUnion — Θ(depth(x) + depth(y)) time

• Worst case:

Θ(n + (m− n) lgn) = Θ(m lgn) time (assuming m >> n)

• On average, Θ(lgn) per operation

10

Lecture 23: Disjoint Sets

Compressed find — cFind:

• Another observation — to make the trees as short as possible

• Idea:

– during the time we Find the root of the tree containing x

– we pass all the elements on the x-to-root path

– re-examine them and make their parents the root

– Find TWICE to make the tree shorter

• pseudocode (non-recursive):

procedure cFind(x)

t← x
while P (t) 6= t do **find the root

t← P (t)
root← t
t← x
while P (t) 6= t do **change the parent to root

x← t
t← P (t)
P (x)← root

return root

• pseudocode (recursive):

procedure cFind(x)

if P (x) 6= x do **x isn’t the root
P (x)← cFind(P (x))

return P (x)

11

Lecture 23: Disjoint Sets

Analysis of (rUnion + cFind):

• n MakeSet and (m− n) Union/Find

• Each MakeSet — Θ(1) time

• Each cFind — Θ(depth(x)) time

– lg∗ n — the smallest t such that 222...2
2

≥ n

where there are t 2’s

n 2 . . . 4 . . . 16 . . . 65536 . . . 265536 . . .

lg∗ n 1 2 3 4 5 . . .

– depth(x) grows more slowly than lg∗ n

proof not required ... just memorize it ...

• Each rUnion — Θ(depth(x) + depth(y)) time

• Worst case:

O(n + (m− n) lg∗ n) = O(m lg∗ n) time (assuming m >> n)

• On average, O(lg∗ n) per operation — almost constant

12

Lecture 23: Disjoint Sets

Have you understood the lecture contents?

well ok not-at-all topic

� � � disjoint sets?

� � � 3 operations

� � � forest of rooted trees

� � � finding connected components

� � � union by rank

� � � running time analysis

� � � compressed find

� � � running time

13

