Lecture 23: Disjoint Sets
Agenda:

e 2" implementation — forest of rooted trees (re-
view)

e Improvements:
— Union by rank rUnion

— Compressed find cFind

Reading:

e [extbook pages 505 — 522



Lecture 23: Disjoint Sets

2"d implementation — forest of rooted trees

e Forest of rooted trees:
— elements of a set «—— nodes in the rooted trees
— representative of a set «—— root of the tree
— each node needs only ‘parent’ — implement via an array

— P(x) — parent of z, forz =1,2,...,n

procedure MakeSet(x) **initialize parent for

P(x) «— =z

procedure Find(x) **return root of the tree containing x

while P(x) # x do
x «— P(x)

return x

procedure Union(z,y) **make root of x’s tree
**x3 child of root of y’s tree
re < Find(x)
ry < Find(y)
P(rz) < ry

Running time per operation — ©(n)



Lecture 23: Disjoint Sets

Union by rank — rUnion:

Observation: running time affected by the depth of the ele-
ment(s) in both find and union

Goal: to reduce the height of the tree
Tree height determined by how we do the union

Improvement — union by rank (denoted as rUnion)

— idea: when union two sets, root of shorter tree becomes
a child of the root of higher tree

— rank of an element x — height of subtree rooted at x

— pseudocode:

procedure rUnion(x,y) *xmake smaller rank root
**child of the other root
re < Find(x)
ry < Find(y)
if rank(rz) > rank(ry) then
P(ry) <« rx
else
P(rxz) <« ry
if rank(rx) = rank(ry) then
rank(ry) <« rank(ry) +1

e Need to initialize the rank for every element:

procedure MakeSet(x) **initialize parent for x

P(x) «— =z
rank(z) < O



Lecture 23: Disjoint Sets

Finding connected components of a graph:

e procedure ConnectedComponents(()

for each vertex v € V(G) do
MakeSet(v)
for each edge (z,y) € E(G) do
if not SameComponent(x,y,G) then
rUnion(x,vy) ** previously, Union(z,y)

e procedure SameComponent(z,y, )

return Find(x) = Find(y)

e An example:
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vV ={1,2,3,4,5,6,7,8,9}
E={{1,3},{1,6},{2,5},{2,6},{3,5},{3,6},{4,9},{5,8}}



Lecture 23: Disjoint Sets

Finding connected components of a graph:

e Graph G = (V,E):
vV ={1,2,3,4,5,6,7,8,9}
E={{1,3},{1,6},{2,5},{2,6},{3,5},{3,6},{4,9},{5,8}}

o After MakeSets:
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Lecture 23: Disjoint Sets

Finding connected components of a graph:

e Graph G = (V,E):
vV ={1,2,3,4,5,6,7,8,9}
E={{1,3},{1,6},{2,5},{2,6},{3,5},{3,6},{4,9},{5,8}}

e After considering edge (1, 3):
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Lecture 23: Disjoint Sets

Finding connected components of a graph:

e Graph G = (V,E):
vV =1{1,2,3,4,5,6,7,8,9}
E={{1,3},{1,6},{2,5},{2,6},{3,5},{3,6},{4,9},{5,8}}

e After considering edge (1,6):

by original union:
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by rUnion:
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Lecture 23: Disjoint Sets

Finding connected components of a graph:

e Graph G = (V,E):
vV ={1,2,3,4,5,6,7,8,9}
E={{1,3},{1,6},{2,5},{2,6},{3,5},{3,6},{4,9},{5,8}}

e After considering edge (2,5):
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e After considering edge (2,6):
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Lecture 23: Disjoint Sets

Finding connected components of a graph:

e Graph G = (V,E):
vV ={1,2,3,4,5,6,7,8,9}
E={{1,3},{1,6},{2,5},{2,6},{3,5},{3,6},{4,9},{5,8}}

e After considering edges (3,5) and (3,6)

ot (o7lelsles

(no change since 3,5,6 are already in a same component):

e After considering edge (4,9) and (5, 8):

e T herefore, there are 3 connected components
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Analysis of (rUnion + Find):
e n MakeSet and (m — n) Union/Find
e Each MakeSet — ©(1) time

e Each Find — ©(depth(x)) time

— T, — the tree containing x

— #elements in T, > 2height(T:) proof? by induction

— so, depth(z) < height(T,) < lg(#elements in T,) <Ign
e Each rUnion — ©(depth(x) + depth(y)) time

e \Worst case:
O(n+ (m—n)lgn) =0(mlgn) time (assuming m >> n)

e On average, ©(lgn) per operation
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Compressed find — cFind:

e Another observation — to make the trees as short as possible

e Idea:

— during the time we Find the root of the tree containing x

— we pass all the elements on the z-to-root path
— re-examine them and make their parents the root

— Find TWICE to make the tree shorter
e pseudocode (non-recursive):
procedure cFind(x)

t—x
while P(t) =t do *+find the root
t — P(t)
root <t
t—ux
while P(t) =t do **change the parent to root
Tt
t — P(1)
P(x) < root
return root

e pseudocode (recursive):
procedure cFind(x)
if P(z) # x do **r isn’t the root

P(z) < cFind(P(z))
return P(x)
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Analysis of (rUnion + cFind):
e n MakeSet and (m — n) Union/Find
e Each MakeSet — ©(1) time
e Each cFind — ©(depth(z)) time
— Ig*n — the smallest ¢ such that 22°° >n

where there are t 2's

n |2... 4... 16... 65536... 209536

lg*n | 1 2 3 4 5
— depth(xz) grows more slowly than Ig*n
proof not required ... just memorize it ...
e Each rUnion — ©(depth(x) 4+ depth(y)) time

e Worst case:
O(n+ (m—n)lg*n) = O(mlg*n) time (assuming m >> n)

e On average, O(lg*n) per operation — almost constant
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Lecture 23: Disjoint Sets

Have you understood the lecture contents?

well

ok

not—-at-all

topic
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disjoint sets?

3 operations

forest of rooted trees

finding connected components
union by rank

running time analysis
compressed find

running time
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