
1

Advances in
Path Planning

Sven Koenig
University of Southern California

skoenig@usc.edu

Warning!

! We try to make everything easy to understand.
! We often do not mention crucial details.
! We use both 4- and 8-neighbor grids.
! Values in cells are h-values unless stated otherwise.

Table of Contents

! Overview of path planning
" Path planning vs AI benchmarks
" Alternatives to path planning
" Search spaces and their discretization
" Searching the search space with A*

! Any-angle path planning with A*
! Speeding up Path Planning with A*

Table of Contents

! Overview of path planning
" Path planning vs AI benchmarks
" Alternatives to path planning
" Search spaces and their discretization
" Searching the search space with A*

! Any-angle path planning with A*
! Speeding up Path Planning with A*

AI Benchmarks

Standard Search Problems in Artificial Intelligence
! States are given and discrete

! Off-line search: one can concentrate on planning (execution follows)

! Real-time constraints do not exist

! Search space does not fit into memory

! How to search larger and larger search spaces?
! Use big-O time and space analysis

[from Wikipedia]

AI Benchmarks

Path-Planning Problems for Agents
! States are not given, continuous and often hard to characterize

! On-line search: planning and execution have to be interleaved

! Real-time constraints exist

! Search space might or might not fit into memory

! How to search faster and faster?
! Cannot use big-O time and space analysis

! Hardware and implementation details matter

Games [from Cavedog]Robotics [from JPL]

2

Table of Contents

! Overview of path planning
" Path planning vs AI benchmarks
" Alternatives to path planning
" Search spaces and their discretization
" Searching the search space with A*

! Any-angle path planning with A*
! Speeding up Path Planning with A*

Alternatives to Path Planning

! Bug Algorithms [Lumelsky and Stepanov, 1987]

Alternatives to Path Planning

goal

! Behavior-based methods [Arkin, 1987]

Alternatives to Path Planning

! Properties
+ fast
+ need only local terrain information
- do not necessarily find short paths to the goal
- might not find paths to the goal at all

Table of Contents

! Overview of path planning
" Path planning vs AI benchmarks
" Alternatives to path planning
" Search spaces and their discretization
" Searching the search space with A*

! Any-angle path planning with A*
! Speeding up Path Planning with A*

Work vs Configuration Space

Path Planning Problems for Agents
! States are not given, continuous and often hard to characterize

! On-line search: planning and execution have to be interleaved

! Real-time constraints exist

! Search space might or might not fit into memory

! How to search faster and faster?

Games [from Cavedog Entertainment] Robotics [from JPL]

3

Work vs Configuration Space

work space configuration space

[from Stuart Russell and Peter Norvig]

Work vs Configuration Space

! Configuration spaces are often
" continuous
" high-dimensional

Work vs Configuration Space

! Configuration spaces are often
" continuous
" high-dimensional

! Discretize them with
" skeletonization methods (roadmaps)
" cell-decomposition methods

! Skeletonization methods

Discretizing Configuration Space

Voronoi graph
[from Stuart Russell and Peter Norvig – the figure has slight problems]

! Skeletonization methods

Discretizing Configuration Space

visibility graph

! Skeletonization methods:
randomized and probability complete

Discretizing Configuration Space

roadmap using random points [Kavraki et al, 1994]

(there are also roadmaps using RRTs [LaValle, 1998]) [from Steve LaValle]

4

Work vs Configuration Space

! Configuration spaces are often
" continuous
" high-dimensional

! Discretize them with
" skeletonization methods (roadmaps)
" cell-decomposition methods

Discretizing Configuration Space

vertical strips grid

! Cell decomposition methods:
systematic and resolution complete

[from Stuart Russell and Peter Norvig]

! Cell decomposition methods

Discretizing Configuration Space

coarse-grained discretization
might not be able to find a path

fine-grained discretization
Is very inefficient

! Cell decomposition methods

Discretizing Configuration Space

non-uniform discretization
avoids these problems

[from unknown]

! Cell decomposition methods

Discretizing Configuration Space

goal

goal

goal

goal

goal

goal

goal

goal

goal

goal

This is a deterministic
version of the parti-game
algorithm [Moore and

Atkeson, 1995].

unsolvable

Discretizing Configuration Space

! Cell decomposition methods

! The search space is really nondeterministic and we thus
need to use a minimax search

5

! Cell decomposition methods

! PDRRTs implements the local controllers of the parti-
game algorithm with RRTs [Ranganathan and Koenig, 2004].

" PDRRTs need no user-supplied local controllers.
" PDRRTs need to split fewer cells.

Discretizing Configuration Space

! We use examples with configuration space = 2d work space
" increase the size of obstacles by the radius of the robot
" make the robot a point
" ignore kinematic constraints

Discretizing Configuration Space

Table of Contents

! Overview of path planning
" Path planning vs AI benchmarks
" Alternatives to path planning
" Search spaces and their discretization
" Searching the search space with A*

! Any-angle path planning with A*
! Speeding up Path Planning with A*

A*

! A* [Hart, Nilsson and Raphael, 1968] uses user-supplied h-
values to focus its search

! The h-values approximate the goal distances
! We always assume that the h-values are consistent!
! The h-values h(s) are consistent

if they satisfy the triangle inequality:
h(s) = 0 if s is the goal state
h(s) ≤ c(s,a) + h(succ(s,a)) otherwise

! Consistent h-values are admissible.
! The h-values h(s) are admissible

if they do not overestimate the goal distances.

s goal state

succ(s,a)

c(s,a)

h(s)

h(succ(s,a))

A*

A*
1. Create a search tree that contains only the start state
2. Pick a generated but not yet expanded state s

with the smallest f-value
3. If state s is a goal state: stop
4. Expand state s
5. Go to 2

A*

! Search problem with uniform cost

1

goal1start

4-neighbor grid

6

A*

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

! Possible consistent h-values

5 4 3 2 2 2

5 4 3 2 1 1

5 4 3

5 4 3 1

2

2

01

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0

00

0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4-neighbor grid

1

2

A*

! First iteration of A*

0

cost of the shortest path
in the search tree from the

start state to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4-neighbor grid

order of expansions

2

A*

! Second iteration of A*

01

1

1

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start state to the given state

2

A*

! Third iteration of A*

01

2

1

1

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start state to the given state

2

A*

! Fourth iteration of A*

02

2

1

2

1

1

6

6

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start state to the given state

2

A*

! Fifth iteration of A*

02

2

1

2

2

1

1

2

6

6

4

6

6

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start state to the given state

7

2

A*

! Sixth iteration of A*

02

2

1

2

2

1

1

3

2 3

6

6

4

6

6

4

4

6

4 4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start state to the given state

2

A*

! Seventh and last iteration of A*

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3

1

11

2

(7)

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start state to the given state

A*
7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

5 4 3 2 2 2

5 4 3 2 1 1

5 4 3

5 4 3 1

2

2

01

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0

00

0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4 5 6

3

1

11

2

(7)

6

3 4 7

5

1

11

2

(8)

Uniform-cost search
Breadth-first search

4-neighbor grid

A*

! We say that h-values h1(s) dominate h-values h2(s) iff
h1(s) ≥ h2(s) for all states s.

! A* with consistent h-values h(s) [Pearl,1984]

" expands every state at most once
" has found a shortest path from the start state to a

state when it is about to expand the state
" has found a shortest path from the start state to the

goal state when it terminates
" expands no more states than with consistent h-values

dominated by the h-values h(s)

Table of Contents

! Overview of path planning
" Path planning vs AI benchmarks
" Alternatives to path planning
" Search spaces and their discretization
" Searching the search space with A*

! Any-angle path planning with A*
! Speeding up Path Planning with A*

Any-Angle Path Planning

! A* on eight-neighbor grids

any-angle pathgrid path

8-neighbor grid

8

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids

8-neighbor grid

Any-Angle Path Planning

! A* on other tessellations
[Bjoernsson, Enzenberger, Holte, Schaeffer and Yap, 2003]

generalization: framed quadtrees

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Any-Angle Path Planning

! A* on eight-neighbor grids with smoothing

any-angle pathgrid path

8-neighbor grid

9

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

! A* on eight-neighbor grids with smoothing

grid path any-angle path

8-neighbor grid

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

10

Any-Angle Path Planning

! A* on visibility graphs

shortest pathpath on visibility graph

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Field D*

! Field D* (a version of D* Lite with any-angle path
planning) [Ferguson and Stentz, 2005] on eight-neighbor grids
" performs an A* search
" propagates information along the grid edges

(= good runtime)
" does not constrain the path to be on grid edges

(= short paths)

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

g-value

[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

g-value

[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

g-value

[from JPL]

8-neighbor grid

11

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

g-value

[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

g-value

[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

1.122.62

g-value

[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

g-value

[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids does not necessarily
find shortest paths

Field D* path any-angle path

[from JPL]

8-neighbor grid

Field D*

[April 29, 2007; from JPL]

! Terrain often has uniform movement costs

12

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Theta*

! Theta* [Nash, Daniel, Koenig and Felner, 2007*] on eight-neighbor
grids
" performs an A* search
" propagates information along the grid edges

(= good runtime)
" does not constrain the path to be on grid edges

(= short paths)

* Note: A mistake in the pseudo code of AP-Theta* in the original paper is corrected.

Theta*

! A* on eight-neighbor grids with smoothing
but now we interleave smoothing with search

grid path any-angle path

8-neighbor grid

Theta*

Key insight behind Theta* on eight-neighbor grids
! The parent of a state does not need to be its neighbor.
! When expanding a state s, its children consider not only

state s but also the parent of state s as possible parent
since it is shorter to go directly to the parent of state s (if
that path is unblocked) than first to state s and then to
the parent of state s, due to the triangle inequality.

Theta*

v

g = 10

g = 12

g = 15

cost 2 cost 3

Theta*

8-neighbor grid

13

Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

Theta*

If path 2 is not blocked, then it is shorter than path 1 (triangle inequality)

g-value

parent

8-neighbor grid

Theta*

If path 2 is not blocked, then it is shorter than path 1 (triangle inequality)

g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

14

Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

{
{Path 2

Path 1

Theta*

8-neighbor grid

Theta*

! Theta* does not necessarily find shortest paths since the
parent of a state can only be a neighbor or the parent of
a neighbor

8-neighbor grid

Theta*

! Theta* does not necessarily find shortest paths since the
parent of a state can only be a neighbor or the parent of
a neighbor

8-neighbor grid

15

Theta*

! Theta* does not necessarily find shortest paths since the
parent of a state can only be a neighbor or the parent of
a neighbor

8-neighbor grid

Theta*

! Theta* does not necessarily find shortest paths since the
parent of a state can only be a neighbor or the parent of
a neighbor

The path of Theta* is still within 0.2% of optimal for this example

8-neighbor grid

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Table of Contents

! Overview of path planning
" Path planning vs AI benchmarks
" Alternatives to path planning
" Search spaces and their discretization
" Searching the search space with A*

! Any-angle path planning with A*
! Speeding up Path Planning with A*

Speeding Up A* Search

Path Planning Problems for Agents
! States are not given, continuous and often hard to characterize

! On-line search: planning and execution have to be interleaved

! Real-time constraints exist

! Search space might or might not fit into memory

! How to search faster and faster?

20(!) megahertz RAD6000 processor

Games [from Cavedog]Robotics [from JPL]

Speeding Up A* Search

2d (x, y) planning
• 54,000 states
• Fast planning
• Slow execution

4d (x, y, Ө, v) planning
• > 20,000,000 states
• Slow planning
• Fast execution

[from Maxim Likhachev]

How to search faster and faster is important:

16

Speeding Up A* Search

2d (x, y) planning
• 54,000 states
• Fast planning
• Slow execution

4d (x, y, Ө, v) planning
• > 20,000,000 states
• Slow planning
• Fast execution

[from Maxim Likhachev]

How to search faster and faster is important:

Speeding Up A* Search

How to search faster and faster is important:
! Games need to run on older computers
! Graphics gets most of the processor time
! The number of agents gets larger and larger

Games [from Cavedog]

Speeding Up A* Search

Ways of speeding up A*
! Incremental versions of A* (incremental heuristic search)

" find shortest paths by exploiting experience with similar searches
" typically run faster than A*

! A* with weighted h-values (weighted A*)
" finds suboptimal paths by focusing the search more than A*
" typically runs faster than A*

! Real-time versions of A* (real-time heuristic search)
" find suboptimal paths by interleaving searches in local search

spaces around the current state and executions
" can run faster or slower than A*
" each search runs in constant time

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Incremental Heuristic Search

! Incremental heuristic search speeds up A* searches for
a sequence of similar search problems by exploiting
experience with earlier search problems in the
sequence. It finds shortest paths.

! In the worst case, incremental heuristic search cannot be
more efficient than A* searches from scratch
[Nebel and Koehler 1995].

Incremental Heuristic Search

search task 1 slightly different
search task 2

slightly different
search task 2

search task 1 slightly
different
search task 2

slightly
different
search task 3

slightly
different
search task 4

17

Incremental Heuristic Search

8-neighbor grid

Incremental Heuristic Search
[from slate.com]

8-neighbor grid

Stationary Target

Stationary target search:
! How to move a computer-controlled agent autonomously

to a goal state in initially unknown terrain?

Stationary Target

Our approach to stationary-target search,
called Planning with the Freespace Assumption:
! Repeatedly move the agent along a shortest path from

its current state to the goal state under the assumption
that states are unblocked unless the agent knows
otherwise (freespace assumption). The agent needs to
replan its path only if the path becomes blocked.

! Repeatedly find a shortest path from some start state to
the same goal state with A* on a graph whose
movement costs can increase over time.

Stationary Target

…

8-neighbor grid

Stationary Target

…

8-neighbor grid

18

Stationary Target

! Used in robotics and usable in games

[Stentz and Hebert, 1995] [from Cavedog Entertainment][from JPL]

Stationary Target

Stationary Target

! Clearly, the number of movements is small if the
freespace assumption is approximately satisfied, that is,
if the obstacle density is small

Stationary Target

! Mazes of size 25 x 5 – 25 x 75

Stationary Target

4-neighbor grid

Stationary Target

! The worst-case number of movements is
Ω(log(#states)/log log(#states) × #states) on undirected
vertex-blocked graphs, where #states is the number of
unblocked vertices [Koenig, Tovey and Smirnov, 2003].

nn

19

Stationary Target

! The worst-case number of movements is
Ω(log(#states)/log log(#states) × #states) on undirected
vertex-blocked graphs, where #states is the number of
unblocked vertices [Koenig, Tovey and Smirnov, 2003].

! Proof:
" Length of rim = nn for some n
" Rim gets traversed n times,

resulting in nn+1 movements
" There are about at most nn-1 spokes for each of the at most n

heights, resulting in nn states

Stationary Target

! The worst-case number of movements is log2(#states)
#states on undirected vertex-blocked graphs and
log(#states) #states on vertex-blocked grids, where
#states is the number of unblocked vertices [Mudgal, Tovey,

Greenberg and Koenig, 2005].

Stationary Target

…

8-neighbor grid

Incremental Heuristic Search

Incremental heuristic search
! Fringe Saving A* (FSA*) and similar (iA*)

" starts A* at the point where the current search could differ from
the previous one

! Adaptive A* (AA*) and similar (MTAA*, RTAA*)
" improves the h-values between searches

! Lifelong Planning A* (LPA*) and similar (D*, D* Lite, …)
" transforms the previous search tree into the current one

! It is future work to combine the principles behind AA*
and LPA*.

runtim
e per expansion increases

num
ber of expansions decreases

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Fringe Saving A* (FSA*)

! Fringe Saving A* (FSA*) [Sun and Koenig, 2007] speeds up A*
searches for a sequence of similar search problems by
starting each search at the point where it could differ
from the previous one

! FSA* is similar to but faster than iA* [Yap, unpublished]

20

Fringe Saving A* (FSA*)
start

goal

A* FSA*

start

old new
search search
tree tree

goal

2

Fringe Saving A* (FSA*)

! Seventh and last iteration of A*

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3

1

11

2

(7)

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start state to the given state

2

Fringe Saving A* (FSA*)

! One state becomes blocked

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

cost of the shortest path
found so far from the start

state to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

2

Fringe Saving A* (FSA*)

! One state becomes blocked

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

cost of the shortest path
found so far from the start

state to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

Fringe Saving A* (FSA*)

π r2

time-consuming
operations

2 π r
fast

operations

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

21

Adaptive A* (AA*)

! Adaptive A* (AA*) [Koenig and Likhachev, 2005] speeds up A*
searches for a sequence of similar search problems by
making the h-values more informed after each search.

! The principle behind AA* was earlier used in Hierarchical
A* [Holte et al., 1996].

Adaptive A* (AA*)
start

goal

start

goal

A* AA*

Adaptive A* (AA*)

! Consider a state s that was expanded
by A* with consistent h-values hold:
" distance(start,s) + distance(s,goal) ≥ distance(start,goal)
" distance(s,goal) ≥ distance(start,goal) – distance(start,s)
" distance(s,goal) ≥ f(goal) – g(s) = hnew(s)

! The h-values hnew are again consistent.
! The h-values hnew dominate the h-values hold.
! These properties continue to hold even if the start state

changes or the movement costs increase.
! The next A* search with h-values hnew expands no more

states than an A* search with h-values hold and likely many
fewer states.

start goal

s

Adaptive A* (AA*)

first A* search second A* search
4-neighbor grid

g f

h

Adaptive A* (AA*)

first AA* search second AA* search
4-neighbor grid

g f

hold hnew Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

22

Lifelong Planning A* (LPA*)

! Lifelong Planning A* (LPA*) [Koenig and Likhachev, 2002]

speeds up A* searches for a sequence of similar search
problems by recalculating only those g-values in the
current search that are important for finding a shortest
path and have changed from the previous search.

! This can often be understood as transforming the search
tree from the previous search to the one of the current
search.

Lifelong Planning A* (LPA*)
start

old new
search search
tree tree

goal

start

goal

A* LPA*

Lifelong Planning A* (LPA*)

8-neighbor grid

Lifelong Planning A* (LPA*)
[from slate.com]

8-neighbor grid

Lifelong Planning A* (LPA*)

8-neighbor grid

g
Lifelong Planning A* (LPA*)

www.slate.com8-neighbor grid

[from slate.com]

23

Lifelong Planning A* (LPA*)

artificial intelligence

heuristic search

how to search efficiently
using h-values to focus the

search

algorithm theory

incremental search

how to search efficiently by
reusing information from
previous similar searches

Lifelong Planning A* (LPA*)
uninformed search

breadth-first search

DynamicSWSF-FP
with early termination (our addition)

[Ramalingam and Reps, 1996]

heuristic search

A*
[Hart, Nilsson, Raphael, 1968]

Lifelong Planning A* (LPA*)
[Koenig and Likhachev, 2002]

co
m

pl
et

e
se

ar
ch

in
cr

em
en

ta
l s

ea
rc

h

Lifelong Planning A* (LPA*)
uninformed search heuristic search

co
m

pl
et

e
se

ar
ch

in
cr

em
en

ta
l s

ea
rc

h

s
goal

s
start

sgoals star t

sgo alssta rt

sgoalsstar t

Lifelong Planning A* (LPA*)

sstart sgoal

s
start

s
goal

s
start

sgoal

s
star t

s
goal

uninformed search heuristic search

co
m

pl
et

e
se

ar
ch

in
cr

em
en

ta
l s

ea
rc

h

[from slate.com]

Lifelong Planning A* (LPA*) Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 1 4

4 2 5

5 4 3 4 5 6

goal

start

4-neighbor grid

g

24

Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 2 5

5 4 3 4 5 6

goal

start

4-neighbor grid

g
Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 2 5

5 4 3 4 5 6

goal

start

min(2,4)+2
min(2,4)

priority queue

C3:[4;2]4-neighbor grid

g

Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 ∞ 5

5 4 3 4 5 6

goal

start

min(∞,4)+2
min(∞,4)

priority queue

D3:[4;3]; C3:[6;4]

min(∞,5)+1
min(3,4)

4-neighbor grid

g
Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 ∞ 5

5 4 ∞ 4 5 6

goal

start

priority queue

D2:[4;4]; D4:[6;4]; D3:[6;5]

min(∞,5)+1
min(∞,5)

min(4,6)+2
min(4,6)

min(4,6)+0
min(4,6)

4-neighbor grid

g

min(∞,5)+1
min(∞,5)

min(4,6)+2
min(4,6)

min(∞,6)+0
min(∞,6)

Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 ∞ 5

5 ∞ ∞ 4 5 6

goal

start

priority queue

D4:[6;4]; D3:[6;5]; D2:[6;6]4-neighbor grid

g
Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 ∞ 5

5 ∞ ∞ ∞ 5 6

goal

start

priority queue

D2:[6;6]; D5:[8;5]; D4:[8;6]

min(∞,6)+2
min(∞,6)

min(∞,6)+0
min(∞,6)

min(5,7)+3
min(5,7)

4-neighbor grid

g

25

Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 ∞ 5

5 6 ∞ ∞ 5 6

goal

start

priority queue

D5:[8;5]; D4:[8;6]; D3:[8;7]

min(∞,6)+2
min(∞,6)

min(5,7)+3
min(5,7)

min(∞,7)+2
min(∞,7)

4-neighbor grid

g
Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

goal

start

priority queue

D5:[8;5]; D4:[8;6]; D3:[8;7]

2 1 0 1 2 3

3 4

4 ∞ 5

5 6 ∞ ∞ 5 6
min(∞,6)+2

min(∞,6)
min(5,7)+3

min(5,7)
min(∞,7)+2

min(∞,7)

4-neighbor grid

g

Lifelong Planning A* (LPA*)

! Theorem [Koenig, Likhachev and Furcy, 2004]

Each search expands every state at most twice and
thus terminates.
= LPA* terminates

! Theorem [Koenig, Likhachev and Furcy, 2004]

After a search terminates, one can trace back a shortest
path from the start to the goal by always moving from
the current state s, starting at the goal, to any
predecessor s’ that minimizes g(s’) + c(s’,s) until the
start is reached.
= LPA* is correct

Lifelong Planning A* (LPA*)

! Theorem [Koenig, Likhachev and Furcy, 2004]

No search expands a state whose g-value before the
search was already equal to its start distance.
= LPA* is efficient because it uses incremental search

! Theorem [Koenig, Likhachev and Furcy, 2004]

Each search expands at most those states s with
[f(s);g*(s)] ≤ [f(goal); g*(goal)] or [gold(s) + h(s); gold(s)] ≤
[f(goal); g*(goal)], where f(s) = g*(s) + h(s) and gold(s) is
the g-value of s before the search.
= LPA* is efficient because it uses heuristic search

Lifelong Planning A* (LPA*)

start

old new
search search
tree tree

goal

start

old new
search search
tree tree

goal

! Start of the search must remain unchanged
! LPA* can expand more states and run slower than A*
! - if the number of changes is large
! - if the changes are close to the start of the search

Lifelong Planning A* (LPA*)

! Grids of size 101 x 101
! Movement costs are one or two with equal probability

2.1 x0.174 ms0.434 ms0.370 ms1.0 %

2.6 x0.156 ms0.499 ms0.406 ms0.8 %

3.3 x0.108 ms0.453 ms0.362 ms0.6 %

5.0 x0.067 ms0.419 ms0.336 ms0.4 %

10.4 x0.029 ms0.386 ms0.299 ms0.2 %

replanning
time of LPA*
planning time

of A*

replanning
time of LPA*

first planning
time of LPA*

planning time
of A*

number of
movement

cost changes

26

Stationary Target

…

8-neighbor grid

D* Lite

! LPA* needs to search from the goal of the agent to the
agent itself because the start of the search needs to
remain unchanged.

! LPA* is efficient because the agent observes blockages
around itself. Thus, the changes are close to the goal of
the search.

D* Lite
agent

old new
search search
tree tree

goal

LPA*

agent

old new
search search
tree tree

goal

LPA*

? !
D* Lite

…

5

5

5

5

4

4

4

4

3

3

3

3

3

2

2

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

8-neighbor grid

goal
distance

D* Lite

! D* Lite: Basic Version [Koenig and Likhachev, 2002]

! If the agent moves from soldagent to snewagent, then the goal
of the search moves from soldagent to snewagent. This
changes the priorities of the states in the priority queue

from [min(g(s), rhs(s)) + h(soldagent,s), min(g(s), rhs(s))]

to [min(g(s), rhs(s)) + h(snewagent,s), min(g(s), rhs(s))]

(but not which states are in the priority queue).
! Thus, one needs to reorder the priority queue [Stentz, 1994].

D* Lite

! D* Lite: Basic Version [Koenig and Likhachev, 2002]

! Priority queue: A [8,5]; B [8,6]; C [8,7]
! Agent moves
! Priority queue: C [7,7]; B [8,6]; A [9,5]

27

D* Lite

! D* Lite: Final Version [Koenig and Likhachev, 2002]

! One uses lower bounds on the new priorities instead of
the new priorities themselves
[min(g(s), rhs(s)) + h(soldagent,s), min(g(s), rhs(s))]
≤ [min(g(s), rhs(s)) + h(soldagent,snewagent) + h(snewagent,s), min(g(s), rhs(s))]

[min(g(s), rhs(s)) + h(soldagent,s) - h(soldagent,snewagent), min(g(s), rhs(s))]
≤ [min(g(s), rhs(s)) + h(snewagent,s), min(g(s), rhs(s))]

! The term h(soldagent,snewagent) is the same across all states in
the priority queue. Instead of deleting it from all states in
the priority queue, we add it to all states added to the
priority queue in the future [Stentz, 1995].

D* Lite

! D* Lite: Final Version [Koenig and Likhachev, 2002]

! When one selects a state for expansion, one first checks
whether its priority is correct.

! If so, then one expands the state.
! If not (= it is a lower bound), then one re-inserts the state

into the priority queue with the correct priority.

D* Lite

! D* Lite: Final Version [Koenig and Likhachev, 2002]

! Priority queue: A [8,5]; B [8,6]; C [8,7]
! Agent moves: h(soldstart,snewstart) = 2 (changes accumulate)
! Priority queue: A [8,5]; B [8,6]; C [8,7]
! Add state D with priority [10,5]
! Priority queue: A [8,5]; B [8,6]; C [8,7]; D [12,5]

! Priority queue: B [8,6]; C [8,7]; A [9,5]; D[12,5]

correct priority is [9,5]

correct priority is [8,6]

expand B

D* Lite

! Random Grids of size 129 x 129

6.1 msuninformed incremental search

4.2 ms

2.7 ms

informed incremental search
D* [Stentz, 1995]

D* was probably the first true incremental heuristic
search algorithm, way ahead of its time!

D* Lite

10.5 msinformed search from scratch

296.0 msuninformed search from scratch

replanning time

sp
ee

d-
up

 1
10

x

! Cell decomposition methods

Minimax LPA*

goal

goal

goal

goal

goal

goal

goal

goal

goal

goal

This is a deterministic
version of the parti-game
algorithm [Moore and
Atkeson, 1995]

Minimax LPA*

! Cell decomposition methods
! The search space is really nondeterministic and we thus

need to use a minimax version of LPA*

28

Minimax LPA*

! Terrain of size 2000 x 2000

14 minutesinformed incremental search
(Minimax LPA* [Likhachev and Koenig, 2003])

15 minutesuninformed incremental search

135 minutesinformed search from scratch

363 minutesuninformed search from scratch

planning
time

sp
ee

d-
up

 2
6x

D* Lite for Mapping

Our approach to mapping, called Greedy Mapping:
! Repeatedly move the agent along a shortest path from

its current state to a closest unvisited or unobserved
state [Thrun et al. 1998] [Romero, Morales, Sucar, 2001] [Koenig, Tovey

and Halliburton, 2001].

D* Lite for Mapping

8-neighbor grid

D* Lite for Mapping

! Transforming Greedy Mapping to Planning with the
Freespace Assumption [Likhachev and Koenig, 2002]

8-neighbor grid

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

D* Lite vs AA*
AA*

! Improve previous h-values

! Goal node must remain
unchanged

! Movement cost increases
only*

! Guaranteed no more node
expansions than A*

! More node expansions on
average

! Fast node expansions

D* Lite

! Adapt previous search tree

! Start node must remain
unchanged

! Movement cost
in/decreases

! Can result in more node
expansions than A*

! Fewer node expansions on
average

! Slow node expansions
actually, movement cost in/decreases but AA is more efficient for movement cost increases

29

D* Lite vs AA*

! Safely explorable torus-shaped mazes of size 100 x 100

D* Lite vs AA*

expansions
per search

3711
4104
391
31

Forward A*
Backward A*
(Forward) AA*
(Backward) D* Lite

runtime
per search

581
644
81
15

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Moving Target

Moving-target search:
! How to move a computer-controlled agent autonomously

to catch a moving target in initially unknown terrain?

Moving Target

Our approach to moving-target search,
called Planning with the Freespace Assumption:
! Repeatedly move the agent along a shortest path from

its current state to the current state of the target under
the assumption that states are unblocked unless the
agent knows otherwise (freespace assumption). The
agent needs to replan its path only if the path becomes
blocked or the target leaves the path.

! Repeatedly find a shortest path from some start state to
some goal state with A* on a graph whose movement
costs can increase over time.

Moving Target

3

1

6

6
2

3

35

4A

T
3

1

6

6
2

3

35

4A

T
3

1

6

6
2

3

35

4

A T

3

1

6

6
2

3

35

4

A

T
3

1

6

6
2

3

35

4

A

T
…

4-neighbor grid

30

D* Lite vs AA*
AA*

! Improve previous h-values

! Goal node must remain
unchanged

! Movements cost increases
only*

! Guaranteed no more node
expansions than A*

! More node expansions on
average

! Fast node expansions

D* Lite

! Adapt previous search tree

! Start node must remain
unchanged

! Movement cost
in/decreases

! Can result in more node
expansions than A*

! Fewer node expansions on
average

! Slow node expansions
actually, movement cost in/decreases but AA is more efficient for movement cost increases

D* Lite

3

3 6
3 4

3

1

6

6
2

3

35

4A

T

3

3 6
3 4

3

1

6

6
2

3

35

4A

T

3

3 6
3 4

3

1

6

6
2

3

35

4

A T

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T …

target-centric map [from Tony Stentz]4-neighbor grid

D* Lite

3

3 6
3 4

3

1

6

6
2

3

35

4A

T

4-neighbor grid

D* Lite

3

3 6
3 4

3

1

6

6
2

3

35

4A

T

4-neighbor grid

D* Lite

3

3 6
3 4

3

1

6

6
2

3

35

4

A T

4-neighbor grid

D* Lite

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T

4-neighbor grid

31

D* Lite

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T

4-neighbor grid

D* Lite

agent-centric map [from Tony Stentz]

3

3 6
3 4

3

1

6

6
2

3

35

4A

T 3

3 6
3 4

3

1

6

6
2

3

35

4A

T 3

3 6
3 4

3

1

6

6
2

3

35

4

A T

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T

…

4-neighbor grid

D* Lite

! Safely explorable torus-shaped mazes of size 100 x 100
! Randomly moving target that pauses every 10th move

D* Lite

expansions
per search

3703
4519
2229
806

Forward A*
Backward A*
Agent-Centric D* Lite
Target-Centric D* Lite

runtime
per search

570
722

1481
833

D* Lite

start

old new
search search
tree tree

goal

start

old new
search search
tree tree

goal

! Start of the search must remain unchanged
! LPA* can expand more states and run slower than A*
! - if the number of changes is large
! - if the changes are close to the start of the search

D* Lite

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T

3

3 6
3 4

3

1

6

6
2

3

35

4

A

T

! the map needs to get shifted
! a large number of blockages change
! changed blockages can be close to the start node

4-neighbor grid

32

Eager Moving-Target Adaptive A*

! We can build an incremental heuristic search method
that does not need to shift the map on AA*, resulting in
Lazy Moving-Target (MT) AA* [Koenig, Likhachev and Sun,

2007].
! Adaptive A* ⇒ Eager Moving-Target (MT) AA* ⇒ Lazy

Moving-Target (MT) AA*

Eager Moving-Target Adaptive A*
h-values

updated h-values
update all expanded states
h-values become more informed

A* search

Eager Moving-Target Adaptive A*

! Consider a state s after the goal changed:
" distance(s,newgoal) + hold(newgoal) ≥ hold(s)
" distance(s,newgoal) ≥ hold(s) – hold(newgoal)
" distance(s,newgoal) ≥ max(hold(s) – hold(newgoal), huser(s)) = hnew(s)

! The h-values hnew are again consistent.
! The h-values hnew dominate the h-values huser.
! These properties continue to hold even if the start changes

or movement costs increase.
! The next A* search with h-values hnew expands no more

states than an A* search with h-values huser and likely many
fewer states.

s goal

newgoal

Eager Moving-Target Adaptive A*
h-values

updated h-values

corrected h-values

update all expanded states
h-values become more informed

update all states
h-values become less informed
but remain more informed
than the user-supplied h-values

A* search

goal moves

Lazy Moving-Target Adaptive A*

update the h-values only when they are needed

D* Lite vs MTAA*

! Safely explorable torus-shaped mazes of size 100 x 100
! Randomly moving target that pauses every 10th move

33

D* Lite vs MTAA*

expansions
per search

3703
4519
2334
2025
2229
806

Forward A*
Backward A*
Forward Lazy MTAA*
Backward Lazy MTAA*
Agent-Centric D* Lite
Target-Centric D* Lite

runtime
per search

570
722
465
411

1481
833

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Weighted A*

! Weighted A* [Pohl, 1970] solves search problems faster
than A* by multiplying consistent h-values with a
constant larger than one. It typically does not find
shortest paths.

Weighted A*
start

goal

start

goal

A* Weighted A*

Weighted A*

! Assume that the h-values h(s) are consistent
! A* with the h-values w h(s) for w > 1 [Pearl, 1984; Likhachev,

Gordon and Thrun, 2004]

" can be forced to expand every state at most once
" typically expands many fewer states the larger w is
" has found a path from the start state to a state that is

at most a factor of w longer than minimal when it is
about to expand the state

" has found a path from the start state to the goal state
that is at most a factor of w longer than minimal when
it terminates

Weighted A*

w = 2.5
13 expansions
11 movements

w = 1.0 (A*)
20 expansions
10 movements

[from Maxim Likhachev]8-neighbor grid

34

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Anytime Repairing A* (ARA*)

! Find a suboptimal path quickly and then make it shorter
and shorter (while the agent starts to traverse the path)

! ARA* [Likhachev, Gordon and Thrun, 2004] runs a series of WA*
searches with smaller and smaller weights w until a
shortest path has been found (or the agent reaches the
goal)

Anytime Repairing A* (ARA*)

w = 2.5
13 expansions
11 movements

w = 1.5
15 expansions
11 movements

w = 1.0
20 expansions
10 movements

[from Maxim Likhachev]8-neighbor grid

Anytime Repairing A* (ARA*)

w = 2.5
13 expansions
11 movements

w = 1.5
1 expansion

11 movements

w = 1.0
9 expansions

10 movements

8-neighbor grid [from Maxim Likhachev]

Anytime Repairing A* (ARA*)

4d search with A* (after 25 s)

[from Maxim Likhachev]

4d search with ARA* (after 25 s, w = 1.0)

Anytime Repairing A* (ARA*)

[from Maxim Likhachev]

35

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Learning Real-Time A* (LRTA*)

! Real-time heuristic search [Korf, 1990] solves search
problems with a constant search time between
movements by interleaving partial searches around the
current state with movements. It updates the h-values
after every search to avoid cycling without reaching the
goal state. It typically does not follow a shortest
trajectory.

! There are many different real-time heuristic search
algorithms. We present one of them.

Learning Real-Time A* (LRTA*)
start

goal

start

goal

A*
agent-centered search [Koenig, 2001]

(e.g. LRTA*)

Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state,
using the h-values

local minima are a problem

1245

23056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

2 245

2056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

2 245

2056

34567

45678

3 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

2

4-neighbor grid

Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state,
using and updating the h-values

local minima are overcome by updating the h-values

1245

23056

34567

45678

3 0

1

2

3

445

2056

34567

45678

5 0

1

2

3

45

2056

34567

45678

3 0

1

2

3

4

45

2056

34567

45678

5 0

1

2

3

645

2056

34567

45678

5 0

1

2

3

6 65

2056

34567

45678

5 0

1

2

3

6

Learning Real-Time A* (LRTA*)

goal

! Repeatedly move to the most promising adjacent state,
using and updating the h-values

4-neighbor grid

36

Learning Real-Time A* (LRTA*)

Properties of Learning Real-Time A* (LRTA*) [Korf, 1990]:
! The h-values of the same state are monotonically

nondecreasing over time and thus indeed become more
informed over time.

! The h-values remain consistent.
! The agent reaches a goal state with O(#states2)

movements if the goal distance of every state is finite
[Koenig, 2001].

! If the agent is reset into the start state whenever it reaches
a goal state then the number of times that it does not
follow a cost-minimal trajectory from the start state to a
goal state is bounded from above by a constant if the cost
increases are bounded from below by a positive constant.

Learning Real-Time A* (LRTA*)

! LRTA* reaches the goal state if it is reachable from
every state (= the search space is safely explorable).

! Proof:

Learning Real-Time A* (LRTA*)

! The worst-case number of movements is O(#states2) if
the goal state is reachable from every state and all
movement costs are one, where #states is the number of
unblocked vertices [Koenig, 2001].

! Proof under the assumption that all movements change state:
Consider the sum of all h-values minus the h-value of the current
state. The initial sum is at least zero. The final sum is at most
#states × diameter since the h-value of every state is at most its goal
distance. Every movement increases the sum by at least one.

before: 5 4 afterwards: 5 4

before: 5 6 afterwards: 7 6

Learning Real-Time A* (LRTA*)

goal

! Repeatedly move to the most promising adjacent state,
using and updating the h-values

4-neighbor grid

Learning Real-Time A* (LRTA*)

We need larger lookaheads.
The possible design choices differ as follows:
! Which states to search?

The number x of states to search is determined by the available time
and is thus a parameter. We use the first x states expanded by an
A* search. An A* search uses h-values to focus the search and
always tries to disprove the path currently believed to be shortest.

! The h-values of which states to update?
We use Dijkstra’s algorithm to update the values of all x states
searched.

! How many moves to make before the next search?
We move the agent until it reaches a state different from the x states
searched.

Learning Real-Time A* (LRTA*)

We need larger lookaheads.
We make the following design choices [Koenig, 2004]:
! Which states to search?

The number x of states to search is determined by the available time
and is thus a parameter. We use the first x states expanded by an
A* search. An A* search uses h-values to focus the search and
always tries to disprove the path currently believed to be shortest.

! The h-values of which states to update?
We use Dijkstra’s algorithm to update the h-values of all x states
searched.

! How many moves to make before the next search?
We move the agent until it reaches a state different from the x states
searched.

37

Learning Real-Time A* (LRTA*)

245

2056

34567

45678

3 0

1

2

3

1

3

4-neighbor grid

Learning Real-Time A* (LRTA*)

first A* state expansion

245

2056

34567

45678

0

1

2

3

1

3

! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

second A* state expansion

45

2056

34567

45678

0

1

2

3

1

3

! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

third A* state expansion

45

2056

34567

45678

0

1

2

3

3

! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

third A* state expansion

45

2056

34567

45678

0

1

2

3

3

! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

third A* state expansion

45

2056

34567

45678

0

1

2

3

3

! Step 1: Forward A* search

4-neighbor grid

38

Learning Real-Time A* (LRTA*)

∞45

2056

34567

45678

0

1

2

3

3

∞∞

4-neighbor grid

Learning Real-Time A* (LRTA*)

first iteration of Dijkstra’s algorithm

45

2056

34567

45678

0

1

2

3

3

1

! Step 2: Updating the h-values with Dijkstra’s algorithm

∞∞

4-neighbor grid

Learning Real-Time A* (LRTA*)

second iteration of Dijkstra’s algorithm

245

2056

34567

45678

0

1

2

3

3

1

! Step 2: Updating the h-values with Dijkstra’s algorithm

∞

4-neighbor grid

Learning Real-Time A* (LRTA*)

third iteration of Dijkstra’s algorithm

245

2056

34567

45678

0

1

2

3

3

13

! Step 2: Updating the h-values with Dijkstra’s algorithm

4-neighbor grid

Learning Real-Time A* (LRTA*)

245

2056

34567

45678

0

1

2

3

3

13

! Step 2: Updating the h-values with Dijkstra’s algorithm

4-neighbor grid

Learning Real-Time A* (LRTA*)

245

2056

34567

45678

0

1

2

3

3

13

! Step 3: Moving along the path

4-neighbor grid

follow the path

39

Learning Real-Time A* (LRTA*)

follow the path

245

2056

34567

45678

3 0

1

2

3

1

3

! Step 3: Moving along the path

4-neighbor grid

Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state,
using and updating the h-values with a lookahead > 1

145

23056

34567

45678

3 0

1

2

3

867

2056

34567

45678

7 0

1

2

3

5

2056

34567

45678

0

1

2

3

82 6 7

87

2076

34567

45678

7 0

1

2

3

887

2076

34567

45678

7 0

1

2

3

7

2076

34567

45678

0

1

2

3

88 8 7

4-neighbor grid

Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state,
using and updating the h-values with a lookahead > 1

goal

4-neighbor grid

Learning Real-Time A* (LRTA*)

! Safely explorable random grids of size 301 x 301

Grids with 25% Random Obstacles
h-values generally not misleading

larger lookaheads less helpful

Learning Real-Time A* (LRTA*)

311294773022915321

……2992961531

…………41

315288783152869811

36328293499282801

path
length

planning
time

path
length

planning
time

octile distanceManhattan distancelookahead

Learning Real-Time A* (LRTA*)

3141717307123815

3102169302157921

4974974994991

3082465301182225

3181377315101411

3418833386865

path
length

state
exp.

path
length

state
exp.

LRTA* with BFSLRTA* with A*lookahead

40

Learning Real-Time A* (LRTA*)

! LRTA* with small lookaheads does well in terms of path
length since the h-values are generally not misleading.

! Dominating h-values draw the agent towards the goal
and result in smaller planning time and path lengths for
LRTA* because the h-values are generally not
misleading and there are thus only a small number of
local minima.

! LRTA* with A* to determine which states to search does
better than LRTA* with breadth-first search, both in
terms of “planning time” and path length, because the h-
values are generally not misleading.

Learning Real-Time A* (LRTA*)

! Safely explorable mazes of size 301 x 301

Acyclic Mazes (generated with DFS)
h-values generally misleading
larger lookaheads very helpful

Learning Real-Time A* (LRTA*)

17714327328020537027985621

135554310131……31

114917348330……41

27284227797433770431399811

125995862817519875749853621

path
length

planning
time

path
length

planning
time

octile distanceManhattan distancelookahead

Learning Real-Time A* (LRTA*)

17718146020723907351791315

14425444838317714345956621

12445731244573125995812599581

13803547343315573645675225

18993743752727284253195511

3397336085644775257656455

path
length

state
exp.

path
length

state
exp.

LRTA* with BFSLRTA* with A*lookahead

Learning Real-Time A* (LRTA*)

! Mazes are easier than grids with random obstacles since
their branching factor is smaller. They are harder than grids
with random obstacles since the paths between locations
are longer and the h-values are generally misleading.

! LRTA* with small lookaheads does poorly in terms of path
length since the h-values are generally misleading

! Dominating h-values draw the agent towards the goal and
result in larger planning time and path lengths for LRTA*
because the h-values are generally misleading and it takes
longer to update the h-values to eliminate local minima.

! LRTA* with A* to determine which states to search does
worse than LRTA* with breadth-first search, both in terms of
“planning time” and path length, because the h-values are
generally misleading.

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

41

LRTA* vs D* Lite

D* Lite
! can detect that the goal state is unreachable
! cannot satisfy hard real-time requirements
! has worst-case number of movements of

O(#states log #states)

LRTA*
! cannot detect that the goal state is unreachable
! can satisfy hard real-time requirements
! has worst-case number of movements of

O(#states2)

LRTA* vs D* Lite

! Safely explorable random grids of size 301 x 301

Grids with 25% Random Obstacles
h-values generally not misleading

larger lookaheads less helpful

LRTA* vs D* Lite

311294773022915321

……2992961531

3144073730936826D* Lite

…………41

315288783152869811

36328293499282801

path
length

planning
time

path
length

planning
time

octile distanceManhattan distancelookahead

LRTA* vs D* Lite

! Minimize sum of planning and plan-execution time:
planning time + x plan-execution time

710+1.07-10+1.07

……

510+0.15-10+1.06

310-0.08-10+0.14

110-4.00-10-0.09

optimal
lookahead

range of x for LRTA*

minimum planning
time of LRTA*

lookahead
increases

planning is slow
plan-execution is fast

planning is fast
plan-execution is slow

LRTA* vs D* Lite

! Safely explorable mazes of size 301 x 301

Acyclic Mazes (generated with DFS)
h-values generally misleading
larger lookaheads very helpful

LRTA* vs D* Lite

17714327328020537027985621

135554310131……31

2114037356121738357417D* Lite

114917348330……41

27284227797433770431399811

125995862817519875749853621

path
length

planning
time

path
length

planning
time

octile distanceManhattan distancelookahead

42

LRTA* vs D* Lite

0

200000

400000

600000

800000

1000000

1200000

1400000

 0 5 10 15 20 25 30 35 40 45 50

state expansions per planning episode (= lookahead)

average total planning time
average total number of movements (= path length)

path length

planning time

LRTA*D* Lite
larger lookaheads decrease path length
larger lookaheads increase planning time per planning episode
smaller path length decreases number of planning episodes

h-values are misleading

LRTA* vs D* Lite

0

200000

400000

600000

800000

1000000

1200000

1400000

 0 5 10 15 20 25 30 35 40 45 50

state expansions per planning episode (= lookahead)

average total planning time
average total number of movements (= path length)

path length

planning time

LRTA*D* Lite

minimum planning
time of LRTA*

planning time of LRTA* =
planning time of D* Lite

LRTA* vs D* Lite

! Minimize sum of planning and plan-execution time:
planning time + x plan-execution time

3310-0.15-10+0.29

……

2510-0.30-10-0.16

2110-4.00-10-0.31

optimal
lookahead

range of x for LRTA*

minimum planning
time of LRTA*

lookahead
increases

planning is slow
plan-execution is fast

planning is fast
plan-execution is slow

D* Lite should be preferred for x > 10-0.27

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*)

! Adaptive A* (AA*)

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Real-Time Adaptive A* (RTAA*)

! We use AA* to create Real-Time Adaptive A* (RTAA*)
[Koenig and Likhachev, 2006], a real-time heuristic search
method with similar properties as LRTA*. RTAA*
improves on LRTA* by updating the h-values much
faster although they are not quite as informed.

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3467

23456

1245

05234

5

45678

4-neighbor grid

43

2

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3467

23456

1245

0534

5

45678

4-neighbor grid

3

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3467

23456

1245

0524

5

45678

4-neighbor grid

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3

4

3467

23456

125

052

5

45678

4-neighbor grid

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3

4

3467

23456

125

052

5

45678

4-neighbor grid

5

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3

4

3467

23456

12

052

5

45678

4-neighbor grid

4

5

5

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3

4

3467

236

12

052

5

45678

4-neighbor grid

44

4

5

5

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3

4

3467

236

12

052

5

45678

4-neighbor grid

4

5

5

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3

4

3467

236

12

052

5

45678
state about to be
expanded

4-neighbor grid

4

5

5

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

3

4

3467

236

12

052

5

45678

4-neighbor grid

∞

∞

∞

∞

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

∞

∞

3467

236

12

05

5

45678

∞

4-neighbor grid

4

∞

∞

∞

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

∞

∞

3467

236

12

05

5

45678

∞

4-neighbor grid

4

∞

5

∞

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

∞

∞

3467

236

12

05

5

45678

∞

4-neighbor grid

45

4

∞

5

∞

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

∞

6

3467

236

12

05

5

45678

∞

4-neighbor grid

4

7

5

∞

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

∞

6

3467

236

12

05

5

45678

∞

4-neighbor grid

4

7

5

∞

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

∞

4-neighbor grid

4

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

∞

4-neighbor grid

4

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

4

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

46

4

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

4

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

4

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Real-Time Adaptive A* (RTAA*)

Properties of LRTA* [Korf, 1990]

! The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
informed over time.

! The h-values remain consistent.
! The agent reaches a goal state if the goal distance of

every state is finite.
! If the agent is reset into the start state whenever it reaches

a goal state then the number of times that it does not
follow a cost-minimal trajectory from the start state to a
goal state is bounded from above by a constant if the cost
increases are bounded from below by a positive constant.

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

3467

23456

1245

05234

5

45678

4-neighbor grid

47

0

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

3467

23456

1245

0534

5

45678

4-neighbor grid

bold = g-value
regular = h-value

1

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

3467

23456

1245

054

5

45678

0

4-neighbor grid

bold = g-value
regular = h-value

2

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

1

4

3467

23456

125

050

5

45678

4-neighbor grid

bold = g-value
regular = h-value

2

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

1

2

3467

23456

125

050

5

45678

4-neighbor grid

bold = g-value
regular = h-value

3

2

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

1

2

3467

23456

12

050

5

45678

4-neighbor grid

bold = g-value
regular = h-value

4

3

3

2

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

1

2

3467

236

12

050

5

45678

4-neighbor grid

bold = g-value
regular = h-value

48

4

3

3

2

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

1

2

3467

236

12

050

5

45678

4-neighbor grid

bold = g-value
regular = h-value

4

3

3

2

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search

1

2

3467

236

12

050

5

45678
state about to be
expanded
g-value = 5
h-value = 3
f-value = 8

4-neighbor grid

bold = g-value
regular = h-value

4

3

3

2

Real-Time Adaptive A* (RTAA*)

! RTAA* step 2: updating the h-values
" RTAA*: For each expanded state s: hnew(s) = f(goal) – g(s)

" LRTA*: For each expanded state s: use Dijkstra to determine hnew(s)

1

2

3467

236

12

050

5

45678

f(state about to be expanded)

state about to be
expanded
g-value = 5
h-value = 3
f-value = 8

4-neighbor grid

bold = g-value
regular = h-value

Real-Time Adaptive A* (RTAA*)

! RTAA* step 2: updating the h-values

3467

236

12

05

8-4

8-3

8-3

8-2 8-1

8-2

8-0

5

45678
state about to be
expanded
g-value = 5
h-value = 3
f-value = 8

4-neighbor grid

4

5

5

6

Real-Time Adaptive A* (RTAA*)

! RTAA* step 2: updating the h-values

7

6

3467

236

12

058

5

45678
state about to be
expanded
g-value = 5
h-value = 3
f-value = 8

4-neighbor grid

4

5

5

6

Real-Time Adaptive A* (RTAA*)

! RTAA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

49

4

5

5

6

Real-Time Adaptive A* (RTAA*)

! RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

4

5

5

6

Real-Time Adaptive A* (RTAA*)

! RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

4

5

5

6

Real-Time Adaptive A* (RTAA*)

! RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

5

5

6

Real-Time Adaptive A* (RTAA*)

! RTAA* step 3: moving along the path

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

Real-Time Adaptive A* (RTAA*)

Properties of RTAA* [Koenig and Likhachev, 2006]

! The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
informed over time.

! The h-values remain consistent.
! The agent reaches a goal state if the goal distance of

every state is finite.
! If the agent is reset into the start state whenever it reaches

a goal state then the number of times that it does not
follow a cost-minimal trajectory from the start state to a
goal state is bounded from above by a constant if the cost
increases are bounded from below by a positive constant.

Real-Time Adaptive A* (RTAA*)

! RTAA* ! LRTA*

5

5

6 7

6

3467

236

12

05

5

45678

8

7

5

8 7

6

3467

236

12

05

5

45678

8

4-neighbor grid

50

Real-Time Adaptive A* (RTAA*)

! RTAA* ! LRTA*

6 7

37

23

12

05

45678

8

7

8 7

7

23

12

05

45678

8

4-neighbor grid

Real-Time Adaptive A* (RTAA*)

Relationship of RTAA* and LRTA*
! RTAA* with only one expanded state per A* search

behaves exactly like LRTA* with only one expanded state
per A* search.

! If RTAA* and LRTA* have the same h-values before they
update the h-values then the h-values of RTAA* after the
update are dominated by the h-values of LRTA*.

Real-Time Adaptive A* (RTAA*)

! Safely explorable mazes of size 151 x 151

Real-Time Adaptive A* (RTAA*)

26.691428512501316.831536712856057

22.671539811314014.461663811703649

18.501727410278811.991862910570341

14.3120016929089.41220229684033

10.2323270828516.86263388925825

6.2530470793134.37338538586617

2.8047291876132.01567081042299

0.272485382485380.202485382485381

time per
search
[ms]

trajectory
length

expansionstime per
search
[ms]

trajectory
length

expansions

LRTA*RTAA*

+7%
-59%

Real-Time Adaptive A* (RTAA*)

26.691428512501316.831536712856057

22.671539811314014.461663811703649

18.501727410278811.991862910570341

14.3120016929089.41220229684033

10.2323270828516.86263388925825

6.2530470793134.37338538586617

2.8047291876132.01567081042299

0.272485382485380.202485382485381

time per
search
[ms]

trajectory
length

expansionstime per
search
[ms]

trajectory
length

expansions

LRTA*RTAA*

Tom Mitchell Slide

! We are only at the beginning of exploring the theory and
applications of incremental heuristic search algorithms.

! This is a good topic for dissertations!
" What other principles exist?
" What are the properties of these principles?
" How can these principles be combined?
" How to broaden their applications?

! How to do memory-limited incremental heuristic search?

! How to do probabilistic incremental heuristic search?

" What other problems can they be applied to?
! How to apply them to symbolic planning?
! How to apply them to constraint optimization?

51

Summary

! Joint work with K. Daniel, A . Felner, S. Greenberg, W.
Halliburton, M. Likhachev, A. Mudgal, A. Nash, A.
Ranganathan, Y. Smirnov, X. Sun and C. Tovey

! Many thanks to Vadim Bulitko and Maxim Likhachev for
making their movies available

! Funded in part by NSF, IBM and JPL

! For more information, see idm-lab.org/projects.html

