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Warning!

! We try to make everything easy to understand.
! We often do not mention crucial details.
! We use both 4- and 8-neighbor grids.
! Values in cells are h-values unless stated otherwise.
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AI Benchmarks

Standard Search Problems in Artificial Intelligence
! States are given and discrete

! Off-line search: one can concentrate on planning (execution follows)

! Real-time constraints do not exist 

! Search space does not fit into memory

! How to search larger and larger search spaces?
! Use big-O time and space analysis

[from Wikipedia]

AI Benchmarks

Path-Planning Problems for Agents
! States are not given, continuous and often hard to characterize

! On-line search: planning and execution have to be interleaved

! Real-time constraints exist 

! Search space might or might not fit into memory

! How to search faster and faster?
! Cannot use big-O time and space analysis

! Hardware and implementation details matter

Games [from Cavedog]Robotics [from JPL]
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Alternatives to Path Planning

! Bug Algorithms [Lumelsky and Stepanov, 1987]

Alternatives to Path Planning

goal

! Behavior-based methods [Arkin, 1987]

Alternatives to Path Planning

! Properties
+ fast
+ need only local terrain information
- do not necessarily find short paths to the goal
- might not find paths to the goal at all
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Work vs Configuration Space

Path Planning Problems for Agents
! States are not given, continuous and often hard to characterize

! On-line search: planning and execution have to be interleaved

! Real-time constraints exist 

! Search space might or might not fit into memory

! How to search faster and faster?

Games [from Cavedog Entertainment] Robotics [from JPL]
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Work vs Configuration Space

work space configuration space

[from Stuart Russell and Peter Norvig]

Work vs Configuration Space

! Configuration spaces are often
" continuous
" high-dimensional

Work vs Configuration Space

! Configuration spaces are often
" continuous
" high-dimensional

! Discretize them with
" skeletonization methods (roadmaps)
" cell-decomposition methods

! Skeletonization methods

Discretizing Configuration Space

Voronoi graph
[from Stuart Russell and Peter Norvig – the figure has slight problems]

! Skeletonization methods

Discretizing Configuration Space

visibility graph

! Skeletonization methods: 
randomized and probability complete

Discretizing Configuration Space

roadmap using random points [Kavraki et al, 1994] 

(there are also roadmaps using RRTs [LaValle, 1998]) [from Steve LaValle]
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Work vs Configuration Space

! Configuration spaces are often
" continuous
" high-dimensional

! Discretize them with
" skeletonization methods (roadmaps)
" cell-decomposition methods

Discretizing Configuration Space

vertical strips grid

! Cell decomposition methods: 
systematic and resolution complete

[from Stuart Russell and Peter Norvig]         

! Cell decomposition methods

Discretizing Configuration Space

coarse-grained discretization
might not be able to find a path

fine-grained discretization
Is very inefficient

! Cell decomposition methods

Discretizing Configuration Space

non-uniform discretization
avoids these problems

[from unknown]

! Cell decomposition methods

Discretizing Configuration Space

goal

goal

goal

goal

goal

goal

goal

goal

goal

goal

This is a deterministic
version of the parti-game
algorithm [Moore and 

Atkeson, 1995].

unsolvable

Discretizing Configuration Space

! Cell decomposition methods

! The search space is really nondeterministic and we thus 
need to use a minimax search
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! Cell decomposition methods

! PDRRTs implements the local controllers of the parti-
game algorithm with RRTs [Ranganathan and Koenig, 2004].

" PDRRTs need no user-supplied local controllers.
" PDRRTs need to split fewer cells.

Discretizing Configuration Space

! We use examples with configuration space = 2d work space
" increase the size of obstacles by the radius of the robot
" make the robot a point
" ignore kinematic constraints 

Discretizing Configuration Space
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A*

! A* [Hart, Nilsson and Raphael, 1968] uses user-supplied h-
values to focus its search

! The h-values approximate the goal distances
! We always assume that the h-values are consistent!
! The h-values h(s) are consistent 

if they satisfy the triangle inequality:
h(s) = 0 if s is the goal state
h(s) ≤ c(s,a) + h(succ(s,a)) otherwise

! Consistent h-values are admissible.
! The h-values h(s) are admissible

if they do not overestimate the goal distances.

s goal state

succ(s,a)

c(s,a)

h(s)

h(succ(s,a))

A*

A*
1. Create a search tree that contains only the start state
2. Pick a generated but not yet expanded state s 

with the smallest f-value
3. If state s is a goal state: stop
4. Expand state s
5. Go to 2

A*

! Search problem with uniform cost

1

goal1start

4-neighbor grid
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A*

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

! Possible consistent h-values
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more informed (dominating)

4-neighbor grid
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A*

! First iteration of A*

0

cost of the shortest path
in the search tree from the 

start state to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4-neighbor grid

order of expansions

2

A*

! Second iteration of A*
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generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =
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4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 
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A*

! Third iteration of A*
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g-values h-values f-values+ =
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cost of the shortest path
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A*

! Fourth iteration of A*
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7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2
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A*

! Fifth iteration of A*
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4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start state to the given state
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2

A*

! Sixth iteration of A*
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A*

! Seventh and last iteration of A*
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generated but not expanded state (OPEN list)
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4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start state to the given state

A*
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(8)

Uniform-cost search
Breadth-first search

4-neighbor grid

A*

! We say that h-values h1(s) dominate h-values h2(s) iff
h1(s) ≥ h2(s) for all states s.

! A* with consistent h-values h(s) [Pearl,1984] 

" expands every state at most once
" has found a shortest path from the start state to a 

state when it is about to expand the state
" has found a shortest path from the start state to the 

goal state when it terminates  
" expands no more states than with consistent h-values 

dominated by the h-values h(s)
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Any-Angle Path Planning

! A* on eight-neighbor grids

any-angle pathgrid path

8-neighbor grid
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Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h 
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h 
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids

8-neighbor grid

Any-Angle Path Planning

! A* on other tessellations 
[Bjoernsson, Enzenberger, Holte, Schaeffer and Yap, 2003]

generalization: framed quadtrees

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h 
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Any-Angle Path Planning

! A* on eight-neighbor grids with smoothing

any-angle pathgrid path

8-neighbor grid
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Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

grid path any-angle path

! A* on eight-neighbor grids with smoothing

8-neighbor grid

Any-Angle Path Planning

! A* on eight-neighbor grids with smoothing

grid path any-angle path

8-neighbor grid

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h 
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning
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Any-Angle Path Planning

! A* on visibility graphs

shortest pathpath on visibility graph

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h 
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Field D*

! Field D* (a version of D* Lite with any-angle path 
planning) [Ferguson and Stentz, 2005] on eight-neighbor grids
" performs an A* search
" propagates information along the grid edges

(= good runtime) 
" does not constrain the path to be on grid edges

(= short paths)

Field D*

! Field D* on eight-neighbor grids
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[from JPL]
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! Field D* on eight-neighbor grids
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! Field D* on eight-neighbor grids
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8-neighbor grid
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Field D*

! Field D* on eight-neighbor grids
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[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids
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8-neighbor grid

Field D*

! Field D* on eight-neighbor grids
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1.00

0.00
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1.41
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2.41
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3.00

3.27

1.122.62
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[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids

2.00

1.00

0.00

1.00

2.32

1.41

1.00

1.41

2.83

2.41

2.00

2.32

3.00

3.27

g-value

[from JPL]

8-neighbor grid

Field D*

! Field D* on eight-neighbor grids does not necessarily 
find shortest paths

Field D* path          any-angle path

[from JPL]

8-neighbor grid

Field D*

[April 29, 2007; from JPL]

! Terrain often has uniform movement costs
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Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h 
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning

Theta*

! Theta* [Nash, Daniel, Koenig and Felner, 2007*] on eight-neighbor 
grids
" performs an A* search
" propagates information along the grid edges

(= good runtime) 
" does not constrain the path to be on grid edges

(= short paths)

* Note: A mistake in the pseudo code of AP-Theta* in the original paper is corrected.

Theta*

! A* on eight-neighbor grids with smoothing
but now we interleave smoothing with search

grid path any-angle path

8-neighbor grid

Theta*

Key insight behind Theta* on eight-neighbor grids
! The parent of a state does not need to be its neighbor.
! When expanding a state s, its children consider not only 

state s but also the parent of state s as possible parent 
since it is shorter to go directly to the parent of state s (if 
that path is unblocked) than first to state s and then to 
the parent of state s, due to the triangle inequality.

Theta*

v

g = 10

g = 12

g = 15

cost 2 cost 3

Theta*

8-neighbor grid
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Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

Theta*

If path 2 is not blocked, then it is shorter than path 1 (triangle inequality)

g-value

parent

8-neighbor grid

Theta*

If path 2 is not blocked, then it is shorter than path 1 (triangle inequality)

g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid
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Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

Theta*
g-value

parent

8-neighbor grid

{
{Path 2

Path 1

Theta*

8-neighbor grid

Theta*

! Theta* does not necessarily find shortest paths since the 
parent of a state can only be a neighbor or the parent of 
a neighbor

8-neighbor grid

Theta*

! Theta* does not necessarily find shortest paths since the 
parent of a state can only be a neighbor or the parent of 
a neighbor

8-neighbor grid
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Theta*

! Theta* does not necessarily find shortest paths since the 
parent of a state can only be a neighbor or the parent of 
a neighbor

8-neighbor grid

Theta*

! Theta* does not necessarily find shortest paths since the 
parent of a state can only be a neighbor or the parent of 
a neighbor

The path of Theta* is still within 0.2% of optimal for this example

8-neighbor grid

Any-Angle Path Planning

Theta* on the grid

Runtime

P
at

h 
Le

ng
th

Field D* on the grid

A* with Post-Smoothing on the grid

A* on the grid

A* on the visibility graph

any-angle path planning
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Speeding Up A* Search

Path Planning Problems for Agents
! States are not given, continuous and often hard to characterize

! On-line search: planning and execution have to be interleaved

! Real-time constraints exist 

! Search space might or might not fit into memory

! How to search faster and faster?

20(!) megahertz RAD6000 processor

Games [from Cavedog]Robotics [from JPL]

Speeding Up A* Search

2d (x, y) planning
• 54,000 states
• Fast planning
• Slow execution

4d (x, y, Ө, v) planning
• > 20,000,000 states
• Slow planning
• Fast execution

[from Maxim Likhachev]

How to search faster and faster is important:
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Speeding Up A* Search

2d (x, y) planning
• 54,000 states
• Fast planning
• Slow execution

4d (x, y, Ө, v) planning
• > 20,000,000 states
• Slow planning
• Fast execution

[from Maxim Likhachev]

How to search faster and faster is important:

Speeding Up A* Search

How to search faster and faster is important:
! Games need to run on older computers
! Graphics gets most of the processor time
! The number of agents gets larger and larger

Games [from Cavedog]

Speeding Up A* Search

Ways of speeding up A* 
! Incremental versions of A* (incremental heuristic search)

" find shortest paths by exploiting experience with similar searches
" typically run faster than A*

! A* with weighted h-values (weighted A*)
" finds suboptimal paths by focusing the search more than A*
" typically runs faster than A*

! Real-time versions of A* (real-time heuristic search)
" find suboptimal paths by interleaving searches in local search 

spaces around the current state and executions
" can run faster or slower than A* 
" each search runs in constant time

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*) 

! Adaptive A* (AA*) 

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
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" A* with weighted h-values 

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)

Incremental Heuristic Search

! Incremental heuristic search speeds up A* searches for 
a sequence of similar search problems by exploiting 
experience with earlier search problems in the 
sequence. It finds shortest paths.

! In the worst case, incremental heuristic search cannot be 
more efficient than A* searches from scratch 
[Nebel and Koehler 1995].

Incremental Heuristic Search

search task 1 slightly different 
search task 2

slightly different 
search task 2

search task 1 slightly
different
search task 2

slightly
different 
search task 3

slightly
different 
search task 4
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Incremental Heuristic Search

8-neighbor grid

Incremental Heuristic Search
[from slate.com]

8-neighbor grid

Stationary Target

Stationary target search:
! How to move a computer-controlled agent autonomously 

to a goal state in initially unknown terrain?

Stationary Target

Our approach to stationary-target search, 
called Planning with the Freespace Assumption:
! Repeatedly move the agent along a shortest path from 

its current state to the goal state under the assumption 
that states are unblocked unless the agent knows 
otherwise (freespace assumption). The agent needs to 
replan its path only if the path becomes blocked. 

! Repeatedly find a shortest path from some start state to 
the same goal state with A* on a graph whose 
movement costs can increase over time.

Stationary Target

…

8-neighbor grid

Stationary Target

…

8-neighbor grid
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Stationary Target

! Used in robotics and usable in games

[Stentz and Hebert, 1995] [from Cavedog Entertainment][from JPL]

Stationary Target

Stationary Target

! Clearly, the number of movements is small if the 
freespace assumption is approximately satisfied, that is, 
if the obstacle density is small

Stationary Target

! Mazes of size 25 x 5 – 25 x 75

Stationary Target

4-neighbor grid

Stationary Target

! The worst-case number of movements is 
Ω(log(#states)/log log(#states) × #states) on undirected 
vertex-blocked graphs, where #states is the number of 
unblocked vertices [Koenig, Tovey and Smirnov, 2003].

nn
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Stationary Target

! The worst-case number of movements is 
Ω(log(#states)/log log(#states) × #states) on undirected 
vertex-blocked graphs, where #states is the number of 
unblocked vertices [Koenig, Tovey and Smirnov, 2003].

! Proof: 
" Length of rim = nn for some n
" Rim gets traversed n times, 

resulting in nn+1 movements
" There are about at most nn-1 spokes for each of the at most n 

heights, resulting in nn states

Stationary Target

! The worst-case number of movements is log2(#states) 
#states on undirected vertex-blocked graphs and 
log(#states) #states on vertex-blocked grids, where 
#states is the number of unblocked vertices [Mudgal, Tovey, 

Greenberg and Koenig, 2005]. 

Stationary Target

…

8-neighbor grid

Incremental Heuristic Search

Incremental heuristic search
! Fringe Saving A* (FSA*) and similar (iA*)

" starts A* at the point where the current search could differ from 
the previous one

! Adaptive A* (AA*) and similar (MTAA*, RTAA*)
" improves the h-values between searches

! Lifelong Planning A* (LPA*) and similar (D*, D* Lite, …)
" transforms the previous search tree into the current one

! It is future work to combine the principles behind AA* 
and LPA*.

runtim
e per expansion increases

num
ber of expansions decreases

Table of Contents
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Fringe Saving A* (FSA*)

! Fringe Saving A* (FSA*) [Sun and Koenig, 2007] speeds up A* 
searches for a sequence of similar search problems by 
starting each search at the point where it could differ 
from the previous one

! FSA* is similar to but faster than iA* [Yap, unpublished]
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Fringe Saving A* (FSA*)
start

goal

A* FSA*

start

old                             new
search                     search
tree                             tree

goal

2

Fringe Saving A* (FSA*)

! Seventh and last iteration of A*

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3

1

11

2

(7)
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order of expansions

cost of the shortest path
in the search tree from the 

start state to the given state

2

Fringe Saving A* (FSA*)

! One state becomes blocked
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! One state becomes blocked
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cost of the shortest path
found so far from the start 

state to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1
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4-neighbor grid

order of expansions

Fringe Saving A* (FSA*)

π r2

time-consuming
operations

2 π r
fast

operations 

Table of Contents

! Speeding up path planning with A*

" Incremental versions of A* (incremental heuristic search)
! Fringe Saving A* (FSA*) 

! Adaptive A* (AA*) 

! Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*

! Comparison of D* Lite and Adaptive A*
! Eager and Lazy Moving-Target Adaptive A* (MTAA*)

" A* with weighted h-values 

! Weighted A* (WA*)
! Anytime Repairing A* (ARA*)

" Real-time versions of A* (real-time heuristic search)

! Learning-Real Time A* (LRTA*)

! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)



21

Adaptive A* (AA*)

! Adaptive A* (AA*) [Koenig and Likhachev, 2005] speeds up A* 
searches for a sequence of similar search problems by 
making the h-values more informed after each search.

! The principle behind AA* was earlier used in Hierarchical 
A* [Holte et al., 1996].

Adaptive A* (AA*)
start

goal

start

goal

A* AA*

Adaptive A* (AA*)

! Consider a state s that was expanded 
by A* with consistent h-values hold:
" distance(start,s) + distance(s,goal) ≥ distance(start,goal)
" distance(s,goal) ≥ distance(start,goal) – distance(start,s)
" distance(s,goal) ≥ f(goal) – g(s) = hnew(s)

! The h-values hnew are again consistent.
! The h-values hnew dominate the h-values hold.
! These properties continue to hold even if the start state 

changes or the movement costs increase.
! The next A* search with h-values hnew expands no more 

states than an A* search with h-values hold and likely many 
fewer states. 

start goal

s

Adaptive A* (AA*)

first A* search second A* search
4-neighbor grid

g f

h

Adaptive A* (AA*)

first AA* search second AA* search
4-neighbor grid

g f

hold hnew Table of Contents
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! Comparison of D* Lite and Learning-Real-Time A*
! Real-Time Adaptive A* (RTAA*)
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Lifelong Planning A* (LPA*)

! Lifelong Planning A* (LPA*) [Koenig and Likhachev, 2002]

speeds up A* searches for a sequence of similar search 
problems by recalculating only those g-values in the 
current search that are important for finding a shortest 
path and have changed from the previous search.

! This can often be understood as transforming the search 
tree from the previous search to the one of the current 
search. 

Lifelong Planning A* (LPA*)
start

old                             new
search                     search
tree                             tree

goal

start

goal

A* LPA*

Lifelong Planning A* (LPA*)

8-neighbor grid

Lifelong Planning A* (LPA*)
[from slate.com]

8-neighbor grid

Lifelong Planning A* (LPA*)

8-neighbor grid

g
Lifelong Planning A* (LPA*)

www.slate.com8-neighbor grid

[from slate.com]
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Lifelong Planning A* (LPA*)

artificial intelligence

heuristic search

how to search efficiently 
using h-values to focus the 

search

algorithm theory

incremental search

how to search efficiently by 
reusing information from 
previous similar searches

Lifelong Planning A* (LPA*)
uninformed search

breadth-first search

DynamicSWSF-FP
with early termination (our addition)

[Ramalingam and Reps, 1996]

heuristic search

A*
[Hart, Nilsson, Raphael, 1968]

Lifelong Planning A* (LPA*)
[Koenig and Likhachev, 2002]

co
m

pl
et

e 
se

ar
ch

in
cr

em
en

ta
l s

ea
rc

h

Lifelong Planning A* (LPA*)
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Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 2 5

5 4 3 4 5 6

goal

start

4-neighbor grid

g
Lifelong Planning A* (LPA*)
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D

1 2 54 6
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3 4

4 2 5

5 4 3 4 5 6

goal

start

min(2,4)+2
min(2,4)

priority queue

C3:[4;2]4-neighbor grid

g

Lifelong Planning A* (LPA*)

A

B
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D

1 2 54 6
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3 4

4 ∞ 5

5 4 3 4 5 6

goal

start

min(∞,4)+2
min(∞,4)

priority queue

D3:[4;3]; C3:[6;4]

min(∞,5)+1
min(3,4)

4-neighbor grid

g
Lifelong Planning A* (LPA*)
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D2:[4;4]; D4:[6;4]; D3:[6;5]

min(∞,5)+1
min(∞,5)

min(4,6)+2
min(4,6)

min(4,6)+0
min(4,6)

4-neighbor grid

g

min(∞,5)+1
min(∞,5)

min(4,6)+2
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min(∞,6)

Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6

2 1 0 1 2 3

3 4

4 ∞ 5

5 ∞ ∞ 4 5 6

goal

start

priority queue

D4:[6;4]; D3:[6;5]; D2:[6;6]4-neighbor grid

g
Lifelong Planning A* (LPA*)

A

B

C

D

1 2 54 6
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3 4

4 ∞ 5

5 ∞ ∞ ∞ 5 6

goal

start

priority queue

D2:[6;6]; D5:[8;5]; D4:[8;6]

min(∞,6)+2
min(∞,6)

min(∞,6)+0
min(∞,6)

min(5,7)+3
min(5,7)

4-neighbor grid
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Lifelong Planning A* (LPA*)

A
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D

1 2 54 6
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priority queue
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Lifelong Planning A* (LPA*)
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5 6 ∞ ∞ 5 6
min(∞,6)+2

min(∞,6)
min(5,7)+3
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min(∞,7)

4-neighbor grid

g

Lifelong Planning A* (LPA*)

! Theorem [Koenig, Likhachev and Furcy, 2004]

Each search expands every state at most twice and 
thus terminates.
= LPA* terminates

! Theorem [Koenig, Likhachev and Furcy, 2004]

After a search terminates, one can trace back a shortest 
path from the start to the goal by always moving from 
the current state s, starting at the goal, to any 
predecessor s’ that minimizes g(s’) + c(s’,s) until the 
start is reached.
= LPA* is correct

Lifelong Planning A* (LPA*)

! Theorem [Koenig, Likhachev and Furcy, 2004]

No search expands a state whose g-value before the 
search was already equal to its start distance.
= LPA* is efficient because it uses incremental search

! Theorem [Koenig, Likhachev and Furcy, 2004]

Each search expands at most those states s with 
[f(s);g*(s)] ≤ [f(goal); g*(goal)] or [gold(s) + h(s); gold(s)] ≤
[f(goal); g*(goal)], where f(s) = g*(s) + h(s) and gold(s) is 
the g-value of s before the search.
= LPA* is efficient because it uses heuristic search

Lifelong Planning A* (LPA*)

start

old                             new
search                     search
tree                             tree

goal

start

old                             new
search                     search
tree                             tree

goal

! Start of the search must remain unchanged
! LPA* can expand more states and run slower than A*
! - if the number of changes is large
! - if the changes are close to the start of the search

Lifelong Planning A* (LPA*)

! Grids of size 101 x 101
! Movement costs are one or two with equal probability

2.1 x0.174 ms0.434 ms0.370 ms1.0 %

2.6 x0.156 ms0.499 ms0.406 ms0.8 %

3.3 x0.108 ms0.453 ms0.362 ms0.6 %

5.0 x0.067 ms0.419 ms0.336 ms0.4 %

10.4 x0.029 ms0.386 ms0.299 ms0.2 %

replanning
time of LPA* 
planning time 

of A*

replanning
time of LPA*

first planning 
time of LPA*

planning time 
of A*

number of 
movement 

cost changes
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Stationary Target

…

8-neighbor grid

D* Lite

! LPA* needs to search from the goal of the agent to the 
agent itself because the start of the search needs to 
remain unchanged.

! LPA* is efficient because the agent observes blockages 
around itself. Thus, the changes are close to the goal of 
the search.

D* Lite
agent

old                             new
search                     search
tree                             tree

goal

LPA*

agent

old                             new
search                     search
tree                             tree

goal

LPA*

? !
D* Lite

…
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D* Lite

! D* Lite: Basic Version [Koenig and Likhachev, 2002]

! If the agent moves from soldagent to snewagent, then the goal 
of the search moves from soldagent to snewagent. This 
changes the priorities of the states in the priority queue

from [min(g(s), rhs(s)) + h(soldagent,s), min(g(s), rhs(s))]

to     [min(g(s), rhs(s)) + h(snewagent,s), min(g(s), rhs(s))]

(but not which states are in the priority queue).
! Thus, one needs to reorder the priority queue [Stentz, 1994].

D* Lite

! D* Lite: Basic Version [Koenig and Likhachev, 2002]

! Priority queue: A [8,5]; B [8,6]; C [8,7]
! Agent moves
! Priority queue: C [7,7]; B [8,6]; A [9,5]
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D* Lite

! D* Lite: Final Version [Koenig and Likhachev, 2002]

! One uses lower bounds on the new priorities instead of 
the new priorities themselves
[min(g(s), rhs(s)) + h(soldagent,s), min(g(s), rhs(s))]
≤ [min(g(s), rhs(s)) + h(soldagent,snewagent) + h(snewagent,s), min(g(s), rhs(s))]

[min(g(s), rhs(s)) + h(soldagent,s) - h(soldagent,snewagent), min(g(s), rhs(s))]
≤ [min(g(s), rhs(s)) + h(snewagent,s), min(g(s), rhs(s))]

! The term h(soldagent,snewagent) is the same across all states in 
the priority queue. Instead of deleting it from all states in 
the priority queue, we add it to all states added to the 
priority queue in the future [Stentz, 1995].

D* Lite

! D* Lite: Final Version [Koenig and Likhachev, 2002]

! When one selects a state for expansion, one first checks 
whether its priority is correct.

! If so, then one expands the state.
! If not (= it is a lower bound), then one re-inserts the state 

into the priority queue with the correct priority.

D* Lite

! D* Lite: Final Version [Koenig and Likhachev, 2002]

! Priority queue: A [8,5]; B [8,6]; C [8,7]
! Agent moves: h(soldstart,snewstart) = 2 (changes accumulate)
! Priority queue: A [8,5]; B [8,6]; C [8,7]
! Add state D with priority [10,5]
! Priority queue: A [8,5]; B [8,6]; C [8,7]; D [12,5]

! Priority queue: B [8,6]; C [8,7]; A [9,5]; D[12,5]

correct priority is [9,5]

correct priority is [8,6]

expand B

D* Lite

! Random Grids of size 129 x 129

6.1 msuninformed incremental search

4.2 ms

2.7 ms

informed incremental search
D* [Stentz, 1995]

D* was probably the first true incremental heuristic 
search algorithm, way ahead of its time!

D* Lite

10.5 msinformed search from scratch

296.0 msuninformed search from scratch

replanning time

sp
ee

d-
up

 1
10

x

! Cell decomposition methods

Minimax LPA*

goal

goal

goal

goal

goal

goal

goal

goal

goal

goal

This is a deterministic
version of the parti-game
algorithm [Moore and 
Atkeson, 1995]

Minimax LPA*

! Cell decomposition methods
! The search space is really nondeterministic and we thus 

need to use a minimax version of LPA*
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Minimax LPA*

! Terrain of size 2000 x 2000

14 minutesinformed incremental search
(Minimax LPA* [Likhachev and Koenig, 2003])

15 minutesuninformed incremental search

135 minutesinformed search from scratch

363 minutesuninformed search from scratch

planning 
time

sp
ee

d-
up

 2
6x

D* Lite for Mapping

Our approach to mapping, called Greedy Mapping:
! Repeatedly move the agent along a shortest path from 

its current state to a closest unvisited or unobserved 
state [Thrun et al. 1998] [Romero, Morales, Sucar, 2001] [Koenig, Tovey

and Halliburton, 2001].

D* Lite for Mapping

8-neighbor grid

D* Lite for Mapping

! Transforming Greedy Mapping to Planning with the 
Freespace Assumption [Likhachev and Koenig, 2002]

8-neighbor grid
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D* Lite vs AA*
AA*

! Improve previous h-values

! Goal node must remain 
unchanged

! Movement cost increases 
only*

! Guaranteed no more node 
expansions than A*

! More node expansions on 
average

! Fast node expansions

D* Lite

! Adapt previous search tree

! Start node must remain 
unchanged

! Movement cost 
in/decreases

! Can result in more node 
expansions than A*

! Fewer node expansions on 
average

! Slow node expansions
*actually, movement cost in/decreases but AA* is more efficient for movement cost increases
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D* Lite vs AA*

! Safely explorable torus-shaped mazes of size 100 x 100

D* Lite vs AA*

expansions
per search

3711
4104
391
31

Forward A*
Backward A*
(Forward) AA*
(Backward) D* Lite

runtime
per search

581
644
81
15

Table of Contents
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Moving Target

Moving-target search:
! How to move a computer-controlled agent autonomously 

to catch a moving target in initially unknown terrain?

Moving Target

Our approach to moving-target search,
called Planning with the Freespace Assumption:
! Repeatedly move the agent along a shortest path from 

its current state to the current state of the target under 
the assumption that states are unblocked unless the 
agent knows otherwise (freespace assumption). The 
agent needs to replan its path only if the path becomes 
blocked or the target leaves the path.

! Repeatedly find a shortest path from some start state to 
some goal state with A* on a graph whose movement 
costs can increase over time.

Moving Target
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D* Lite vs AA*
AA*

! Improve previous h-values

! Goal node must remain 
unchanged

! Movements cost increases 
only*

! Guaranteed no more node 
expansions than A*

! More node expansions on 
average

! Fast node expansions

D* Lite

! Adapt previous search tree

! Start node must remain 
unchanged

! Movement cost 
in/decreases

! Can result in more node 
expansions than A*

! Fewer node expansions on 
average

! Slow node expansions
*actually, movement cost in/decreases but AA* is more efficient for movement cost increases

D* Lite
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D* Lite
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D* Lite

agent-centric map [from Tony Stentz]
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D* Lite

! Safely explorable torus-shaped mazes of size 100 x 100
! Randomly moving target that pauses every 10th move

D* Lite

expansions
per search

3703
4519
2229
806

Forward A*
Backward A*
Agent-Centric D* Lite
Target-Centric D* Lite

runtime
per search

570
722

1481
833

D* Lite

start

old                             new
search                     search
tree                             tree

goal

start

old                             new
search                     search
tree                             tree

goal

! Start of the search must remain unchanged
! LPA* can expand more states and run slower than A*
! - if the number of changes is large
! - if the changes are close to the start of the search

D* Lite
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! the map needs to get shifted
! a large number of blockages change
! changed blockages can be close to the start node

4-neighbor grid
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Eager Moving-Target Adaptive A*

! We can build an incremental heuristic search method 
that does not need to shift the map on AA*, resulting in 
Lazy Moving-Target (MT) AA* [Koenig, Likhachev and Sun, 

2007].
! Adaptive A* ⇒ Eager Moving-Target (MT) AA* ⇒ Lazy 

Moving-Target (MT) AA*

Eager Moving-Target Adaptive A*
h-values

updated h-values
update all expanded states
h-values become more informed

A* search

Eager Moving-Target Adaptive A*

! Consider a state s after the goal changed:
" distance(s,newgoal) + hold(newgoal) ≥ hold(s)
" distance(s,newgoal) ≥ hold(s) – hold(newgoal) 
" distance(s,newgoal) ≥ max(hold(s) – hold(newgoal), huser(s)) = hnew(s)

! The h-values hnew are again consistent.
! The h-values hnew dominate the h-values huser.
! These properties continue to hold even if the start changes 

or movement costs increase.
! The next A* search with h-values hnew expands no more 

states than an A* search with h-values huser and likely many 
fewer states.

s goal

newgoal

Eager Moving-Target Adaptive A*
h-values

updated h-values

corrected h-values

update all expanded states
h-values become more informed

update all states
h-values become less informed
but remain more informed 
than the user-supplied h-values 

A* search

goal moves

Lazy Moving-Target Adaptive A*

update the h-values only when they are needed

D* Lite vs MTAA*

! Safely explorable torus-shaped mazes of size 100 x 100
! Randomly moving target that pauses every 10th move
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D* Lite vs MTAA*

expansions
per search

3703
4519
2334
2025
2229
806

Forward A*
Backward A*
Forward Lazy MTAA*
Backward Lazy MTAA*
Agent-Centric D* Lite
Target-Centric D* Lite

runtime
per search

570
722
465
411

1481
833
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Weighted A*

! Weighted A* [Pohl, 1970] solves search problems faster 
than A* by multiplying consistent h-values with a 
constant larger than one. It typically does not find 
shortest paths.

Weighted A*
start

goal

start

goal

A* Weighted A*

Weighted A*

! Assume that the h-values h(s) are consistent
! A* with the h-values w h(s) for w > 1 [Pearl, 1984; Likhachev, 

Gordon and Thrun, 2004] 

" can be forced to expand every state at most once
" typically expands many fewer states the larger w is
" has found a path from the start state to a state that is 

at most a factor of w longer than minimal when it is 
about to expand the state

" has found a path from the start state to the goal state 
that is at most a factor of w longer than minimal when 
it terminates

Weighted A*

w = 2.5
13 expansions
11 movements

w = 1.0 (A*)
20 expansions
10 movements

[from Maxim Likhachev]8-neighbor grid
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Anytime Repairing A* (ARA*)

! Find a suboptimal path quickly and then make it shorter 
and shorter (while the agent starts to traverse the path)

! ARA* [Likhachev, Gordon and Thrun, 2004] runs a series of WA* 
searches with smaller and smaller weights w until a 
shortest path has been found (or the agent reaches the 
goal)

Anytime Repairing A* (ARA*)

w = 2.5
13 expansions
11 movements

w = 1.5
15 expansions
11 movements

w = 1.0
20 expansions
10 movements

[from Maxim Likhachev]8-neighbor grid

Anytime Repairing A* (ARA*)

w = 2.5
13 expansions
11 movements

w = 1.5
1 expansion

11 movements

w = 1.0
9 expansions

10 movements

8-neighbor grid [from Maxim Likhachev]

Anytime Repairing A* (ARA*)

4d search with A* (after 25 s)

[from Maxim Likhachev]

4d search with ARA* (after 25 s, w = 1.0)

Anytime Repairing A* (ARA*)

[from Maxim Likhachev]
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Learning Real-Time A* (LRTA*)

! Real-time heuristic search [Korf, 1990] solves search 
problems with a constant search time between 
movements by interleaving partial searches around the 
current state with movements. It updates the h-values 
after every search to avoid cycling without reaching the 
goal state. It typically does not follow a shortest 
trajectory.

! There are many different real-time heuristic search 
algorithms. We present one of them.

Learning Real-Time A* (LRTA*)
start

goal

start

goal

A*
agent-centered search [Koenig, 2001]

(e.g. LRTA*)

Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state, 
using the h-values 

local minima are a problem
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4-neighbor grid

Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state, 
using and updating the h-values

local minima are overcome by updating the h-values
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Learning Real-Time A* (LRTA*)

goal

! Repeatedly move to the most promising adjacent state, 
using and updating the h-values

4-neighbor grid
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Learning Real-Time A* (LRTA*)

Properties of Learning Real-Time A* (LRTA*) [Korf, 1990]:
! The h-values of the same state are monotonically 

nondecreasing over time and thus indeed become more 
informed over time.

! The h-values remain consistent.
! The agent reaches a goal state with O(#states2) 

movements if the goal distance of every state is finite 
[Koenig, 2001].

! If the agent is reset into the start state whenever it reaches 
a goal state then the number of times that it does not 
follow a cost-minimal trajectory from the start state to a 
goal state is bounded from above by a constant if the cost 
increases are bounded from below by a positive constant.

Learning Real-Time A* (LRTA*)

! LRTA* reaches the goal state if it is reachable from 
every state (= the search space is safely explorable).

! Proof:

Learning Real-Time A* (LRTA*)

! The worst-case number of movements is O(#states2) if 
the goal state is reachable from every state and all 
movement costs are one, where #states is the number of 
unblocked vertices [Koenig, 2001].

! Proof under the assumption that all movements change state: 
Consider the sum of all h-values minus the h-value of the current 
state. The initial sum is at least zero. The final sum is at most 
#states × diameter since the h-value of every state is at most its goal 
distance. Every movement increases the sum by at least one.

before: 5 4 afterwards: 5 4

before: 5 6 afterwards: 7 6

Learning Real-Time A* (LRTA*)

goal

! Repeatedly move to the most promising adjacent state, 
using and updating the h-values

4-neighbor grid

Learning Real-Time A* (LRTA*)

We need larger lookaheads. 
The possible design choices differ as follows:
! Which states to search?

The number x of states to search is determined by the available time 
and is thus a parameter. We use the first x states expanded by an 
A* search. An A* search uses h-values to focus the search and 
always tries to disprove the path currently believed to be shortest.

! The h-values of which states to update?
We use Dijkstra’s algorithm to update the values of all x states 
searched.

! How many moves to make before the next search?
We move the agent until it reaches a state different from the x states 
searched.

Learning Real-Time A* (LRTA*)

We need larger lookaheads. 
We make the following design choices [Koenig, 2004]:
! Which states to search?

The number x of states to search is determined by the available time 
and is thus a parameter. We use the first x states expanded by an 
A* search. An A* search uses h-values to focus the search and 
always tries to disprove the path currently believed to be shortest.

! The h-values of which states to update?
We use Dijkstra’s algorithm to update the h-values of all x states 
searched.

! How many moves to make before the next search?
We move the agent until it reaches a state different from the x states 
searched.
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Learning Real-Time A* (LRTA*)
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Learning Real-Time A* (LRTA*)

first A* state expansion
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! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

second A* state expansion
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! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

third A* state expansion
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! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

third A* state expansion
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! Step 1: Forward A* search

4-neighbor grid

Learning Real-Time A* (LRTA*)

third A* state expansion

45
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34567

45678

0

1
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3

! Step 1: Forward A* search

4-neighbor grid
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Learning Real-Time A* (LRTA*)
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4-neighbor grid

Learning Real-Time A* (LRTA*)

first iteration of Dijkstra’s algorithm
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! Step 2: Updating the h-values with Dijkstra’s algorithm

∞∞

4-neighbor grid

Learning Real-Time A* (LRTA*)

second iteration of Dijkstra’s algorithm
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! Step 2: Updating the h-values with Dijkstra’s algorithm

∞

4-neighbor grid

Learning Real-Time A* (LRTA*)

third iteration of Dijkstra’s algorithm
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! Step 2: Updating the h-values with Dijkstra’s algorithm

4-neighbor grid

Learning Real-Time A* (LRTA*)
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! Step 2: Updating the h-values with Dijkstra’s algorithm

4-neighbor grid

Learning Real-Time A* (LRTA*)
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! Step 3: Moving along the path

4-neighbor grid

follow the path
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Learning Real-Time A* (LRTA*)

follow the path
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! Step 3: Moving along the path

4-neighbor grid

Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state, 
using and updating the h-values with a lookahead > 1
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Learning Real-Time A* (LRTA*)

! Repeatedly move to the most promising adjacent state, 
using and updating the h-values with a lookahead > 1

goal

4-neighbor grid

Learning Real-Time A* (LRTA*)

! Safely explorable random grids of size 301 x 301

Grids with 25% Random Obstacles
h-values generally not misleading

larger lookaheads less helpful

Learning Real-Time A* (LRTA*)

311294773022915321

……2992961531

…………41

315288783152869811

36328293499282801

path 
length

planning 
time

path 
length

planning 
time

octile distanceManhattan distancelookahead

Learning Real-Time A* (LRTA*)

3141717307123815

3102169302157921

4974974994991

3082465301182225

3181377315101411

3418833386865

path 
length

state 
exp.

path 
length

state 
exp.

LRTA* with BFSLRTA* with A*lookahead
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Learning Real-Time A* (LRTA*)

! LRTA* with small lookaheads does well in terms of path 
length since the h-values are generally not misleading. 

! Dominating h-values draw the agent towards the goal 
and result in smaller planning time and path lengths for 
LRTA* because the h-values are generally not 
misleading and  there are thus only a small number of 
local minima.

! LRTA* with A* to determine which states to search does 
better than LRTA* with breadth-first search, both in 
terms of “planning time” and path length, because the h-
values are generally not misleading.

Learning Real-Time A* (LRTA*)

! Safely explorable mazes of size 301 x 301

Acyclic Mazes (generated with DFS)
h-values generally misleading
larger lookaheads very helpful

Learning Real-Time A* (LRTA*)

17714327328020537027985621

135554310131……31

114917348330……41

27284227797433770431399811

125995862817519875749853621

path 
length

planning 
time

path 
length

planning 
time

octile distanceManhattan distancelookahead

Learning Real-Time A* (LRTA*) 

17718146020723907351791315

14425444838317714345956621

12445731244573125995812599581

13803547343315573645675225

18993743752727284253195511

3397336085644775257656455

path 
length

state 
exp.

path 
length

state 
exp.

LRTA* with BFSLRTA* with A*lookahead

Learning Real-Time A* (LRTA*)

! Mazes are easier than grids with random obstacles since 
their branching factor is smaller. They are harder than grids 
with random obstacles since the paths between locations 
are longer and the h-values are generally misleading.

! LRTA* with small lookaheads does poorly in terms of path 
length since the h-values are generally misleading 

! Dominating h-values draw the agent towards the goal and 
result in larger planning time and path lengths for LRTA* 
because the h-values are generally misleading and it takes 
longer to update the h-values to eliminate local minima.

! LRTA* with A* to determine which states to search does 
worse than LRTA* with breadth-first search, both in terms of 
“planning time” and path length, because the h-values are 
generally misleading.
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LRTA* vs D* Lite

D* Lite
! can detect that the goal state is unreachable
! cannot satisfy hard real-time requirements
! has worst-case number of movements of 

O(#states log #states)

LRTA*
! cannot detect that the goal state is unreachable 
! can satisfy hard real-time requirements
! has worst-case number of movements of 

O(#states2)

LRTA* vs D* Lite

! Safely explorable random grids of size 301 x 301

Grids with 25% Random Obstacles
h-values generally not misleading

larger lookaheads less helpful

LRTA* vs D* Lite

311294773022915321

……2992961531

3144073730936826D* Lite

…………41

315288783152869811

36328293499282801

path 
length

planning 
time

path 
length

planning 
time

octile distanceManhattan distancelookahead

LRTA* vs D* Lite

! Minimize sum of planning and plan-execution time: 
planning time + x plan-execution time

710+1.07-10+1.07

……

510+0.15-10+1.06

310-0.08-10+0.14

110-4.00-10-0.09

optimal 
lookahead

range of x for LRTA*

minimum planning
time of LRTA*

lookahead
increases

planning is slow
plan-execution is fast

planning is fast
plan-execution is slow

LRTA* vs D* Lite

! Safely explorable mazes of size 301 x 301

Acyclic Mazes (generated with DFS)
h-values generally misleading
larger lookaheads very helpful

LRTA* vs D* Lite

17714327328020537027985621

135554310131……31

2114037356121738357417D* Lite

114917348330……41

27284227797433770431399811

125995862817519875749853621

path 
length

planning 
time

path 
length

planning 
time

octile distanceManhattan distancelookahead
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LRTA* vs D* Lite

0

200000

400000
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1400000

 0  5  10  15  20  25  30  35  40  45  50

state expansions per planning episode (= lookahead)

average total planning time
average total number of movements (= path length)

path length

planning time

LRTA*D* Lite
larger lookaheads decrease path length
larger lookaheads increase planning time per planning episode
smaller path length decreases number of planning episodes

h-values are misleading

LRTA* vs D* Lite

0

200000

400000

600000

800000

1000000

1200000

1400000

 0  5  10  15  20  25  30  35  40  45  50

state expansions per planning episode (= lookahead)

average total planning time
average total number of movements (= path length)

path length

planning time

LRTA*D* Lite

minimum planning
time of LRTA*

planning time of LRTA* =
planning time of D* Lite

LRTA* vs D* Lite

! Minimize sum of planning and plan-execution time: 
planning time + x plan-execution time

3310-0.15-10+0.29

……

2510-0.30-10-0.16

2110-4.00-10-0.31

optimal 
lookahead

range of x for LRTA*

minimum planning
time of LRTA*

lookahead
increases

planning is slow
plan-execution is fast

planning is fast
plan-execution is slow

D* Lite should be preferred for x > 10-0.27
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Real-Time Adaptive A* (RTAA*)

! We use AA* to create Real-Time Adaptive A* (RTAA*) 
[Koenig and Likhachev, 2006], a real-time heuristic search 
method with similar properties as LRTA*. RTAA* 
improves on LRTA* by updating the h-values much 
faster although they are not quite as informed. 

Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3467

23456
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05234

5

45678

4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 1: forward A* search

3

4

3467

236

12

052

5

45678
state about to be
expanded

4-neighbor grid

4

5

5

4

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values

∞
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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! LRTA* step 2: updating the h-values

7

6

3467

236

12

05

5

45678

8

4-neighbor grid

4

7

5

8

Real-Time Adaptive A* (RTAA*)

! LRTA* step 2: updating the h-values
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! LRTA* step 3: moving along the path
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! LRTA* step 3: moving along the path
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! LRTA* step 3: moving along the path
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! LRTA* step 3: moving along the path
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Properties of LRTA* [Korf, 1990]

! The h-values of the same state are monotonically 
nondecreasing over time and thus indeed become more 
informed over time.

! The h-values remain consistent.
! The agent reaches a goal state if the goal distance of 

every state is finite.
! If the agent is reset into the start state whenever it reaches 

a goal state then the number of times that it does not 
follow a cost-minimal trajectory from the start state to a 
goal state is bounded from above by a constant if the cost 
increases are bounded from below by a positive constant.

Real-Time Adaptive A* (RTAA*)

! RTAA* step 1: forward A* search
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! RTAA* step 1: forward A* search
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! RTAA* step 1: forward A* search
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! RTAA* step 1: forward A* search
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! RTAA* step 1: forward A* search
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! RTAA* step 1: forward A* search
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! RTAA* step 1: forward A* search
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! RTAA* step 1: forward A* search
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! RTAA* step 2: updating the h-values
" RTAA*: For each expanded state s: hnew(s) = f(goal) – g(s)

" LRTA*: For each expanded state s: use Dijkstra to determine hnew(s) 
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! RTAA* step 2: updating the h-values
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! RTAA* step 2: updating the h-values
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! RTAA* step 2: updating the h-values
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! RTAA* step 3: moving along the path
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! RTAA* step 3: moving along the path
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! RTAA* step 3: moving along the path
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! RTAA* step 3: moving along the path
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Properties of RTAA* [Koenig and Likhachev, 2006]

! The h-values of the same state are monotonically 
nondecreasing over time and thus indeed become more 
informed over time.

! The h-values remain consistent.
! The agent reaches a goal state if the goal distance of 

every state is finite.
! If the agent is reset into the start state whenever it reaches 

a goal state then the number of times that it does not 
follow a cost-minimal trajectory from the start state to a 
goal state is bounded from above by a constant if the cost 
increases are bounded from below by a positive constant.

Real-Time Adaptive A* (RTAA*)

! RTAA* ! LRTA*
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Real-Time Adaptive A* (RTAA*)

! RTAA* ! LRTA*
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Relationship of RTAA* and LRTA*
! RTAA* with only one expanded state per A* search 

behaves exactly like LRTA* with only one expanded state 
per A* search.

! If RTAA* and LRTA* have the same h-values before they 
update the h-values then the h-values of RTAA* after the 
update are dominated by the h-values of LRTA*.

Real-Time Adaptive A* (RTAA*)

! Safely explorable mazes of size 151 x 151
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Tom Mitchell Slide

! We are only at the beginning of exploring the theory and 
applications of incremental heuristic search algorithms.

! This is a good topic for dissertations!
" What other principles exist?
" What are the properties of these principles?
" How can these principles be combined?
" How to broaden their applications?

! How to do memory-limited incremental heuristic search?

! How to do probabilistic incremental heuristic search?

" What other problems can they be applied to?
! How to apply them to symbolic planning?
! How to apply them to constraint optimization?
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Summary

! Joint work with K. Daniel, A . Felner, S. Greenberg, W. 
Halliburton, M. Likhachev, A. Mudgal, A. Nash, A. 
Ranganathan, Y. Smirnov, X. Sun and C. Tovey

! Many thanks to Vadim Bulitko and Maxim Likhachev for 
making their movies available

! Funded in part by NSF, IBM and JPL

! For more information, see idm-lab.org/projects.html


