
Abstraction

in Pathfinding
 with a focus on commercial video games

Nathan Sturtevant

1

Bridging contexts…

! Sven discussed many techniques for

enhancing A* search

! There is another dimension along which we

can optimize the performance of pathfinding

algorithms

2

Abstraction

! Most search problems can be represented

by a graph

! Build a smaller graph which retains most

relevant information in the original graph

! Similar to a low-resolution image

! (Holte 96; Bulitko et. al. 07)

3

Why abstraction?

! Abstract graph is smaller

! Search is cheaper

! Defines subgoals in search

! Can be used for optimal or suboptimal

solutions

! Pattern databases

4

How is abstraction used?

! Almost all commercial video games use

some type of abstraction

! Unreal engine has Kynapse A.I. plug-in

! Automatically builds high-level graph

! Units can only walk on the graph

! Will describe the system built for BioWare

Corp for their upcoming title Dragon Age

(Sturtevant, 2007, AIIDE)
5

Dragon Age™

BioWare Corp®

Leading developer of RTS games
Mass Effect
Jade Empire
Knights of the Old Republic
Neverwinter Nights
Baldur’s Gate

Dragon Age™

BioWare Corp®

Motivation

! Games have tight memory budgets

! ~5MB total memory for map data

! 1024x1024 or larger maps

• 1MB per byte per grid cell

! Can we use build an abstraction which

minimizes memory usage?

! Total memory usage by abstraction

! Memory used during planning

8

Motivation

! Don!t computers have lots of memory now?

! Develop / design for low end

! Models / graphics expensive

! New gaming platforms

• Nintendo DS

• iPhone

9

Motivation

! Need to speed up search

! Previous pathfinding engine was taking up to

100ms to plan

! Ideally should plan in 1ms or less

• 3-5ms for all planning per frame

! May need to handle many units in the same

time frame

10

Assumptions

! Grid world

! No true 3-d movement

! Cells can be blocked/free/weighted

! May be height difference between cells

! Units can move across real-valued space

11

Solution

! Build abstract graph from low-level data

! Divide world into sectors

• Sub-divide into regions

! Maintain connectivity information between

sectors

12

Sectors / Regions

! Divide world into large
sectors

! Fixed size

! Index implicitly

! Divide sectors into
regions

! Regions entirely
connected

! Regions have a
center point

a

b

a b c

a

b

a

b

0 1

2 3

13

Edges

! Look at borders of
regions to determine
edges

b c

a

b

a

b

1

2 3

0

a

14

Abstract Graph

! Original Map:

! 32x32 = 1024

cells

! Abstract Graph:

! 9 nodes

! 10 edges

a

b

a b c

a

b

a

b

0 1

2 3

15

Memory Usage

! Sector data

! Fixed size (32 bits)

! Region data

! Variable sized

! 8 bit region center

! Edge count

! 8 bits per edge

Sector Data Example

Regions 2

unused -

Region Data Example

center 196

edges 3

center 142

edges 4

left:3

upleft:1

up:1

up:2

up:1

variable-sized

edge storage

1
6
 b

it
s

Memory Address 0

3
2
 b

it
s

16

Memory Usage

! Can save more

memory:

! 16 bits for sectors

! “Default” regions

! Edges stored twice

! Other optimizations

Sector Data Example

Regions 2

unused -

Region Data Example

center 196

edges 3

center 142

edges 4

left:3

upleft:1

up:1

up:2

up:1

variable-sized

edge storage
1
6
 b

it
s

Memory Address 0

3
2
 b

it
s

17

How is abstraction used?

! Need to find path

between two

points in the actual

map

! Find abstract

region

! Find abstract path

! Refine

a

b

a b c

a

b

a

b

0 1

2 3

18

Find Abstract Region

! Begin with x/y location in real world

! Sector implicit

! If sector only has 1 region, done

! Otherwise do BFS to find region center
! Extra bits in grid can store region info

! Pointers not needed

19

Find Abstract Path

! Given sector/region for start and goal:

! Use A* to find a complete abstract path

! Use Manhattan/octile distance between region

centers as both heuristic and edge cost

20

Refine

! Many different ways to use abstract path

! Simplest method:
! Find path from start to first region

! Find path to successive region centers

! Find path from last region to goal

21

Usage Example

! Find abstract

parents

! Find abstract path

! Find real path

a

b

a b c

a

b

a

b

0 1

2 3

22

Analysis

! Total pathfinding cost

! Optimizations
! Region center placement

! Reducing suboptimality

! Experimental verification

23

Total Pathfinding Cost

! Abstract planning

! Depends on path length, sector size

! Refinement

! Depends on path length, edge refinement

(region centers, suboptimality)

! Maximize sector size

24

Optimizing

Region Centers

! How to determine

the region

centers?

! Some locations

are much better

than others

! Harder with larger

sector sizes

b c

a

b

a

b

1

2 3

0

a

25

Optimizing

Region Centers

! How to determine

the region

centers?

! Some locations

are much better

than others

! Harder with larger

sector sizes

b c

a

b

a

b

1

2 3

0

a

26

Optimizing

Region Centers

! How to determine

the region

centers?

! Some locations

are much better

than others

! Harder with larger

sector sizes

b c

a

b

a

b

1

2 3

0

a

27

Optimizing

Region Centers

! How to

determine the

region centers?

! Some locations

are much better

than others

! Harder with

larger sector

sizes

b c

a

b

a

b

1

2 3

0

a

28

Optimizing

Region Centers

! In a sector, for each cell in a region:

! Measure A* cost to plan a path to each neighboring

region from that cell

! Choose the region center which minimizes the

maximum cost

! Can optimize any cost function

29

Pathfinding Optimization

! Refinement at

start/goal can be

inefficient

! Trim path

segments

! Skip to next

region at start/

goal

a a

0 1

S G

30

Sector-Related Errors

! All points within a

sector/region are

treated equally

! Adjust abstraction

when performing

search

31

Sector-Related Errors

! All points within a

sector/region are

treated equally

! Adjust abstraction

when performing

search

32

Experimental Results

! 93,000 paths over 120 maps

! Maps scaled to 512x512

! Paths length

1…512

! Evaluate:

! Memory

! Region center optimization

! Optimality

! Total Work
33

Memory Usage

! How does the memory usage scale with

sector size?

! How much memory can be saved with

simple compression?
! Don!t store “default” sectors with

1 region, 8 neighbors

34

Memory Usage
Maps Size 512x512

Sector Size

T
o
ta

l
M

em
o
ry

 (
K

B
) No Compression

Compression

35

Dynamic Region Centers

! Is there a gain to dynamically optimizing

region centers?

! Measure 95% work done in one-step path

refinement

36

Dynamic v. Static Centers

(1-Step Planning)

0

50

100

150

200

250

5 6 7 8 9 10 11 12 13 14 15 16

Sector Size

N
o

d
es

 E
x

p
a

n
d

ed

Static (95th percentile)

Dynamic (95th percentile)

Dynamic Centers

37

Optimality

! Paths will not be optimal

! Special cases for start/goal help

! Smoothing is applied as a post-processing

step (not measured)

38

Optimality
Optimality

0

5

10

15

20

25

5 6 7 8 9 10 11 12 13 14 15 16

Sector Size

%
 S

u
b

o
p

ti
m

a
l

95%

Average

5%

39

Total Work

! Compare total work by sector size

! Find abstract path

! Refine low-level path

! Compare to A*

40

Total Work

Sector Size 5

Sector Size 16

T
o

ta
l
N

o
d

e
s
 E

x
p

a
n

d
e

d

500

1000

1500

2000

2500

3000

Bucket Size (path length/4)

16 32 48 64 80 96 112 128

41

Total Work v. A*

A* (Max)

A* (Average)

Abstraction (Max)

Abstraction (Average)

Minimum

T
o

ta
l
N

o
d

e
s
 E

x
p

a
n

d
e

d

1

10

100

1000

10000

100000

Bucket Size (path length/4)

16 32 48 64 80 96 112 128

42

Implementation

! Custom implementation for upcoming title

Dragon Age™ (BioWare Corp®)

! Worked in-game during parts of 4 months

! Initial implementation took two weeks

• Rebuilt pathfinding core

! Spent ~4 weeks optimizing code, adding

smoothing, control structures, etc

43

Final Performance

! About 0.1ms (100µs) per step of planning

! Find abstract path

! Refine 1 edge from abstract path

! Interleave planning and acting
! Can plan for 30-50 units every frame

! Units do not need to plan every frame

! Can “gracefully” degrade performance

! Units offscreen don!t need to smooth

46

Memory Usage

! Memory usage is well within requirements

! Very little memory needed on a per-unit

basis for planning
! Abstract path

! Current path

! State of planning/smoothing

47

Data Structures

! A* uses:

! Open list -- usually a heap

! Closed list -- hash table

! Back pointers -- reconstruct path

! Can!t store these on the map

! Simple implementation occasionally slow

! Allocate small closed list for each sector

! Can quickly be cleared; no deallocation

48

Summary

! Units walk on real-space

! Abstract into a high-resolution 2-d grid

! Abstract again into coarse graph

! Units pretend to live on high-resolution grid

! Michael will talk about getting rid of the 2-d

grid

52

That!s great but…

! In many domains, pathfinding involves

multiple units

! How can units cooperate when planning?
! Ignore each other and replan

! Using "flocking! methods to avoid other units

! Explicitly cooperate

• (Dresner and Stone, 2008, JAIR)

• (Silver, 2005, AIIDE)

• (Sturtevant and Buro, 2006, AIIDE)

53

Dresner & Stone

! Traffic management problem

! Can cooperative cars increase traffic

throughput?

! Centralized system manages reservations
! Can a car get through the intersection safely?

! Tries several different speeds

! Forces cars to wait until the can get a

reservation

54

!

!

"

" "

" "

"

#$
%
&

'

(

Data Structure

55

Generalized Cooperative

Pathfinding

! Goal: Multiple agents cooperate during path

planning and execution

! Generalized travel (eg no lanes)

! Centralized reservation system

! Use abstraction to reduce costs

57

Possible Strategies

! Plan all units simultaneously

! Computationally intractable

! (unitsactions)depth

! Plan individual units
! Not complete

! A lot of techniques needed to be practical

64

Overview

! Why problem is hard

! What techniques simplify the problem

! Improving performance with abstraction

! Evaluation

65

WHCA*(w)

! Windowed Hierarchical Cooperative A*

! Cooperative A*

! Hierarchical Heuristic

! Windowed cooperation

! Silver, 2005

66

WHCA*

! Use a hash table to store time-space

indexed reservations

! Constant time acces

! Is a space/time cell free?

! Reserve a space/time cell

! Free a space/time cell

67 68

A*

! A* relies on a heuristic to guide search

! Poor heuristics cause extra node expansions

! Cost is the area in which the heuristic is poor

69

Cooperative A*

! 3-dimensional search problem

! x-location, y-location, time

! Still need a heuristic

• Cost is the area in which the heuristic is poor times
the time to get out of that area = volume

70

S

G

S 6

6 6 G

S 7

7 7 G

8 8

8 S 8

8 8 8 G

9 9

9 S 9

9 9 9 G

10 10 10 10 10 10

10 10 10 10 10 10

10 S 10 10 10 10

10 10 10 G

10

Heuristics

! Need a very accurate heuristic

! Where can we get a heuristic?
! Run A* from the goal to the start state to get h()

value for many states

77

S

G

8+2 7+3 6+4 5+5 4+6 3+7

9+1 8+2 4+4 3+5 2+6 3+7

S 3+3 2+4 1+5 2+6

2+4 1+5 G 1+7

3+5 2+6 1+7 2+8

g+h 4+6 3+7 2+8

8 7 6 5 4 3

9 8 4 3 2 3

S 3 2 1 2

2 1 G 1

3 2 1 2

4 3 2

Windowed Search

! We now have a perfect heuristic

! With a perfect heuristic only 1-step lookahead

is needed

! Stop search at any time and be guaranteed to

be on a path to the goal

! Do k-step lookahead in cooperative space

81

WHCA*(k)

! Do single A* search from goal to start

! Do k-step forward cooperative search

! Expand original search if new heuristic values

needed

82

WHCA* Drawbacks

! First step is expensive

! Compute complete reverse A* search

! Compute forward CA* search

! Memory per unit is expensive
! Keep whole search frontier in memory

! Goal State can!t change

83

Improving WHCA*

! Abstraction

! Widely used idea (eg Holte, 1996)

! Two possible usages

! WHCA*(w, a)

! CPRA*(k)

84

Abstraction

! Use fine-grained map abstraction

! Dragon Age abstraction abstractions 16x16

sectors in one step

! Instead abstract 2x2 sectors in one step

! Or: abstract small cliques (4 nodes) in the map

! Theoretical work suggests this minimizes

pathfinding computation

• (Holte, 96; Sturtevant and Jansen, 07)

85

Sample
Map

86

Base Graph

16,807 nodes

87

Abstraction 1

5,212 nodes

88

Abstraction 2

1,919 nodes

89

Abstraction 3

771 nodes

90

! Same as WHCA*(k) but do reverse A*

search at abstract level a

! Keep smaller A* open/closed list in memory

! Faster A* computation

! Eventually less accurate

WHCA*(k, a)

91

PRA*

! Partial-Refinement A*

! Use multiple abstraction levels

! Refine abstract paths using A*

92

Start Goal

93

Pathfinding

! Given abstract path:

! Path defines a corridor in the lower level of

abstraction

! Run A* in this corridor to find next path

! Repeat until done

94

Start Goal

PRA*(!)

95

Start Goal

PRA*(k)

96

CPRA*(k)

! Same as PRA*(k), but do WHCA*(k, 1) at

last refinement level

! Only plan part of total path
! Much lower first-step cost

! Repeated WHCA* calls after executing each

path

97

Experiments

! Run algorithms on 256x256 map

! Place units on opposite sides of map and ask

them to cross sides

! Report 95%

98

Memory Usage

0

75,000

150,000

225,000

300,000

4 8 16 32 64

WHCA*(8, 0)
WHCA*(8,1)
WHCA*(8,2)
WHCA*(8,3)

Units

100

Nodes

First second

0

75,000

150,000

225,000

300,000

4 8 16 32 64

WHCA*(8, 0)
WHCA*(8,1)
WHCA*(8,2)
WHCA*(8,3)
CPRA*(4)

Units

101

Nodes

Average per second

0

1,750

3,500

5,250

7,000

4 8 16 32 64

WHCA*(8,3)
CPRA*(4)
WHCA*(8,2)
WHCA*(8,1)
WHCA*(8, 0)

Units

102

Nodes

Average per second

0

1,750

3,500

5,250

7,000

4 8 16 32 64

WHCA*(16,3)
CPRA*(8)
WHCA*(16,2)
WHCA*(16,1)
WHCA*(16, 0)

Units

103

Generalizing

! General technique for n-dimensional

pathfinding problems

! Solve problem in n-1 dimensional space

! Use as heuristic in n-dimensional search

! If possible use “lower resolution” version of n-1

dimensional problem

104

But…

! How well does it work with lots of units in

open space?

! Not as well as one might expect

105

But…

! How well does it work with lots of units in

open space?

! Not as well as one might expect

! Units are searching for the shortest path
! Prefer shorter paths over paths which have a

higher probability of success

107

Real crowd movement

Simulated crowd movement

Some perspective

! Static 2-d search is cheaper than 3-d search

! Static information about other units isn!t

very useful

! Is there any other static information that we

can retain?

110

Static information about motion.

Retained Information

! Direction Vector

! Associated with a location on a map

! Which direction units travel through the location

! Updated dynamically as units move

! Direction Map

! Direction vectors for every location on the map

! Similar to flow fields used for flocking

111

!

!

Now what…?

! What do we do with all these arrows?

! During planning:
! Traveling in the same direction of an arrow is

cheaper

! Traveling in the opposite direction is more

expensive

113

!!

Uncoordinated

Unit Behavior

Coordinated

Unit Behavior

Uncoordinated

Unit Behavior

Coordinated

Unit Behavior

Uncoordinated

Unit Behavior

Coordinated

Unit Behavior

Practical

Considerations

Other considerations

! Where do the initial weights come from?

! How much memory does it take to store the

weights?

! What is the additional planning cost?

120

Other considerations

! Where do the initial weights come from?

! How much memory does it take to store the

weights?

! What is the additional planning cost?

122

! Simple design

! One arrow per

square

! Arrow is two

floats

! In-game usage
! One arrow for

multiple squares

! 3 bits per arrow

123

Other considerations

! Where do the initial weights come from?

! How much memory does it take to store the

weights?

! What is the additional planning cost?

124

Planning Cost

! Planning using direction maps is more

expensive

! Weighted A* can reduce the cost

! Use abstraction to reduce planning length

! Can maintain direction maps for classes of

units, or only in congested areas of the map

125

Summary

! Abstraction techniques very effective across

a variety of problems in reducing planning

costs

! Used for defining subgoals in search

• Dragon Age

! Used for heuristics in search

• Cooperative pathfinding

! Many different ways of applying abstraction
! Best method depends on problem constraints

126

Summary

! Abstraction is orthogonal to many other

search enhancements

! Everything Sven talked about could be used on

one or more levels of abstraction

! Rich toolbox for balancing performance in any

particular domain

127

Thanks!

! Comments,

questions?

! Co-collaborators:

! Markus

Enzenberger

! Renee Jansen

! Michael Buro

! Vadim Bulitko

128

