Abstraction
in Pathfinding

with a focus on commercial video games

Nathan Sturtevant

ATBERTA

Abstraction

® Most search problems can be represented
by a graph

® Build a smaller graph which retains most
relevant information in the original graph
® Similar to a low-resolution image
= (Holte 96; Bulitko et. al. 07)

Bridging contexts...

m Sven discussed many techniques for
enhancing A* search

® There is another dimension along which we

can optimize the performance of pathfinding
algorithms

Why abstraction?

m Abstract graph is smaller
® Search is cheaper
® Defines subgoals in search

® Can be used for optimal or suboptimal
solutions

® Pattern databases

DRAGON AGE"™

How is abstraction used?

® Almost all commercial video games use
some type of abstraction
= Unreal engine has Kynapse A.l. plug-in
® Automatically builds high-level graph

: BioWare Cor o
® Units can only walk on the graph . P
y grap Leading developer of RTS games
8 Mass Effect
m Will describe the system built for BioWare i Ede Empifreh ord Bt
. . . . nights of the epublic
Corp for their upcoming title Dragon Age Neverwinter Nights
(Sturtevant, 2007, AlIDE) Baldur’s Gate

5

Motivation

® Games have tight memory budgets
m ~5MB total memory for map data
® 1024x1024 or larger maps
+ 1MB per byte per grid cell
m Can we use build an abstraction which
minimizes memory usage?
4 = Total memory usage by abstraction
" é}i D) = Memory used during planning

¥ _BioWare Corp®) = :
; { R 8
—~+——t = e 4

Motivation Motivation

® Don’t computers have lots of memory now?

® Need to speed up search
® Develop / design for low end

® Previous pathfinding engine was taking up to

® Models / graphics expensive 100ms to plan
= New gaming platforms ®m |deally should plan in 1ms or less
* Nintendo DS

+ 3-5ms for all planning per frame

- iPhone = May need to handle many units in the same
time frame
Assumptions Solution
® Grid world

® Build abstract graph from low-level data

® Divide world into sectors
m Cells can be blocked/free/weighted * Sub-divide into regions

= May be height difference between cells g/leeggfsm ConfsCvIty s tmaicn petwest
®m Units can move across real-valued space

® No true 3-d movement

Sectors / Regions

m Divide world into large
sectors

® Fixed size
® |ndex implicitly

® Divide sectors into
regions

® Regions entirely
connected

® Regions have a
center point

Abstract Graph

® Original Map:
m 32x32 = 1024
cells
m Abstract Graph:
® 9 nodes
= 10 edges

Edges

® | ook at borders of
regions to determine

edges

Memory Usage

m Sector data

® Fixed size (32 bits)
m Region data

® Variable sized

m 8 bit region center

= Edge count
m 8 bits per edge

©

32 bits

16 bits

ITTTTTTTTTTTTT1TT
[EEEEEEEEEEEEEE

Sector Data

Regions

Memory Address

unused

Region Data

center

edges

center

edges

variable-sized
edge storage

Memory Usage

Sector Data

®m Can save more ¥ Regions
memory: § Memory Address
® 16 bits for sectors ditbacd
m “Default” regions 4, —Region Data
.) center
® Edges stored twice 2| #edges
A o d \f
m Other optimizations g
variable-sized
edge storage

Find Abstract Region

® Begin with x/y location in real world
® Sector implicit

m |[f sector only has 1 region, done

m Otherwise do BFS to find region center
® Extra bits in grid can store region info
® Pointers not needed

How is abstraction used?

® Need to find path
between two
points in the actual
map
® Find abstract
region
® Find abstract path

® Refine

Find Abstract Path

® Given sector/region for start and goal:
m Use A* to find a complete abstract path

® Use Manhattan/octile distance between region
centers as both heuristic and edge cost

20

Refine

® Many different ways to use abstract path
® Simplest method:
® Find path from start to first region

® Find path to successive region centers
® Find path from last region to goal

21

Analysis

® Total pathfinding cost
m Optimizations
® Region center placement
® Reducing suboptimality
® Experimental verification

23

Usage Example

® Find abstract
parents

® Find abstract path
® Find real path

22

Total Pathfinding Cost

m Abstract planning

= Depends on path length, sector size
® Refinement

® Depends on path length, edge refinement
(region centers, suboptimality)

® Maximize sector size

24

Optimizing
Region Centers

® How to determine

the region
centers?

® Some locations
are much better
than others

® Harder with larger

®f©

sector sizes

Optimizing
Region Centers

® How to determine

the region
centers?

® Some locations
are much better
than others

® Harder with larger

®f®

sector sizes

2.

2.

Optimizing
Region Centers

® How to determine

the region
centers?

® Some locations
are much better
than others

® Harder with larger

o) IC

sector sizes

Optimizing
Region Centers

® How to

determine the
region centers?
® Some locations
are much better
than others

® Harder with

o) KC)

larger sector

sizes

2.

2.

Optimizing
Region Centers

® |n a sector, for each cell in a region:

= Measure A* cost to plan a path to each neighboring
region from that cell

® Choose the region center which minimizes the
maximum cost

m Can optimize any cost function

29

Sector-Related Errors

® All points within a
sector/region are
treated equally

m Adjust abstraction
when performing . : : :
search S S A :

31

Pathfinding Optimization

® Refinement at

start/goal can be [oJ

inefficient

® Trim path
segments

m Skip to next

region at start/
goal

30

Sector-Related Errors

® All points within a
sector/region are
treated equally

m Adjust abstraction
when performing
search

32

Experimental Results

® 93,000 paths over 120 maps
® Maps scaled to 512x512
® Paths length

13E30

B Evaluate:

= Memory

= Region center optimization

® Optimality
m Total Work

Memory Usage

Total Memory (KB)

Maps Size 512x512

33

No Compression

Sector Size

35

Memory Usage

® How does the memory usage scale with
sector size?

® How much memory can be saved with
simple compression?
® Don’t store “default” sectors with
1 region, 8 neighbors

34

Dynamic Region Centers

®m |s there a gain to dynamically optimizing
region centers?

® Measure 95% work done in one-step path
refinement

36

Dynamic Centers

Dynamic v. Static Centers
(1-Step Planning)

250

== Static (95th percentile)
—=— Dynamic (95th percentile)

200

=
S
£ 150 .
& —
= ~
£ 100
S &
Z a

0 :

5 6 7 8 9 10 11 12 13 14 15 16
37

Optimality

25

—95%

20 — Average| |
g 5%
£ s
2
g _’—\/\/
& 10
N

5

0 T T T T T T T T T T

5.6 7 8 9 10 11 12
Sector Size

13 14 15

16

39

Optimality

® Paths will not be optimal
® Special cases for start/goal help

®m Smoothing is applied as a post-processing
step (not measured)

38

Total Work

m Compare total work by sector size
® Find abstract path
® Refine low-level path

m Compare to A*

40

Total Work Total Work v. A*

3000 7 100000 R
] et S Ot]
0L Sector Size SJ\/A“ 10000 T L
3 1 3 o —
©] °
S 2000 N 2
o 1 @
3 1 ffl JJN g 1000 A gt /
1 L P
L R w e
2 : A Aot S 100
s 1000 Jv/‘jdfﬁ ﬁffj — s @E/o A" (Max)
o] /"/ kS] — A* (Average)
1 1 Jl{///%% T B e e e e Abstraction (Max)
EetE / . Sector Size 16 — Abstraction (Average)
] —— Minimum
1
16 32 48 64 80 96 112 128 16 32 48 64 80 96 112 128
Bucket Size (path length/4) 41 Bucket Size (path length/4) 42
Implementation

m Custom implementation for upcoming title
Dragon Age™ (BioWare Corp®)

®m Worked in-game during parts of 4 months
® |nitial implementation took two weeks
+ Rebuilt pathfinding core

® Spent ~4 weeks optimizing code, adding
smoothing, control structures, etc

43

Memory Usage

® Memory usage is well within requirements
m \ery little memory needed on a per-unit
basis for planning
® Abstract path
® Current path
m State of planning/smoothing

47

Final Performance

® About 0.1ms (100us) per step of planning
® Find abstract path
® Refine 1 edge from abstract path
® |nterleave planning and acting
® Can plan for 30-50 units every frame
® Units do not need to plan every frame
m Can “gracefully” degrade performance
® Units offscreen don’t need to smooth

46

Data Structures

m A* uses:
® Open list -- usually a heap
® Closed list -- hash table
® Back pointers -- reconstruct path
m Can’t store these on the map
® Simple implementation occasionally slow
m Allocate small closed list for each sector
® Can quickly be cleared; no deallocation

48

Summary

m Units walk on real-space
m Abstract into a high-resolution 2-d grid
® Abstract again into coarse graph

m Units pretend to live on high-resolution grid

® Michael will talk about getting rid of the 2-d
grid

52

That’s great but...

® |n many domains, pathfinding involves
multiple units

® How can units cooperate when planning?
® |gnore each other and replan
® Using ‘flocking’ methods to avoid other units
m Explicitly cooperate
* (Dresner and Stone, 2008, JAIR)

« (Silver, 2005, AlIDE)
+ (Sturtevant and Buro, 2006, AIIDE)

53

Data Structure

time

Dresner & Stone

® Traffic management problem

® Can cooperative cars increase traffic
throughput?

m Centralized system manages reservations
m Can a car get through the intersection safely?
® Tries several different speeds

® Forces cars to wait until the can get a
reservation

54

Generalized Cooperative
Pathfinding

® Goal: Multiple agents cooperate during path
planning and execution
® Generalized travel (eg no lanes)
m Centralized reservation system
m Use abstraction to reduce costs

57

Menu (FI0)

Camera at (-0.0, 0.0, -12.5) looking at (-0.0, -0.0, 12.5) with 5.9 aperture
Simulation time elapsed: 1.91

Camera at (-0.0, 0.0, -12.5) looking at (-0.0, -0.0, 12.5) with 5.9 aperture
Simulation time elapsed: 1.91

Camera at (-0.0, -0.4, -12.5) looking at (-0.0, -0.0, 12.5) with 4.8 aperture
Simulation time elapsed: 2.11

Camera at (-0.0, -0.4, -12.5) looking at (-0.0, -0.0, 12.5) with 4.8 aperture
Simulation time elapsed: 2.11

Possible Strategies

® Plan all units simultaneously
= Computationally intractable
[] (unjtsactions)depth
® Plan individual units
= Not complete
® A lot of techniques needed to be practical

64

Overview WHCA*(w)

®m Why problem is hard ® Windowed Hierarchical Cooperative A*
® What techniques simplify the problem = Cooperative A*
® |mproving performance with abstraction ® Hierarchical Heuristic
m Evaluation = Windowed cooperation
m Silver, 2005
WHCA*

m Use a hash table to store time-space
indexed reservations

® Constant time acces

® |s a space/time cell free?
® Reserve a spacef/time cell
® Free a space/time cell

67

68

A*
® A* relies on a heuristic to guide search

® Poor heuristics cause extra node expansions
m Cost is the area in which the heuristic is poor

69

Cooperative A*

m 3-dimensional search problem
® x-location, y-location, time
m Still need a heuristic

+ Cost is the area in which the heuristic is poor times
the time to get out of that area = volume

70

10 |10
10 |10
10 |10

Heuristics

m Need a very accurate heuristic

® Where can we get a heuristic?

= Run A* from the goal to the start state to get h()
value for many states

77

Windowed Search

® \We now have a perfect heuristic

® With a perfect heuristic only 1-step lookahead
is needed

® Stop search at any time and be guaranteed to
be on a path to the goal

® Do k-step lookahead in cooperative space

81

WHCA* Drawbacks

® First step is expensive

= Compute complete reverse A* search
® Compute forward CA* search

® Memory per unit is expensive
= Keep whole search frontier in memory
® Goal State can’t change

83

WHCA*(K)

® Do single A* search from goal to start
® Do k-step forward cooperative search

® Expand original search if new heuristic values
needed

82

Improving WHCA*

m Abstraction

® Widely used idea (eg Holte, 1996)
® Two possible usages

= WHCA*(w, a)

= CPRA*(K)

84

Abstraction

m Use fine-grained map abstraction
® Dragon Age abstraction abstractions 16x16
sectors in one step
® |[nstead abstract 2x2 sectors in one step
® Or: abstract small cliques (4 nodes) in the map

® Theoretical work suggests this minimizes
pathfinding computation
+ (Holte, 96; Sturtevant and Jansen, 07)

85

Base Graph

16,807 nodes

Sample
Map

Abstraction 1 5

5,212 nodes

Abstraction 2 ‘

1,919 nodes

WHCA*(k, a)

m Same as WHCA*(k) but do reverse A*
search at abstract level a

m Keep smaller A* open/closed list in memory
m Faster A* computation

® Fventually less accurate

91

Abstraction 3|

771 nodes

PRA*

® Partial-Refinement A*

® Use multiple abstraction levels
® Refine abstract paths using A*

92

PRA*()

Start

Goal

93

95

Pathfinding

® Given abstract path:

® Path defines a corridor in the lower level of
abstraction

® Run A* in this corridor to find next path
® Repeat until done

94

PRA*(K)

Goal

96

CPRA*(k) Experiments

®m Same as PRA*(k), but do WHCA*(k, 1) at

® Run algorithms on 256x256 map
last refinement level

® Place units on opposite sides of map and ask

® Only plan part of total path them to cross sides
= Much lower first-step cost ® Report 95%

m Repeated WHCA* calls after executing each
path

97 98

Memory Usage

® WHCA*(8,0)
300,000 —4 WHCA%(8,1)

& WHCA*(82) /'
225000 —— VWHCAS.3)

150,000

75,000 / .
D I

0

4 8 16 32 64
Units

100

Nodes
First second

® WHCA¥@8,0)
300,000 — WHCA*(8,1)

o WHCA¥*(8,2)
25000 — _ WHCA%@E3)

@ CPRA*(4)

150,000 //
75,000

Nodes
Average per second

® WHCA*(16,3)

101

7,000 — CPRA*(8)
© WHCA¥*(16,2)
5250 —— WHCA*(16,1)

@ WHCA*(16,0)

1,750

103

7,000 — CPRA*(4)
WHCA*(8,2)
5250 — 1 WHCA%@8,1) Vel

Nodes
Average per second

® WHCA*(83)

¢

@ WHCA*(8,0)

102

Generalizing

m General technique for n-dimensional

pathfinding problems
® Solve problem in n-1 dimensional space
® Use as heuristic in n-dimensional search

m |f possible use “lower resolution” version of n-1
dimensional problem

104

But...

®m How well does it work with lots of units in
open space?
= Not as well as one might expect

105

But...

®m How well does it work with lots of units in
open space?
= Not as well as one might expect

m Units are searching for the shortest path

® Prefer shorter paths over paths which have a
higher probability of success

107

Real crowd movement

Simulated crowd movement

Retained Information

® Direction Vector
® Associated with a location on a map
= Which direction units travel through the location
® Updated dynamically as units move
® Direction Map
® Direction vectors for every location on the map

m Similar to flow fields used for flocking

111

Some perspective

m Static 2-d search is cheaper than 3-d search

m Static information about other units isn’t
very useful

m |s there any other static information that we
can retain?

Static information about motion.

110

Now what...?

® \What do we do with all these arrows?
® During planning:
® Traveling in the same direction of an arrow is

cheaper
® Traveling in the opposite direction is more
expensive
113
]
R EENEERERE
¥ //:/' f \ .. - \ :. - 1 [N
AT 1 T HH e N
UL L LT T :fh* . £
g e V‘ ~ | | | [[l
12l T seaiSSSaEn EEEEE SEEERuaaas: |
A% =l N
VA% T[T T
vl Ml 7 7 i N
umn mnnsunn B
W ‘ 1 100 [T Uncoordinated Coordinated
3 y sl W | | o . . .
iu - SEHEN A Unit Behavior Unit Behavior

:I:L ;::L -;.11.- -i X —J" .l;ll :E
- iy g e writo o
Uncoordinated Coordinated Uncoordinated Coordinated
Unit Behavior Unit Behavior Unit Behavior Unit Behavior
Other considerations
|
® How much memory does it take to store the
Practical weights?
Considerations ® What is the additional planning cost?

120

B o

123

Other considerations

® Where do the initial weights come from?

® How much memory does it take to store the
weights?

® What is the additional planning cost?

122

Other considerations

® Where do the initial weights come from?

® How much memory does it take to store the
weights?

® \What is the additional planning cost?

124

Planning Cost

® Planning using direction maps is more
expensive

® Weighted A* can reduce the cost
® Use abstraction to reduce planning length

® Can maintain direction maps for classes of
units, or only in congested areas of the map

125

Summary

m Abstraction is orthogonal to many other
search enhancements

® Everything Sven talked about could be used on

one or more levels of abstraction

® Rich toolbox for balancing performance in any

particular domain

127

Summary

m Abstraction techniques very effective across
a variety of problems in reducing planning
costs
® Used for defining subgoals in search

» Dragon Age
® Used for heuristics in search
+ Cooperative pathfinding

® Many different ways of applying abstraction

® Best method depends on problem constraints

126

Thanks!

® Comments,
questions? sifhiisd fH

m Co-collaborators: *

= Markus
Enzenberger

® Renee Jansen
® Michael Buro
® Vadim Bulitko

:
e
Ins
H

"
FHHEEEE
o
ans

