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Abstract

Most recent theoretical and algorithmic work in bidirectional
heuristic search (BiHS) used front-to-end (F2E) heuristics
that estimate the distance to the start and goal states. In
this paper, we start exploring front-to-front (F2F) heuristics,
which estimate the distance between any pair of states. Devis-
ing efficient algorithms that use F2F heuristics is a challeng-
ing task. Thus, it is important to first understand the benefits
of using F2F heuristics compared to F2E heuristics. To this
end, we theoretically and experimentally demonstrate that
there is a great potential in using F2F heuristics implying that
F2F BiHS is a promising area of future research.

1 Introduction
In bidirectional heuristic search (BiHS) the aim is to find
a least-cost (shortest) path between two states, start and
goal , by searching simultaneously from both states until the
two search frontiers meet. BiHS algorithms use two types of
heuristic functions: (1) front-to-end (F2E) heuristics, which
estimate the distance between any given state to start and
to goal , and (2) front-to-front (F2F) heuristics, which esti-
mate the distance between any pair of states. F2F heuristics
are harder to build and it may be more computationally ex-
pensive to integrate them into BiHS algorithms. By contrast,
F2F heuristics are more informative than F2E heuristics and
result in fewer node expansions. A key challenge is to de-
velop efficient F2F algorithms that exploits this tradeoff and
reduce the overall run time compared to F2E algorithms.

The recent theory of must-expand pairs (MEPs) (Eckerle
et al. 2017) characterizes the set of forward- and backward-
node pairs that must be expanded in order to prove solutions’
optimality. The MEP theory establishes a theoretical lower-
bound on the total number of nodes that must to be expanded
during the search for a given problem instance. A promi-
nent line of research was sparked from that theory (Shaham
et al. 2017, 2018; Shperberg et al. 2019b,a, 2021; Sturtevant
et al. 2020; Alcázar, Riddle, and Barley 2020; Alcázar 2021)
and several algorithms have been developed, such as Near-
optimal Bidirectional Search (NBS) (Chen et al. 2017).

The MEP theory was initially defined for both F2E and
F2F heuristics, but subsequent research has solely focused

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on F2E algorithms. To the best of our knowledge, no BiHS
algorithm based on the F2F MEP theory has been developed,
and the lower bounds for F2F heuristics have not been eval-
uated. Additionally, the original MEP theory only applies to
algorithms which must return an optimal solution for any ad-
missible heuristic. Later, Shaham et al. (2018) extended the
MEP theory to cases where algorithms guarantee optimal
solutions only for consistent heuristics, and can take advan-
tage of this fact. However, this extension only applies to F2E
heuristics and not to F2F heuristics.

There are two main contributions in this paper. First, we
fill the gap in the MEP theory and extend it to F2F con-
sistent heuristics. Second, a question arises whether effort
should be invested towards developing F2F algorithms. In a
set of experiments, we use the theory to compute the lower
bounds (on node expansions) for F2F algorithms and com-
pare them to the corresponding bounds for F2E algorithms.
Additionally, we also implement a naı̈ve version of NBS that
uses F2F heuristics and compare it to the existing F2E NBS.
All our results show a substantial reduction in terms of node
expansions for the F2F variants over the corresponding F2E
variants, implying that F2F BiHS is a promising line of fu-
ture research if data-structure overheads can be overcome.

2 Definitions and Background
A bidirectional heuristic search (BiHS) problem instance
I “ pG, start , goal , hq is composed of a graph G “ pV,Eq,
a start state, a goal state, and a heuristic function h. Let
dpx, yq denote the cost of a shortest path between state x and
state y in G. The aim is to find a path from start to goal of
cost dpstart , goalq, denoted as C˚. ϵ ě 0 denotes the cost of
the least-cost edge. BiHS algorithms search simultaneously
from both start and goal until the two search frontiers meet.
Consequently, BiHS algorithms typically maintain two open
lists, OpenF for the forward search (F) and OpenB for the
backward search (B). Given a direction D, gD, hD, fD de-
note the g-, h-, and f - values of a node in direction D.

There are two types of heuristics in BiHS (Kaindl and
Kainz 1997), illustrated in Figure 1. front-to-end (F2E)
heuristics employ a forward heuristic hF : V Ñ R that
estimates the distance from any state to the goal state and
a backward heuristic hB : V Ñ R that estimates the
distance from the start to any state. Naturally, fDpnq “

gDpnq ` hDpnq. A F2E heuristic h is bi-admissible iff
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Figure 1: Illustration of F2F and F2E heuristics

hF pnq ď dpn, goalq and hBpnq ď dpstart , nq for all n P V .
In addition, a F2E heuristic h is bi-consistent if
(1) hF puq ď dpu, u1q ` hF pu1q for all u1 P V
(2) hBpvq ď dpv1, vq ` hBpv1q for all v1 P V

The second type is front-to-front (F2F) heuristics
(de Champeaux and Sint 1977), which estimate the distance
between any pair of states in the graph, h : V ˆV Ñ R. With
a F2F heuristic, hF puq “ minvPOpenB phpu, vqq for nodes
u P OpenF and hBpvq “ minuPOpenF phpu, vqq for nodes
v P OpenB . A F2F is bi-admissible iff for all u, v P V ,
hpu, vq ď dpu, vq and bi-consistent iff:
(1) hpu, vq ď dpu, nq ` hpn, vq for all u, v, n P V
(2) hpu, vq ď dpn, vq ` hpu, nq for all u, v, n P V

Finally, a search algorithm is said to be Deterministic,
Expansion-based, and Black-box (DXBB) (Eckerle et al.
2017) if it is deterministic, can only discover states, edges,
and costs by continuously applying an expansion function
from either start or goal , and has only black-box access to
the cost and the heuristic functions.

2.1 Necessary Expansions and GMX
Let IAD denote problem instances that have an admissible
heuristic, and let ICON Ă IAD denote the instances that
have a consistent heuristic. Admissible algorithms are algo-
rithms that guarantee to return optimal solutions on all prob-
lem instances from IAD. A classic claim is that any admis-
sible DXBB unidirectional heuristic search algorithm must
expand all nodes n for which fpnq ă C˚ to prove the op-
timality of the solution when running on an instance from
ICON (Dechter and Pearl 1985). This classic case is denoted
as IAD{ICON where the first part (here IAD) denotes what
the algorithm assumes, and the second part (here ICON ) is
what the algorithm is executed on. In IAD{ICON the algo-
rithm can only assume it is given instances from IAD (con-
sistency is not assumed by the algorithm), and the analysis
holds for problem instances from ICON .

This theory of which nodes must be expanded was gen-
eralized to BiHS (Eckerle et al. 2017). In BiHS, the must-
expand attribute is defined for pairs of nodes instead of in-
dividual nodes. lbpu, vq is a lower-bound on the cost of any
path between start and goal that passes through u and v.
For the IAD{ICON case, lb is defined for F2E heuristics as:

lbEpu, vq “ maxtfF puq, fBpvq, gF puq ` gBpvq ` ϵu (1)

and for F2F heuristics, lb is defined as:

lbF pu, vq “ gF puq ` gBpvq ` max phpu, vq, ϵq (2)

An ordered pair pu, vq is called a must-expand pair (de-
noted MEP) if lbpu, vq ă C˚ (either lbE or lbF ). Search

algorithms have to expand at least one of the nodes of ev-
ery MEP, or risk missing the optimal solution. The set of
all MEPs can be viewed as a bipartite graph, denoted the
Must-Expand Graph (GMX) (Chen et al. 2017). For each
state s P G, GMX includes a forward node sF and a back-
ward node sB . For each pair of states s, t P G, there is an
edge between sF and tB iff ps, tq is a MEP. Since for all
MEPs, at least one node must be expanded, each search al-
gorithm must expand a vertex cover of GMX (either GMXE

or GMXF ) to prove optimality. Therefore, the minimal node
expansions required to guarantee optimality in BiHS is the
minimal vertex cover (MVC) of GMX. We refer the reader to
a survey on MEPs and GMX (Sturtevant and Felner 2018).

2.2 Assuming Consistency
The ICON{ICON case refers to the case where an algorithm
can assume that it is only given problem instances with con-
sistent heuristics and is allowed to exploit this knowledge.
Shaham et al. (2018) introduced tighter bounds for F2E
heuristics for the ICON{ICON case, denoted lbECpu, vq:

lbECpu, vq “ gF puq`gBpvq`max

$
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%

hF puq ´ hF pvq,

hBpvq ´ hBpuq,

ϵ p3q

Equation 3 can be used for defining a GMX (GMXEC).1
The behavior of F2F algorithms has never been studied for
the ICON{ICON case until our current work.

2.3 NBS
Near-Optimal Bidirectional Search (NBS) (Chen et al. 2017)
uses F2E heuristics based on the MEP theory. At every ex-
pansion, NBS chooses a pair of nodes pu, vq with minimal
lbEpu, vq and expands both nodes. NBS in guaranteed to
expand at most 2 ˆ |MVC| (of GMXE) to guarantee so-
lution optimality. We denote the original version of NBS as
NBSE , since it uses a F2E heuristic for the IAD{ICON case.
Alcázar (2021) adapted NBS for the ICON{ICON case, de-
noted here as NBSEC . NBSEC often requires fewer expan-
sions before returning an optimal solution, but also induces
a significant computational overhead compared to NBSE .

3 Front-to-Front with Consistency
This section develops the notion of MEPs for F2F heuristics
for the ICON{ICON case. A straightforward way is to only
exploit consistency towards start and goal (identical to the
bi-consistency of F2E heuristics):
(1) hpu, goalq ď dpu, u1q ` hpu1, goalq for all u1 P V

(2) hpstart , vq ď dpv1, vq ` hpstart , v1q for all v1 P V .
This results in the following lb (C stands for Consistency):1

lbFC1pu, vq “ gF puq ` gBpvq ` max

$

’

’

&

’

’

%

hpu, goalq ´ hpv, goalq

hpstart , vq ´ hpstart , uq

hpu, vq

ϵ p4q

1If G is known to be undirected, the first two terms in the max
term can be replaced with their absolute value.



An even tighter bound on dpu, vq can be defined by con-
sidering consistency with respect to all the nodes in the
graph, and not only start and goal . The bi-consistency def-
inition (Section 2) provides a lower bound on dpu, vq using
node n P V . Let hn

1 pu, vq “ hpu, nq ´ hpv, nq ď dpu, vq,
for some node n, corresponding to the first condition of bi-
consistency, and hn

2 pu, vq “ hpn, vq ´ hpn, uq ď dpu, vq,
corresponding to the second condition of bi-consistency
(these are forms of differential heuristics (Sturtevant et al.
2009)). Thus, by taking the node n P V which maximizes
that value, we get the tightest lower-bound on dpu, vq for
F2F heuristic for the ICON{ICON case, denoted as lbFC2 :1

lbFC2pu, vq “ gF puq`gBpvq`max

$

’

’

&

’

’

%

max
@nPV

thn
1 pu, vqu

max
@nPV

thn
2 pu, vqu

ϵ p5q

The third term from Eq. 4 is redundant because for n “ v
it holds that hpu, nq´hpv, nq “ hpu, vq´hpv, vq “ hpu, vq.
We next prove that lbFC2 can be used for defining MEPs.

Theorem 1. Given a problem instance I P ICON with an
optimal solution cost of C˚, a forward-optimal path U from
start to some state u and a backward-optimal path V from
some state v to goal such that lbFC2pu, vq ă C˚. Any ad-
missible DXBB algorithm A must expand either u or v when
solving instance I . Thus, pu, vq is a MEP.

Proof. Suppose there is i) a problem instance I1 “ pG1 “

pV1, E1q, start , goal , hq P ICON for which the optimal so-
lution has a cost of C˚

1 , ii) A forward-optimal path from
start to some state u and a backward-optimal path V from
some state v to goal such that lbFC2pu, vq ă C˚

1 , and iii) an
admissible DXBB algorithm A that solves I1 correctly (re-
turns an optimal solution for I1, ApI1q, with cost C˚

1 ) with-
out expanding both u and v. In order to prove that A had to
expand either u or v (and reach a contradiction), we will con-
struct a problem instance I2 such that i) C˚

I2
ă C˚

I1
, and ii)

A also returns ApI1q when solving I2 thereby showing that
A does not return an optimal solution for I2 and thus is not
admissible, which violates our assumptions and leads to a
contradiction. I2 “ pG2 “ pV1, E2q, start , goal , hq, where
G2 is identical to G1 except for a new edge pu, vq, costing
cpu, vq “ max pmaxnPV1 h

n
1 pu, vq,maxnPV1 h

n
2 pu, vq, ϵq.

This new edge creates a solution path P “ UV whose
cost is C˚

I2
“ lbFC2pu, vq ă C˚

I1
(assumption iii). A is

DXBB and will behave on I2 exactly as it did on I1. So,
A will neither expand u nor v, so it will not discover edge
pu, vq, and will incorrectly return ApI1q of cost C˚

I1
ą C˚

I2
.

To conclude the proof, we next show that I2 P ICON . This
is proven by assuming that requirement 1 of bi-consistency
is violated and then reaching a contradiction. The proof for
a violation of requirement 2 of bi-consistency is analogous.
Assume by contradiction that there exist states x and y and
n such that hpx, yq ą dG2px, nq ` hpn, yq. If the optimal
path from x to n in G2 does not go through the new edge
pu, vq, then dG2

px, nq “ dG1
px, nq and since I1 P ICON ,

hpx, yq ď dG1
px, nq ` hpn, yq in contradiction to the as-

sumption. Otherwise, the shortest path from x to n goes
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Figure 2: Example of lbF and lbFC2

through pu, vq, thus dG2px, nq “ dG1px, uq ` cpu, vq `

dG1pv, nq. The following inequalities can be derived:

hpx, yq ą dG1px, uq ` cpu, vq ` dG1pv, nq ` hpn, yq

ě dG1
px, uq ` hpu,mq ´ hpv,mq ` dG1

pv, nq ` hpn, yq

@m P G1 (using the first term in the max of Eq. 5)
ě dG1px, uq ` hpu, yq ´ hpv, yq ` dG1pv, nq ` hpn, yq

(for m “ y)
ě hpx, yq ` hpv, yq ´ hpv, yq “ hpx, yq

(using the bi-consistency of G1)

thus a contraction is reached and I2 P ICON .

3.1 Example for lbFC2

Figure 2 shows the advantage of lbFC2 over lbF . Solid lines
are edges and dashed lines are F2F heuristic values between
pairs of states. The optimal solution is [s, c, z, g] of cost 6.
The key insight is the effect of node n on nodes b and y.
Observe that hpb, yq “ 1 while exploiting consistency via n
results in hn

1 pb, yq “ hpb, nq ´ hpy, nq “ 3.
Assume that s and g were expanded and that ta, b, cu

are in OpenF and tx, y, zu are in OpenB . Let lbF puq “

minvPOpenB lbpu, vq and lbBpuq “ minvPOpenF lbpu, vq (for
any lb definition). Since hpb, yq “ 1, lbF pb, yq “ lbFF pbq “

lbFBpyq “ 5.2 Additionally, hpc, zq “ 2, thus lbF pc, zq “

lbFF pcq “ lbFBpzq “ 6. So, algorithms that use lbF will ex-
pand b or y before expanding c or z and finding the optimal
path. By contrast, lbFC2 uses hn

1 pb, yq “ 6´3 “ 3 and thus
lbFC2pb, yq “ lbFC2

F pbq “ lbFC2

F pyq “ 7. Thus, algorithms
that use lbFC2 can avoid expanding b and y.

Note that lbFC2 is affected by all states in V , so it cannot
be fully exploited during search (as the search does not have
access to the entire graph). However, we can use a weaker
lower bound that only takes the max among states that were
discovered during the search. In Figure 2, n, which is the
reason for the fact that lbFC2

F pbq “ lbFC2

B pyq “ 7, is never
discovered during the search. Nevertheless, if we remove
nodes a and x then n will be discovered and can be exploited
even by the weaker lower bound.

4 Empirical Evaluation
The main purpose of this evaluation is to explore the poten-
tial of F2F heuristics compared to F2E heuristics in terms
of the number of node expansions, as well as the effect of
exploiting consistency on the search.

2Subscripts (lbF ) means forward while superscripts (lbF )
means F2F. So they can be combined (lbFF pbq)



14 Pancake STP DAO
GAP GAP-1 MD Octile

ď C˚ ă C˚ ď C˚ ă C˚ ď C˚ ă C˚ ď C˚ ă C˚

F2
E GMXE 39 3,115 531 3,042

GMXEC 37 420 428 2,797

F2
F GMXF 17 272 128 2,420

GMXFC1
17 268 128 2,420

Table 1: Average |MVC| and # of nodes expanded by NBS

10 15 20 25 30 35 40 45 50
GMXE 8 19 82 236 892 3,888 4,674 11,655 23,012
GMXEC 7 19 79 235 853 3,652 4,674 11,655 23,012
GMXF 4 9 27 59 196 482 685 1,305 2,310

Table 2: Average |MVC| with GAP for different #pancakes

4.1 Experimental Settings
Domains. We experimented on three domains: (1) pan-
cake puzzle with different number of pancakes with the
GAP heuristic (Helmert 2010). To get a range of heuristic
strengths, we also used the GAP-n heuristics (for n P t1, 2u)
where the n smallest pancakes are ignored. (2) 100 instances
of the 8-puzzle problem (STP) using the Manhattan distance
(MD) heuristic. (3) Grid-based pathfinding with the octile
distance heuristic.We used 156 maps from Dragon Age Ori-
gins (DAO) (Sturtevant 2012), each with different start and
goal points (a total of 3059 instances). The above are F2F
heuristics, and thus can also be used as F2E heuristics.
Metrics. We report the average number of node expansions
required to terminate (denoted as ď C˚). In addition, we
report the average number of necessary expansions required
to prove optimality (denoted as ă C˚), i.e., the number of
nodes expanded until the minimal lb-value (corresponding
to the lb-function used by the evaluated algorithm) among
all pairs of nodes in Open has reached C˚.
Algorithms. Each lb function ( lbE , lbEC , lbF , lbFC1 ,
lbFC2 ) induces a corresponding GMX and a variant of NBS,
where a pair of nodes from the open list with a minimal lb-
value is selected for expansion.

NBS has efficient data structures for the F2E variants of
lb (though the ICON{ICON case incurs an additional over-
head compared to the IAD{ICON case). The F2F variants
are computationally expensive, as the F2F heuristic evalua-
tion in each iteration is quadratic in the number of nodes in
Open. Our implementation of NBSFC2 uses only the states
that were discovered during the search instead of all the
states in the graph (which are unknown to the algorithm).

4.2 Results
Table 1 reports results for the different lb functions, except
for lbFC2 which is too expensive to compute. Indeed, the
number of necessary expansions of NBS was never more
than twice the corresponding size of the MVC. The results
show that the theoretical lower-bound (MVC of the GMX),
as well as the number of expanded nodes by the correspond-
ing NBS for the F2F heuristics are smaller than those of the
F2E heuristics by a factor of up to 2 in the 14-pancake and
8-STP, and 1.4 for DAO (whether or not consistency is as-

GAP GAP-1 GAP-2
ď C˚

ă C˚
ď C˚

ă C˚
ď C˚

ă C˚

GMXFC1 3 13 40
NBSFC1 12 4 28 19 69 60
GMXFC2 3 13 31
NBSFC2 12 4 26 18 55 45

Table 3: Comparing lbFC1 and lbFC2 for 8 pancakes

STP DAO 14 Pancake 8 Pancake
Algorithm MD Octile GAP GAP-1 GAP GAP-1 GAP-2
NBSE 0 0 0 0 0 0 0
NBSEC 0.1 69.8 0 0.1 0 0 0
NBSF 0.2 67.1 0.9 229.2 0 0 0.1
NBSFC1 0.7 72 4 1,667.9 0 0 0.1

Table 4: Average time for domains in seconds

sumed). Moving from IAD{ICON to ICON{ICON is very
beneficial for the F2E heuristic (up to 7x) but causes almost
no improvement for F2F, when considering lbFC1 . In fact,
in MD, GAP, and Octile there could be no improvement by
utilizing consistency (even with full consistency information
as in lbFC2 ) since hpu, vq ě hpu, nq´hpv, nq for all n P V .
The only exception is for GAP-1 for which the additional
consistency information can improve the heuristic.

Table 2 compares the average |MVC| of different GMXs
with larger number of pancakes, up to 50. Here we see that
as the domain grows, the potential benefit of utilizing F2F
heuristics also grows, up to a factor of 10.

To provide results for lbFC2 , we experimented on the 8-
pancake problem. The results, reported in Table 3, show that
|MVC| of GMXFC2 is smaller than that of GMXFC1 only
for GAP-2. This improvement is also evident when com-
paring NBSFC1 to NBSFC2 , even though NBSFC2 utilizes
consistency (Eq. 2) based only on the states discovered dur-
ing the search (and not all states in the graph).

The runtime of the different algorithms is reported in Ta-
ble 4. Unsurprisingly, the computation overhead of the eval-
uated F2F variants of NBS is significant, especially when
exploiting consistency (though it could be reduced by a
more efficient implementation). This indicates that further
research is needed to find algorithms that limit the number
of F2F heuristic evaluations to balance the reduction in node
expansions and the incurred computational overhead.

5 Summary and Conclusions
We have shown that there is potential for using F2F heuris-
tics in BiHS. However, applying F2F heuristics to existing
algorithms significantly increase their runtime. Future re-
search should thus determine when to use F2F heuristics for
better estimates while controlling the computational over-
head. In addition, we are currently studying the idea of ex-
ploiting consistency attributes to improve heuristics (i.e., of
hn
1 pu, vq and hn

2 pu, vq) for unidirectional search algorithms.

Acknowledgements
This research was supported by The Israel US Binational
Science Foundation (BSF) grant 2021643 to Ariel Felner.



This work was partially funded by the Canada CIFAR AI
Chairs Program. We acknowledge the support of the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC).

References
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