
A GGP Feature Learning Algorithm

Mesut Kirci Nathan Sturtevant Jonathan Schaeffer

This paper presents a learning algorithm for two-player, alternating move GGP games. The Game Independent Feature Learning
algorithm, GIFL, uses the differences in temporally-related states to learn patterns that are correlated with winning or losing
a GGP game. These patterns are then used to inform the search. GIFL is simple, robust and improves the quality of play in
the majority of games tested. GIFL has been successfully used in the GGP program Maligne.

1 Introduction

Agents with the ability to demonstrate intelligence over a wi-
de variety of domains remains an elusive goal for the field of
artificial intelligence. Even restricting the set of domains to a
subset of game playing, arguably an area with “simple” scope,
is quite challenging. The state of the art in this area is to de-
velop game-specific solutions that provide insights but do not
necessarily generalize to other games. The annual General Ga-
me Playing (GGP) competitions have encouraged researchers to
explore developing programs that can play a game given only the
set of rules [1]. Playing a legal game is easy; having the system
play these games at a high level of skill is challenging.

A general game player accepts a game description as input
at runtime, analyzes it, and then plays the game without human
intervention. GGP programs have to play many classes of games,
varying parameters such as the number of players (one or more),
move constraints (alternating or simultaneous), and game space
(such as board games and card games). Thus, GGP programs
cannot use game-specific algorithms or knowledge.

The current state of the art in GGP algorithms, adopted
by most of the leading competitors, is to use the UCT search
algorithm [5]. The algorithm’s appeal is its simplicity of imple-
mentation and, more importantly, it achieves good performance
with no domain knowledge (other than the game rules). The-
re are two portions to the overall UCT search: a growing tree
which is held in memory storing the current value of various mo-
ves, and random sampling that proceeds from the leaves of the
tree to terminal states in the game. Given enough samples, UCT
will provide an educated guess as to the “best” move to play.
The advent of UCT represented an improvement in the playing
abilities of the top GGP programs (from very weak to weak, as
evidenced by play against humans). However, if one wants to
achieve high performance, one of the goals of GGP research,
some form of application-specific knowledge will have to learned
by the game-playing software.

Domain-independent knowledge extraction is a very hard
problem. There have been a few attempts to use machine lear-
ning in a GGP program but none of them have had significant
competitive success. The Clune Player and University of Te-
xas programs [6], both frequent GGP competitors, use automa-
tically extracted features to calculate the evaluation function.
These are simple features like the number of pieces on the board
and the number of legal moves. Sharma et al. use temporal dif-
ference learning to build a domain-independent knowledge base

that is used to guide the UCT search [8]. This method has not
been used by any competitive GGP program.

This paper presents the Game Independent Feature Lear-
ning (GIFL) algorithm. It learns features and uses them to guide
the search in two-player, alternating-move games. Similar to the
well-known history heuristic [7], GIFL uses state differences in
2-ply game trees to identify “good” and “bad” features. The
learned features are used to guide the otherwise random move
selection in the random sampling portion of the UCT search.

In GGP, the game rules are defined using the Game Descrip-
tion Language (GDL) [2]. A game state is defined as a set of
predicates that are true (facts). Predicates present in a state are
called state predicates. In the special case of a goal state they
are referred to as terminal predicates. GIFL is given a line of play
from the starting position to a terminal position, and then does
a retroactive analysis. The algorithm identifies states and acti-
ons which might be associated with winning or losing, and then
attempts to extract general patterns (sets of predicates) that
are necessary for an action to be useful. An offensive feature is
a pattern that is correlated with success and suggests a move
that can be used to direct a search towards a positive outcome.
A defensive feature is a pattern that is correlated with failure
avoidance and suggests a move (if legal in the current position)
that may prevent a bad outcome. Each feature is assigned a
value which measures the distance from the said outcome.

These features could be used by many different algorithms,
but we focus on the application to UCT here. During the ran-
dom sampling portion of the UCT search all available features
are evaluated to see if they are applicable in the current state.
Immediate wins and losses are taken or avoided. Otherwise, the
feature (and associated move) to apply is chosen via a Boltz-
mann distribution over the value of each valid feature.

This paper reports experimental results for 15 games used in
previous GGP competitions. GIFL-enhanced UCT search outper-
forms standard UCT in nine games, does not effect the results
in three games, loses slightly in two games, and loses badly in
one game. As well, GIFL was able to improve the performance
of the GGP program Maligne in five of the games in the 2010
GGP Championship, where Maligne took second place. Alt-
hough the results are strong, one must keep in mind that these
are still early days for machine learning in the GGP framework;
performance of the programs is still at a relatively weak level of
play.

Some of the results in this paper have previously been pu-
blished [3, 4].

Seite 1



x

x
o

x

x
o

x

x
oo o

x

x
oo x

x

x
oo

x

x
oox

x

…

(a)

(b) (c)

(d) (e) (f)

Abbildung 1: 2-ply game tree at the end of the game sequence.

2 Feature Learning

The goal of GIFL is to learn generalized features which can be
used to improve the quality of play. Given a move sequence
ending in a terminal state, there are two stages to the learning
process, which we describe in detail here. In the first stage, a
2-ply game tree is built that leads to a terminal state, and states
are identified for learning. In the second stage, general features
are extracted from states to be used during game play. We will
demonstrate these using examples from the game tic-tac-toe.

2.1 Identifying States for Learning

GIFL identifies states for learning by performing random walks
in a game until a terminal state is reached. Then, a 2-ply tree
is built around the terminal state to analyze whether learning
can occur. We demonstrate this in Abbildung 1. This shows a
small portion of a tic-tac-toe tree. The left branch was randomly
sampled and ended because the state labelled (d) is a terminal
state and a win for the ‘x’ player. We would like to generalize
that in states that are similar to (b), the ‘x’ player should move
in the center to win the game – an offensive feature. Thus, the
state (b) is sent to a function which extracts a general feature
from the state. We describe a method to do this in Section 2.2.

This tree also shows us, however, that the ‘o’ player had a
better move at state (a). If the ‘o’ player plays in the center in
states like (a), player ‘x’ will no longer have a winning move at
state (c), as evidenced by the successors of (c). We call this a
defensive feature. We similarly will then send state (a) to the
function which builds a generalized feature from this state.

2.2 Learning Generalized Features

Abbildung 2 illustrates the feature learning process which takes
place once interesting states have been identified. The genera-
lization process takes as input a GGP state, an action, and a
functional test which must be preserved during the generalizati-
on process.

A GIFL feature includes (1) predicates for identifying intere-
sting states, (2) an action to take when the predicates from (1)
are found in the current state, and (3) the relative value of the

predicates action value

state action test

GIFL Feature

Feature Learning Input

Abbildung 2: General feature-learning process.

Feature Learning Example

x

x
oo

state action test

(mark 2 2 x) terminal?

(cell 1 1 x)
(cell 3 3 x) (mark 2 2 x) 100

GIFL Feature
predicates action value

Abbildung 3: Building GIFL features: Only predicates which ma-
ke the test true when applying the provided action are maintai-
ned in the GIFL feature.

feature. The main task in learning GIFL features is to generalize
from full states found from the 2-ply trees built in the previous
section to a small set of predicates which can possibly match
many different states.

The generalization process occurs as follows. Predicates are
removed from the input state one at a time. After removing each
predicate, the action is applied followed by the test. If removing
a predicate makes the action invalid or the test false, then that
predicate becomes part of the GIFL feature. If removing the pre-
dicate has no effect on the action or test, then it is not required
and does not become part of the generalized GIFL feature.

We illustrate two examples of this generalization. The first,
in Abbildung 3, is an example of learning an offensive feature.
The input state is state (b) from Abbildung 1. The action that
was applied at that state to win the game was to mark the middle
position in the board with an ‘x’. This is an appropriate move
as long as applying it will result in the successor state being a
terminal or goal state.

To find the generalized predicates, all predicates in the state
are removed one at a time, the action is applied, and the test
is performed. The predicates in this state are {(cell 1 1 x) (cell
3 3 x) (cell 1 2 o) (cell 3 2 o)}. Removing (cell 1 2 o) and
(cell 3 2 o) does not make (mark 2 2 x) illegal, and does not

Seite 2



Feature Learning Example

x

x
o

state action test

(mark 2 2 o)
is GIFL
offensive
feature
invalid?

(cell 1 1 x)
(cell 3 3 x) (mark 2 2 o) 100

GIFL Feature
predicates action value

Abbildung 4: Learning a defensive feature higher in the 2-ply
tree.

change whether the subsequent state is terminal. Thus, these
predicates are not part of the GIFL feature. However, removing
either (cell 1 1 x) or (cell 3 3 x) will cause the test to be false,
as the subsequent state will no longer be terminal. Therefore,
these are part of the generalized GIFL feature.

Because this action leads directly to the goal, it is given a
value of 100. This is an offensive feature, because it directs the
‘x’ player towards a winning move.

An example of learning a defensive feature is illustrated in
Abbildung 4. This state corresponds to the root of the 2-ply tree,
Abbildung 1 (a). In this example, it has been discovered that
(mark 2 2 o) prevents the ‘x’ player from winning the game, and
the state must be generalized. The test here is more complicated.
Instead of testing for a win, we must test to see if the previously
learned offensive feature becomes invalid.

The predicates (cell 1 1 x) and (cell 3 3 x) are already known
to be required in the GIFL defensive feature, as they have been
identified in the offensive feature. Removing the predicate (cell
3 2 o) from the state does not prevent the supplied action from
successfully blocking the offensive feature, so it is unnecessary.
The final defensive feature then states that if the ‘x’ player has
marks in opposite corners, the ‘o’ player should move in the
middle between them. Because this prevents an immediate loss,
it also gets a value of 100.

Note that if the ‘o’ player had an action that erased one
of the ‘x’ players’ mark, then this would also be learned as a
defensive feature, because the offensive feature would then no
longer be applicable in the subsequent state.

2.3 Extending GIFL Features Up The Tree

We have presented here a simple method for learning from a
2-ply tree at the terminal state of a game. Building the tree
identifies possible states where offensive or defensive features
could be learned, and builds generalized GIFL features from these
states. But, ideally, a learner would also learn elsewhere in the
tree.

This learning can be performed using the same procedure
by looking at moves higher up in the random walk. Instead of
looking for a move which leads to a goal, GIFL looks for a move

which contributes to the offensive feature. A 2-ply tree is then
built around this move, and similar learning takes place. A key
difference is that the value of the GIFL features found higher up
in the move sequence are discounted the farther away they are
from the leaf state.

The value of the move is computed according to the formula
100 ·V level−1 where V is a constant between 0-1 and the level is
the level of the 2-ply tree where the feature was learned. Trees
built from terminal states have level 0. Trees built above the
root of a terminal state have a level of 1, and so on. We used
V = 0.9 in all the results presented here.

An even more detailed presentation with pseude-code for the
full feature learning process is available [3, 4].

2.4 Limitations and Further Generalization

What has been described so far is a simple approach to ge-
neralizing and building GIFL features. It is possible that some
necessary predicates are not properly generalized using this me-
thod; there are likely a wide variety of methods for generalizing
offensive and defensive features which have yet to be explored.

For instance, suppose that there are three stones placed ver-
tically in the game of Connect4. If the stone in the middle is
removed and then a stone is placed on top of that column, the
game description dictates that a stone is placed on top of every
stone that has an empty space on top. Therefore, the empty
place in the middle is replaced even though it is not supposed to
be. This will result in the stone in the middle not being a part
of the offensive-feature predicates even though it should be.

To solve this problem, GIFL uses another method to find the
offensive-feature predicates. If a predicate which was removed
during the generalization process is found back in the state after
applying the sample action, then this predicate is added to the
GIFL feature.

Another example which our implementation of GIFL does
not handle is a goal which requires any two of three predicates
to be satisfied. If all three predicates are in the state identified
for learning, then none of them will be include as predicates in
the GIFL feature, as it is only the combination of features that
is necessary. While removing pairs of states would reveal such
dependencies, higher level logical analysis of a game could lead
to stronger generalization rules to handle cases such as these.

3 Using Features

GIFL features are used to guide the random simulation in a UCT
search. The program checks each state during a simulation to
see whether or not a feature can be applied. A feature can be
applied if the predicates of a feature are matched, and if the
move associated with the feature is legal. If there is a feature
match, then the move associated with that feature is marked
with the value from the GIFL feature. Moves with a value of
100 lead to immediate wins or losses and are taken immediately,
with preference given to offensive features.

After all of the applicable features are found, the program
selects a move according to probabilities calculated with a Boltz-
mann distribution:

p(a) =
eV (a)/τ∑n

b=1
eV (b)/τ

Seite 3



where there are n actions and V (a) is the value of an action. This
will bias the random simulation towards known offensive and
defensive moves, improving the quality of the simulation. This
provides a good exploration-exploitation balance to the move
selection. Even though a higher valued feature leads to a win in
fewer moves, the outcome depends on the opponent’s response.
Therefore, other possible moves are explored. We used τ = 0.5
in all the results presented here.

There is one final step used in the application of GIFL featu-
res. If both players use GIFL features equally during the random
UCT simulations, they will improve simulation for each player
equally well, and the performance may not improve. Instead,
each player has an independent probability of using the GIFL
features at each step, and the probability for the opponent is
lower than for the learning player. This incorporates some form
of opponent modeling, causing the learning player to attempt to
exploit the non-learning player. In all results reported here the
opponents were modeled as only being able to use the learned
features 50% of the time.

Pseude-code for how to use the features in UCT search can
be found in [3].

4 Experiments

The experiments were prepared using the game definitions in
the Stanford GGP repository [2] and those used in the 2008 and
2009 GGP competitions. Some game from the 2008 competition
are named arbitrarily like game1, game2, etc. All games are 2-
player, alternating move and prefect information. Also, in some
games being first player or second player may be advantageous.
Therefore, experiments are conducted so that this does not effect
the results.

The player that uses the features to guide the random si-
mulation is called the learning player, and is compared against a
UCT player with purely random simulation. Therefore, the on-
ly difference between the learning player and the non-learning
player is that learning player uses the learned features to guide
the random simulation phase during the UCT search.

We present four sets of results here. First, we look at the
number of learned features and the performance of the learning
player when playing against a non-learning player with the same
number of UCT simulations. We then analyze the speedup and
slowdowns that GIFL introduces before comparing performance
with a fixed amount of time per play.

The number of training runs is limited to 500 unless specified
otherwise. The learning time may vary between 100 training runs
per minute in breakthrough and 20 training runs per minute in
checkers. The level of 2-ply tree in which the learning is occurring
is limited to 3. This reduces the number of the features and the
time spent in random simulations as too many features increases
the cost of feature mapping.

4.1 Number of Learned Features

We begin by looking at the number of learned features for a
variety of games. As two minutes is a common start clock, we
show what can be learned in this time frame in Tabelle 1.

For most games a significant number of features can be
learned during the (short) time limit. This is important, but

perhaps less important than it seems, as learning can take place
while UCT is already beginning to explore the game tree. The
dual use of simulations reduces the effective overhead of GIFL
learning.

The total number of offensive features learned is always grea-
ter than the total number of defensive features, as a defensive
feature can only be learned in response to an offensive feature.

4.2 Fixed UCT Simulations

Given that a significant number of features can be learned, we
then measure the effectiveness of these features on play. Results
are in Tabelle 2. The scores are the average score when playing
two games, one as the first player and one as the second player.
Thus, a score of 193-7 in game2 results from always winning
and getting 100 points as player one, and averaging 93 points
as player two. Games that are constant-sum have scores that
add up to 200. Chess and game5 are not constant-sum.

Of the 15 games that were used, the learning player defeats
the non-learning player in nine of the games. The knowledge
does not significantly affect the results in three games. In two
games, the learning player loses by a small margin. Using learned
knowledge decreases the quality of play significantly in only one
game, checkersbarrelnokings.

In seven of the nine games for which the learning player
has the advantage over the non-learning player, the results are
statistically significant. Thus, in the GGP competition setting,
where games start from the same initial state, the learning player
is expected to beat a UCT player in these games with 95% con-
fidence. This shows that GIFL features improve the performance
of UCT search.

Starting from the same initial state could result in test games
that were played identically. However, because the UCT search
does random simulations the test games were not repetitions
of the same game. In 12 of the 15 test domains all the games
differentiated in less than five moves, and in the other three
domains up to 10 moves were needed.

It should be noted that the games in which the learning does
not affect the results are not very interesting: the first player
always wins in pentago, all games are tied in game4, and all
games end in less then 10 moves in quarto.

Usage of GIFL seems to degrade performance in checkersbar-
relnokings. Although this game is similar to the original checkers,
at which the learning player has a clear advantage, the learning
player loses badly in checkersbarrelnokings. There are a number
of reasons for this.

In checkersbarrelnokings, due to lack of kings and forced
capture moves, the number of legal moves per step is low. The-
refore, the non-learning player does less unnecessary exploration.
For example, there are 20 legal moves in a state in breakthrough.
When the learning player uses a GIFL feature, this gives an ad-
vantage over the non-learning player because the non-learning
player explores all of the 20 moves. However, the average number
of legal moves for checkersbarrelnokings is low and the advan-
tage gained from using GIFL features is also lower than gained
from the breakthrough.

In addition, learning capture moves, which are the most im-
portant moves to win the game, is not useful because they are
forced moves. Therefore, GIFL can only make a difference by
learning defensive feature moves. Learning defensive features is

Seite 4



name source n. of features n. of offensive features n. of defensive features

game2 2008 competition 135 75 60

pawn whopping 2009 competition 328 185 143

knightthrough 2008 competition 134 79 55

game1 2008 competition 1869 1014 855

breakthrough 2007 competition 120 63 57

checkers [2] 895 458 437

connect4 [2] 2187 1108 1079

chess [2] 25 13 12

game5 2008 competition 1357 686 671

pentago [2] 679 405 274

game4 2008 competition 1101 558 543

quarto [2] 8527 5254 3273

game6 2008 competition 1456 813 643

game3 2008 competition 1555 812 743

checkersbarrelnokings [2] 5262 2830 2432

Tabelle 1: Number of features that learned by GIFL in two minutes.

name n. of simulations n. of games learning-uct point percentage 95% confidence

game2 1000 20 193-7 97.5 %
√

pawn whopping 1000 20 190-10 95.0 %
√

knightthrough 1000 20 184-16 92.0 %
√

game1 1000 20 170-30 85.0 %
√

breakthrough 1000 20 165-35 82.5 %
√

checkers 150 20 156-44 78.0 %
√

connect4 1000 100 115-85 57.5 %
√

chess 25 40 102-84 54.8 %

game5 1000 40 111-94 54.1 %

pentago 1000 100 100-100 50.0 %

game4 1000 40 100-100 50.0 %

quarto 1000 100 98-102 49.0 %

game6 1000 100 96-104 48.0 %

game3 1000 100 91-109 45.5 %

checkersbarrelnokings 1000 100 61-139 30.5 %
√

Tabelle 2: Effectiveness of using GIFL with a fixed number of simulations for each player.

also harder in checkersbarrelnokings because escaping an im-
minent capture is often done by capturing the opponent piece
(forced move). GIFL learns features that help the player to avoid
getting captured in the next turn. However, GIFL features do not
contain information about other pieces of the opponent. Thus,
when a GIFL feature suggests how to avoid capture from one
piece, it may inadvertently put itself in position to be captured
by an alternate piece.

4.3 Cost of GIFL

Running GIFL incurs cost overheads which we measure in this
section. The biggest overhead is that of matching GIFL features
with each state to see if they are applicable. However, there is an
alternate benefit from using these features, as they decrease the
length of the random UCT simulations. We measure both effects
in Tabelle 3, predicting the expected speedup or slowdown.

The second column reports the ratio of the learner’s random
walk length to the length of a regular UCT random walk. In most
games using GIFL decreases the length of the random walk,
sometimes significantly. However, in checkersbarrelnokings the
length of random walks is increased significantly, a factor in the
poor performance in that game.

The third column reports the ratio of simulations performed
by the learner to the regular UCT player. This measure already
takes into account the shorter simulation length. Despite the
shorter lengths, the learner is performing fewer simulations in all

simulation length n. of simulations GIFL Overhead Effective
game (learner/uct) (learner/uct) (uct/learner) Overhead

game2 51 % 46 % 4.3 2.2

pawn whopping 82 % 65 % 1.9 1.5

knightthrough 45 % 93 % 2.4 1.1

game1 53 % 104 % 1.8 1.0

breakthrough 61 % 79 % 2.1 1.3

checkers 73 % 36 % 3.8 2.8

connect4 95 % 20 % 5.3 5.0

chess 99 % 74 % 1.4 1.4

game5 101 % 32 % 3.1 3.1

pentago 68 % 156 % 0.9 0.6

quarto 100 % 34 % 2.9 2.9

game6 97 % 58 % 1.8 1.7

game3 52 % 99 % 1.9 1.0

checkersbarrelnokings 178 % 38 % 1.5 2.6

game4 116 % 47 % 1.8 2.1

Tabelle 3: Average length of simulations.

but two games.
Column four is the inverse of the product of columns two and

three. This gives the factor by which GIFL slows down the GGP
player. However, because the simulations are of shorter length,
the effective cost is less, as shown in the last column (the inverse
of column three).

For example, for game2 the simulations are, on average, half
the length with GIFL. Because the cost of the GIFL analysis slows
down the program by a factor of 4.3, the program runs 2.2 times
slower than with regular UCT.

Seite 5



name learning-uct win percentage

game2 140-30 70.0 %

pawn whopping 190-10 95.0 %

knightthrough 150-50 75.0 %

game1 160-40 80.0 %

breakthrough 170-30 85.0 %

checkers 110-90 55.0 %

connect4 90-110 45.0 %

chess 75-125 35.0 %

game5 40-160 15.0 %

pentago 100-100 50.0 %

quarto 80-120 50.0 %

game6 70-130 35.0 %

game3 100-100 50.0 %

checkersbarrelnokings 30-170 15.0 %

game4 100-100 50.0 %

Tabelle 4: Effectiveness of using GIFL with 30 seconds per move.

4.4 Fixed Time

We complete our experiments in games with a fixed time limit,
shown in Tabelle 4. The games are still ordered from best to
worst performance given a fixed number of UCT simulations.
Although the numbers are not as favorable as before, there are
still significant gains in many different games.

These are not the best possible results using GIFL, as it
has not been tuned for maximal performance. Most of the work
of GIFL could be integrated into the inference engine, thereby
reducing the overhead.

5 Conclusion

The learning algorithm learns GIFL features and uses them to
guide random UCT simulation. The concepts are simple and
domain independent which is essential for GGP algorithms. Up
until the 2008 GGP competition, learning algorithms have not
been an essential part of a successful GGP program because
domain-independent learning is a very hard problem. However,
this paper presents a simple but effective method that shows
very promising results in some of the games that are frequently
used in GGP competitions.

The algorithm shows promising results in GGP, but the lear-
ning concepts are heavily depended on the terminal conditions.
If the goal conditions of a game is too specific, the features may
not be encountered frequently. Thus, GIFL may not be effective.
For instance, the terminal conditions of chess has many variati-
ons depending on the position, number and type of pieces. GIFL
learns one of these variations at each step of the algorithm. The
occurrence of that specific terminal position during a simulati-
on is necessary for the learned feature to be effective. However,
most of the GGP games in which GIFL is successful, have less
number of different possible terminal conditions. In conclusion,
the effectiveness of GIFL depends on how many variations ter-
minal conditions of a game can have.

In addition, the computation overhead of using features is an
important area for the future work. The primary focus of GIFL
is the effectiveness of the features, therefore time has not be-
en spent to develop more efficient ways of feature matching and

feature pruning. Some of the learned features may not be effecti-
ve and can be removed. We believe that significant performance
gains are possible.

The algorithm has room for improvements. First, the featu-
res can be used as a part of an evaluation function. A minimax
approach can be tried with this evaluation function instead of
the UCT search.

Second, the algorithm can only learn features from a game
sequence if the player that wins the game makes the last move.
The learning algorithm cannot be applied to games when the
losing side makes the last moves. Lose Checkers is an example
of these types of games. The players aim to lose all the pieces
instead of trying to capture them. This problem may be solved
by changing the leaf of the 2-ply tree where the learning occurs.

In addition, the frequency of features seen in the learning
process can be included when the values for the feature moves
are calculated. Right now, all of the features have the same
importance.

The learning algorithm presented in this paper is relatively
simple, yet we have shown it to be quite successful. There are
certainly more complex approaches which could be even more
successful. We look forward to future competitions encouraging
even more learning with longer start clocks which would allow
more learning to take place before a game begins.

Literatur
[1] Michael Genesereth, Nathaniel Love, and Barney Pell. General

game playing: Overview of the AAAI competition. AI Magazine,
26(2):62–72, 2005.

[2] Stanford Logic Group. http://logic.stanford.edu.

[3] Mesut Kirci. Feature learning using state differences. Master’s
thesis, Computing Science, University of Alberta, 2009.

[4] Mesut Kirci, Nathan Sturtevant, and Jonathan Schaeffer. Feature
learning using state differences. In IJCAI Workshop on General
Game Playing, 2009.

[5] Levante Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo
planning. In European Conference on Machine Learning, pages
282–293, 2006.

[6] Gregory Kuhlmann and Peter Stone. Graph-based domain map-
ping for transfer learning in general games. In Proceedings of
the 18th European Conference on Machine Learning, September
2007.

[7] Jonathan Schaeffer. The history heuristic and alpha-beta search
enhancements in practice. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11:1203–1212, 1989.

[8] Shiven Sharma, Ziad Kobti, and Scott Goodwin. Knowledge ge-
neration for improving simulations in UCT for general game play-
ing. In AI 2008: Advances in Artificial Intelligence, pages 49–55.
Springer-Verlag, 2008.

Seite 6



Kontakt

Mesut Kirci
Email: kirci@ualberta.ca

Nathan Sturtevant
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6M 2K9 Email: nathanst@cs.ualberta.ca

Jonathan Schaeffer
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6M 2K9 Email: jonathan@ualberta.ca

Bild Mesut Kirci has a M.Sc. degree from the De-
partment of Computing Science at the Uni-
versity of Alberta. He is currently working for
Taleworlds, a game-development company in
Turkey.

Bild Nathan Sturtevant is an Assistant Professor
in the Department of Computer Science at
the University of Denver, however the work
in this paper was completed while he was a
assistant adjunct professor at the Universi-
ty of Alberta. Nathan’s research focuses on
heuristic search, with contributions in single-
player and multi-player games. His work in
single-player search was incorporated in the
game Dragon Age, which has sold over one
million copies.

Bild Jonathan Schaeffer is a Professor of Com-
puting Science at the University of Alberta.
He is the iCORE Chair for High-Performance
AI Systems. For over 30 years he has be-
en using games and puzzles as experimental
testbeds for his AI research. He is best known
for developing Chinook, the first program
to win a human world championship in any
game.

Seite 7


