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Abstract

The state of the art in bidirectional search has changed signifi-
cantly a very short time period; we now can answer questions
about unidirectional and bidirectional search that until very
recently we were unable to answer. This paper is designed to
provide an accessible overview of the recent research in bidi-
rectional search in the context of the broader efforts over the
last 50 years. We give particular attention to new theoretical
results and the algorithms they inspire for optimal and near-
optimal node expansions when finding a shortest path.

Introduction and Overview
Shortest path algorithms have a long history dating to Dijk-
stra’s algorithm (DA) (Dijkstra 1959). DA is the canonical
example of a best-first search which prioritizes state expan-
sions by their g-cost (distance from the start state). Histor-
ically, there were two enhancements to DA developed rela-
tively quickly: bidirectional search and the use of heuristics.

Nicholson (1966) suggested bidirectional search where
the search proceeds from both the start and the goal simulta-
neously. In a two dimensional search space a search to radius
r will visit approximately r2 states. A bidirectional search
will perform two searches of approximately (r/2)2 states, a
reduction of a factor of two. In exponential state spaces the
reduction is from bd to 2bd/2, an exponential gain in both
memory and time. This is illustrated in Figure 1, where the
large circle represents a unidirectional search towards the
goal, while the smaller circles represent the two parts of a
bidirectional search.

Just two years later, DA was independently enhanced with
admissible heuristics (distance estimates to the goal) that
resulted in the A* algorithm (Hart, Nilsson, and Raphael
1968). A* is goal directed – the search is focused towards the
goal by the heuristic. This significantly reduces the search
effort required to find a path to the goal.

The obvious challenge was whether these two enhance-
ments could be effectively combined into bidirectional
heuristic search (Bi-HS). Pohl (1969) first addressed this
challenge showing that in practice unidirectional heuristic
search (Uni-HS) seemed to beat out Bi-HS. Many Bi-HS
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algorithms were developed over the years (see a short sur-
vey below), but no such algorithm was shown to consistently
outperform Uni-HS.

Barker and Korf (2015) recently hypothesized that in most
cases one should either use bidirectional brute-force search
(Bi-BS) or Uni-HS (e.g. A*), but that Bi-HS is never the best
approach. This work spurred further research into Bi-HS,
and has lead to new theoretical understanding on the nature
of Bi-HS as well as new Bi-HS algorithms (e.g., MM, fMM
and NBS described below) with strong theoretical guaran-
tees. The purpose of this paper is to provide a high-level
picture of this new line of work while placing it in the larger
context of previous work on bidirectional search.

While there are still many questions yet to answer, we
have, for the first time, the full suite of analytic tools neces-
sary to determine whether bidirectional search will be useful
on a given problem instance. This is coupled with a Bi-HS
algorithm that is guaranteed to expand no more than twice
the minimum number of the necessary state expansions in
practice. With these tools we can illustrate use-cases for
bidirectional search and point to areas of future research.

Terminology and Background
We define a shortest-path problem as a n-tuple
(start, goal, expF , expB , hF , hB), where the goal is
to find the least-cost path between start and goal in a graph
G. G is not provided a priori, but is provided implicitly
through the expF and expB functions that can expand and
return the forward (backwards) successors of any state.

Bidirectional search algorithms interleave two separate
searches, a search forward from start and a search back-
ward from goal. We use fF , gF and hF to indicate f -, g-,
and h-costs in the forward search and fB , gB and hB simi-
larly in the backward search. Likewise, OpenF and OpenB
store states generated in the forward and backward direc-
tions, respectively. Finally, gminF , gminB , fminF and
fminB denote the minimal g- and f -values in OpenF and
OpenB respectively. d(x, y) denotes the shortest distance
between x and y.

Front-to-end algorithms use two heuristic functions. The
forward heuristic, hF , is forward admissible iff hF (u) ≤
d(u, goal) for all u in G and is forward consistent iff
hF (u) ≤ d(u, u′) + hF (u

′) for all u and u′ in G. The back-
ward heuristic, hB , is backward admissible iff hB(v) ≤
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Figure 1: High-level illustration of unidirectional (large cir-
cle) and bidirectional (two small circles) search.

d(start, v) for all v in G and is backward consistent iff
hB(v) ≤ d(v′, v) + hB(v

′) for all v and v′ in G. C∗ =
d(start, goal) is the cost of an optimal solution.

Our work assumes that search algorithms only have black-
box access to the expand, heuristic, and cost functions. This
follows the assumptions of Dechter and Pearl (1985) formal-
ized in the description of Deterministic, Expansion-based
Black-box (DXBB) algorithms (Eckerle et al. 2017).

Background
There are three main algorithmic design decisions on which
previous Bi-HS algorithms differ: (1) the stopping condition,
(2) the selection of which state to expand next and (3) the
nature of the heuristic. We briefly cover these here; for more
details see Holte et al. (2017).

Stopping condition A basic stopping condition (denoted
the “gmin stopping condition”) refers to any stopping con-
dition of the form cost(U) ≤ gminF + gminB , where U
the least-cost solution that the search has found so far found,
and cost(U) is the cost of that solution. This stopping condi-
tion is usually used for Bi-BS systems. These systems differ
on whether this stopping condition is tested when generating
or expanding states that appear in both frontiers (Nicholson
1966; Dreyfus 1967; Pohl 1969; 1971).

For Bi-HS algorithm a more informed stopping con-
dition (denoted the “fmin stopping condition”) is to
stop the search once cost(U) ≤ max(fminF , fminB)
Most previous Bi-HS algorithms used the fmin stop-
ping condition, the only difference being that some update
U only when a state becomes closed in both directions
(Barker and Korf 2012; Davis, Pollack, and Sudkamp 1984;
Mohr and Pasche 1988; Pohl 1969) while others update
U when a state becomes open in both directions (Hall
1971; Kowalski 1972; Kwa 1989; Pijls and Post 2010;
Wilt and Ruml 2013). A unified stopping condition uses
both of these and stops the search as soon as cost(U) ≤
max {gminF + gminB , fminF , fminB}. Other stopping
conditions are covered in (Holte et al. 2017).

Selecting the state to expand For Bi-BS some meth-
ods strictly alternate between the search directions in a
round robin fashion (Goldberg and Harrelson 2005; Hel-
gason, Kennington, and Stewart 1993; Ikeda et al. 1994;

Luby and Ragde 1989). Others select a state with the small-
est g-value in either search direction (Nicholson 1966).

For Bi-HS, a simple selection policy chooses a state with
the minimum f -value in either search direction but it was
used relatively rarely (Pijls and Post 2010). A more common
approach is the “cardinality criterion” (Pohl 1969). This
approach chooses a search direction, such as the direction
with the smaller open list, and then expands the state with
the minimum f -value in the chosen direction. Many varia-
tions on this exist (Auer and Kaindl 2004; Kowalski 1972;
Barker and Korf 2012). Others employ simple switching
policies such as strict alternation between the two direc-
tions (Arefin and Saha 2010; Pijls and Post 2009; Sadhukhan
2012) or switching to maintain a fixed ratio between the
number of states expanded in the two directions (Wilt and
Ruml 2013). An extreme example is perimeter search (Dil-
lenburg and Nelson 1994; Kaindl and Kainz 1997; Linares
López and Junghanns 2002; Manzini 1995), which begins
by doing a fixed amount of search in the backward direc-
tion and then does all the remaining search in the forward
direction.

The heuristic used Most Bi-HS systems use front-to-end
heuristics (Kaindl and Kainz 1997) that estimate the distance
to goal in the forward direction and to start in the back-
ward direction. By contrast, front-to-front algorithms use a
heuristic h(u, v) defined on any two states (u, v) and may
perform heuristic lookups between any two states that be-
long to opposite frontiers (de Champeaux and Sint 1977;
de Champeaux 1983; Davis, Pollack, and Sudkamp 1984;
Politowski and Pohl 1984; Eckerle and Ottmann 1994;
Arefin and Saha 2010).

Estimating paths between all pairs of states in the frontier
of a search is expensive, and thus front-to-front searches are
not usually practical. Single-frontier Bidirectional Search
(SFBDS) (Felner et al. 2010; Lippi, Ernandes, and Felner
2012; 2016; Eckerle and Ottmann 1994) is the most prac-
tical implementation of this approach, but in this paper we
only consider front-to-end algorithms.

Key Bidirectional Heuristic Search Insights
During the last 50 years, researchers have gained many in-
sights into Bi-HS, attempting to explain why it has not been
widely adopted. We briefly describe these insights next.

Frontiers Missing or Crossing One of the classic expla-
nations was that the frontiers might miss each other (Nilsson
1980). This lead to techniques for pushing the search fron-
tiers towards each other. Kwa, however, observed that the
frontiers weren’t missing, they were actually going through
each other. As a result, BS* was developed with nipping and
pruning techniques in order to prevent the search frontiers
from crossing (Kwa 1989). While these techniques signifi-
cantly improved the performance of bidirectional search, ex-
perimental results were still slightly worse than A*.

Time to Prove Optimality After further work, Kaindl
and Kainz (1997) suggested that in addition to the frontiers
crossing, there was another reason for the poor performance



of bidirectional search: the majority of effort in a bidirec-
tional search is spent proving the optimal solution after the
frontiers meet. This was the generally accepted understand-
ing of bidirectional search for many years.

Only Bi-BS or Uni-HS Barker and Korf revived the dis-
cussion of bidirectional search with two conjectures (Barker
and Korf 2015):

BK1: Uni-HS will expand fewer states than Bi-HS if
more than half of the states expanded by Uni-HS have g ≤
C∗/2, where C∗ is the optimal solution cost.

BK2: If fewer than half of the states expanded by Uni-HS
using heuristic h have g ≤ C∗/2, then adding h to Bi-BS
will not decrease the number of states it expands.

These conjectures were made based on a number of as-
sumptions: that the forward and backwards search were
symmetric, and that the forward and backwards searches met
in the middle – that in each direction the search will not ex-
pand a state with g > C∗/2, a property that no bidirectional
search algorithm had at the time.

Meet in the Middle (MM) This inspired the development
of the MM algorithm (Holte et al. 2016; 2017). MM is the
first bidirectional heuristic search algorithm guaranteed to
“meet in the middle”. That is, MM will never expand a state
whose g-value exceeds C∗/2. That is, the bidirectional pic-
ture in Figure 1 is accurate for MM in that the states ex-
panded by MM will not go outside these circles, and the
searches will meet at the middle of the optimal solution. The
picture is not precise for an algorithm like BS* because the
frontiers are not constrained to stay within the circles.

This is achieved by MM’s novel selection criterion and
priority functions, prF (u) and prB(u) for the forward and
backwards directions, respectively:

prF (u) = max(gF (u) + hF (u), 2 · gF (u))
prB(u) = max(gB(u) + hB(u), 2 · gB(u))

MM expands a state with minimum priority from either
direction. It uses a novel stopping condition that combines
the gmin and the fmin stopping condition functions.

We provide a brief argument of why MM meets in the
middle here. (We present a forward argument, the backward
argument is analogous.) (1) Any state sf on the optimal
path with gF (sf ) ≤ 1

2C
∗ has prF (sf ) ≤ C∗. This follows

from the admissibility of the heuristic. (2) All states tf with
gf (tf ) >

1
2C
∗ have prF (tf ) > C∗. This follows because

2gf (tf ) > C∗. Since states are expanded from low prior-
ity to high priority, the optimal path up to the middle of the
search is guaranteed to be explored in both directions before
any states with gf (tf ) > 1

2C
∗. Since expanding the optimal

path will terminate the search, no state tf will be expanded.

Fractional MM While MM meets exactly in the middle,
Shaham et al. (2017) showed that the approach can be gen-
eralized to allow the search to meet at any fraction of the op-
timal solution cost. They proposed a generalization of MM
called Fractional MM (fMM(p)) which uses the following
priority functions on paths in the open lists:

prF (u) = max(gF (u) + hF (u), gF (u)/p)

prB(u) = max(gB(u) + hB(u), gB(u)/(1− p))

where 0 < p < 1.
fMM(p)’s forward and backward searches meet at

(pC∗, (1 − p)C∗) by similar reasoning for why MM meets
in the middle. MM is a special case of fMM(p) for p = 1/2.
Forward A* and reverse A* (searching from goal to start)
are also special cases corresponding to p = 1 and p = 0
(although division by zero must be avoided).

Other Variants of MM Other variants of MM include
MMε (Sharon et al. 2016) which has a slightly improved
priority function, and PEMM (Sturtevant and Chen 2016)
which uses parallel and external memory search to scale the
size of problems that can be solved. For instance, PEMM is
able to solve Rubik’s cube instances at maximal depth (20).

Bidirectional Search in Planning One place that bidi-
rectional search has found traction is in the area of plan-
ning. Bidirectional planners have been entered into the In-
ternational Planning Competition, and in the 2014 Interna-
tional Planning Competition (Vallati et al. 2015), the best
Sequential Optimal planner was the SymBA* planner (Tor-
ralba et al. 2014). This planner uses symbolic search with
dynamically-built heuristics.

Bi-HS Anomaly If h1 and h2 are admissible heuristics
and h1(s) > h2(s) for all non-goal states, then A* cannot
expand more distinct states with h1 than with h2 (Nilsson
1980). In particular, A* with a non-zero heuristic cannot ex-
pand more states than Uni-BS. In bidirectional search, how-
ever, this property does not hold (Holte et al. 2017).

Optimal and Near-Optimal Bi-HS
In this section we summarize three recent papers that to-
gether provide a clear picture of bidirectional search. The
first paper looked at the states which must necessarily be ex-
panded when solving a bidirectional search problem (Eck-
erle et al. 2017). The second paper showed that fMM for
some value of p (which must be provided by an oracle or
found offline) expands exactly the minimum number of state
expansions that are needed to solve a problem (Shaham et al.
2017). The third paper developed NBS, which can find the
optimal solution while expanding no more than two times
the minimal number of necessary states (Chen et al. 2017).

Sufficient Conditions for Uni-HS
An important historical question for A* was whether A*
was the best possible algorithm, or whether there could be a
better one. Dechter and Pearl showed that, with a consis-
tent heuristic, A* is optimal. In particular, any state with
fF < C∗ must be expanded (Dechter and Pearl 1985). We
illustrate this in the top of Figure 2. If an algorithm does
not expand some state u with fF (u) < C∗, we could cre-
ate a new problem instance by adding an edge from u to the
goal on which the algorithm would not find the optimal path.
Thus, knowing that fF (u) < C∗ is sufficient to prove that
an optimal Uni-HS algorithm will expand u.

Sufficient Conditions for Bidirectional Search
The picture in bidirectional search is more complicated. We
illustrate this in the bottom of Figure 2. Here, the path to
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Figure 2: A* necessary expansions (top) vs. Bi-HS neces-
sary expansions (bottom)

the goal goes from start to u to v to the goal. Thus, the
sufficient conditions must reason about both u and v to see
if there might be a path between them.

Eckerle et al. (2017) developed three conditions for state
expansion in bidirectional search that reason about potential
paths between u and v. If all conditions are met, the search
must explore to see if there is a shorter path between u and
v. The first two arise directly from the conditions for uni-
directional search, since the cost from u to v to the goal is
lower-bounded by the estimate from u to the goal directly.
The third condition is the result of using the g-cost of a state
in the forward (backward) direction as a heuristic for the
backward (forward) search. Thus, the three conditions are:

fF (u) < C∗ (1)
fB(v) < C∗ (2)

gF (u) + gB(v) < C∗ (3)

If all three conditions are met and we do not explore between
u and v, then there might be a different problem instance
(with smaller C∗) on which the optimal solution is missed.
Thus, in order to verify whether or not that path exists we
either have to expand u or v. Either expansion suffices to
find the next step on the path or prove that it does not exist.
We do not, however, have to expand both states.

These conditions can be stated concisely as follows.

Definition 1. For each pair of states (u, v) let

lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v)}

If a pair of states (u, v) has lb(u, v) < C∗ then it is suffi-
cient to expand one of u or v to find the optimal solution. As
a result, we call (u, v) a must-expand pair, meaning that one
of the pair is necessarily expanded by all optimal algorithms.

Note that this theory does not discuss what to do with state
pairs that have lb(u, v) = C∗. In this theory such expansions
are not necessary, although we can construct problems with
many such states. In practice these states do not make a sig-
nificant contribution to the total number of state expansions,
so we focus only on necessary expansions.

The Must-Expand Graph GMX

The unique property of the sufficient condition is that the
condition contains an or. Such a condition is also found in
the vertex cover problem. So, we will represent the sufficient
conditions as a vertex cover on a graph GMX .
Definition 2. The Must-Expand GraphGMX of problem in-
stance is an undirected, unweighed bipartite graph defined
as follows. For each state u ∈ G, there are two vertices in
GMX , the left vertex uF and right vertex uB . For each pair
of states u, v ∈ G, there is an edge inGMX between uF and
vB if and only if lb(uF , vB) < C∗. Thus, there is an edge in
GMX between uF and vB if and only if the pair (u, v) is a
must-expand pair.

We illustrate GMX in Figure 3. In part (a) we show a
graph with each state labeled with its forward and backwards
h-cost. Part (b) of the figure shows the corresponding GMX

graph. Given an optimal solution cost of 3 there is an edge
between cF and eB because the sum of their g-costs is less
than 3 and the f -costs of cF and eB are also less than 3.
The edges in GMX exactly correspond to the state pairs that
must be expanded, and therefore any vertex cover for GMX

will, by definition, represent a set of expansions that covers
all the required state pairs (Chen et al. 2017).

In our example, one possible vertex cover includes the
vertices in the left side with at least one edge in GMX :
{aF , cF , dF , eF }. This represents expanding all the required
state pairs in the forward direction. This requires four expan-
sions and is not optimal because the required state pairs can
be covered with just three expansions: a in the forward direc-
tion and f and e in the backward direction. This corresponds
to a minimal vertex cover of GMX : {aF , fB , eB}.

If we wish to know the minimum number of state expan-
sions necessary for solving a bidirectional search problem,
we must find the size of the minimum vertex cover ofGMX .
We use VC to refer to the minimum vertex cover of GMX

and |VC| to refer to the size of the minimum vertex cover.

Minimal Vertex Cover of GMX

A key question about the VC is whether there exists a search
algorithm that can expand the VC in practice. For instance,
there is no search algorithm that can expand just {eF , cB}
in Figure 3, because any search algorithm must start by ex-
panding the start or the goal. So, if this was the minimum
vertex cover, it would not be achievable in practice. How-
ever, it ends up that the structure of GMX is such that we
can compute VC efficiently, and there always exist a bidirec-
tional algorithm (fMM for some p) that will expand exactly
the nodes of VC in practice (among nodes that are part of
must expanded pairs) (Shaham et al. 2017).

In particular, if state s with forward g-cost gF (s) is in
VC then every state t with gF (t) ≤ gF (s) will also be
in VC, and analogously for the backward direction. This
means that any VC contains a contiguously set of nodes
from the start/goal in each direction. It is simpler to visu-
alize an abstraction of GMX which we denote by WGMX .
In WGMX all k states with the same g-cost are abstracted
together to form a single node with weight k. The weighted
vertex cover of WGMX is identical to VC. We show this
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Figure 3: (a) A sample graph (b) the associated GMX and (c) the weighted GMX with the minimum vertex cover.

in Figure 3(c), where each state is labeled inside with its g-
cost, and on the outside with its weight. (The state labels are
not drawn, but they can be inferred.) One possible minimum
vertex cover is highlighted on each side. The class of ver-
tex covers which contain a contiguous set of g-costs in each
direction are called restrained.

Definition 3. Assume start and goal states for which
d(start, goal) = C∗. Let SF be a set of states in the for-
ward direction and let SB be a set of states in the back-
ward direction. We say that the pair of sets (SF , SB) is
strongly restrained if there exists a fraction 0 ≤ p ≤ 1
such that SF contains all states u with gF (u) < pC∗ and no
states with gF (u) ≥ pC∗ and SB contains all states v with
gB(v) < (1− p)C∗ and no states with gB(v) ≥ (1− p)C∗.

This condition resembles the priorities used by fMM. In
fact, fMM(p) is strongly restrained with respect to p. Fur-
thermore, there exists a fraction 0 ≤ p∗ ≤ 1 such that
fMM(p∗) is optimally effective (Shaham et al. 2017), i.e.,
expands the necessary and sufficient must-expanded pairs.
This fraction determines what states are included (and not
included) in VC from each half of the vertex cover. The ex-
ample in Figure 3 has two possible values of p∗, 1

3 and 2
3 .

The main importance of fMM is theoretical. The exact
value for p∗ is not known in advance as it is a function
of the given problem instance, GMX , and C∗. Therefore,
fMM(p∗) is not a DXBB algorithm because p∗ is not known
in advance. Furthermore, Chen et al. (2017) showed that
for every DXBB algorithm there exists a worst-case graph
where it will expand at least twice as many nodes as are in
VC. Therefore, unlike unidirectional search, no DXBB bidi-
rectional search algorithm can be guaranteed to be optimal
in terms of state expansions.

However, given C∗ andGMX , there is a simple algorithm
that can find p∗ in time linear in the size of GMX . Finding
p∗ and then running fMM(p∗) can serve for research pur-
poses as an oracle – any algorithm can now be compared
to the theoretical optimal algorithm, as we do below in our
experimental section.

Algorithm 1 NBS
1: Put start and goal onto OpenF and OpenB

2: while OpenF and OpenB both not empty do
3: Among u ∈ OpenF and v ∈ OpenB

4: Select the pair (u, v) with lowest lb(u, v)
5: if lb(u, v) ≥ cost(U) then
6: return U
7: end if
8: Expand both u and v
9: if New path from start to goal is found then

10: Update U if new path is better than existing path
11: end if
12: end while

Near-Optimal Bidirectional Search

We conclude by describing Near-Optimal Bidirectional
Search (NBS) (Chen et al. 2017). NBS efficiently finds a
near-optimal vertex cover of GMX and thus its necessary
state expansions are near-optimal. It is inspired by a greedy
algorithm for finding a vertex cover (Papadimitriou and Stei-
glitz 1982) that selects an edge with two uncovered adjacent
vertices, and then adds both vertices to the vertex cover.

NBS adapts the greedy algorithm for heuristic search
problems; high-level pseudo-code is found in Algorithm 1.
The best solution found is stored in U . NBS it chooses a
pair of states (u, v) from GMX with minimal lb(u, v) (line
4). While only one of these states must be included in VC,
NBS expands both of them (line 8). NBS requires careful
implementation of data structures to ensure that the selec-
tion of (u, v) can be done correctly and efficiently.

NBS has the following properties. (1) It is guaranteed to
find the optimal solution. (2) It expands at most 2|VC| states.
So, the number of necessary state expansions will be no
more than two times the minimal number of necessary state
expansions. (3) No DXBB algorithm can have better worst-
case performance. Taken together, these properties make it a
powerful general purpose search algorithm, particularly be-
cause A* has no worst-case performance guarantee when
compared to bidirectional search algorithms.



Table 1: Comparing the necessary state expansions on three domains with different quality of heuristics.

Domain Heuristic Qual. Forward A* Backward A* Bi-BS NBS Min Uni-HS˙ Offline fMM
Pancake Strong 153,518 156,323 – 278,402 143,022 143,022
TOH4 Strong 19,339,936 5,607,372 6,670,903 6,283,143 5,607,372 5,154,787
Roads (CO-time) Medium 115,200 123,152 112,946 89,048 83,466 70,635
Grid Mazes Weak 57,427 56,993 25,469 25,087 41,953 23,795

Experiments
Other recent papers contain extensive experimental results
(Barker and Korf 2015; Holte et al. 2017; Sturtevant and
Chen 2016; Chen et al. 2017) illustrating bidirectional and
unidirectional search. So, our focus here is on illustrating
performance using the Forward A*, Backward A*, Bi-BS
and NBS algorithms. We additionally provide the results of
two oracles. The first oracle (Min Uni-HS) performs a uni-
directional A* search, but always searches in the direction
(forward or backward) that minimizes node expansions. The
second oracle provides p∗ to fMM and computes the mini-
mum possible number of node expansions.

We analyze four domains in turn, beginning with the pan-
cake puzzle. We experiment with 100 hard instances (Valen-
zano and Yang 2017) of the 20-pancake puzzle using the
GAP heuristic (Helmert 2010). Table 1 contains average
necessary state expansions, although Bi-BS runs out of
memory when solving these problem instances. We see that
there is only a small difference between forward and back-
wards search, and NBS is significantly worse than unidirec-
tional search. The oracles reveal that on these problems ei-
ther forward or backwards A* is always optimal, since both
oracles perform the same number of average state expan-
sions. NBS does almost exactly two times the minimum
number of necessary state expansions. The use of these ora-
cles shows no benefit to bidirectional search on this domain.

Our second domains is the 4-peg Towers of Hanoi
(TOH4) with 14 disks. Our heuristic is the sum of a 10-disk
and 4-disk PDB, and results are averaged over 50 problems.
The start state is randomly generated and the goal is the
canonical goal state. On these problems we see that back-
wards search is much cheaper than forward search. This is
due to the smaller branching factor at the goal. While NBS
does slightly worse than backwards A*, our oracle reveals
that bidirectional search could be about 10% better than
unidirectional search given the right search parameters. A
more important insight in this domain is that if we acciden-
tally search the wrong direction or if the start and goal were
randomized, A* would have poor performance (the average
of the forward and backwards search). But, these changes
would have no impact on the performance of NBS.

Our third domain tests 200 random problems from the
road network of Colorado, where edge costs are based on
travel time, and the heuristic is Euclidean distance divided
by the maximum travel speed. The Barker and Korf analysis
does not apply to this domain because it is not symmetric.
In this domain NBS does about 30% better than unidirec-
tional search and Bi-BS. Our first oracle reveals that on an
instance-by-instance basis there is a significant difference

between unidirectional forward and backwards search, be-
cause of the minimum of the two is even better than bidirec-
tional search. But, the bidirectional oracle shows that there is
still further room for improvement for bidirectional search.

Our final experiment is in grid-based mazes of size
512x512 with corridors width one taken from the MovingAI
benchmark repository (Sturtevant 2012). There are 12,000
problem instances of increasing difficulty; we use the octile-
distance heuristic for the search. Here, unidirectional search
is always worse than bidirectional search, even with an ora-
cle. Furthermore, the heuristic does not provide much ben-
efit to NBS, only reducing the average state expansions by
382 (less than a 2% reduction). In practice Bi-BSis faster
because it does not have to lookup a heuristic value at each
state. The fMM oracle show that there isn’t much additional
gain that could be achieved by a better bidirectional search
algorithm in this domain; the problem is a weak heuristic.

Conclusions and Future Directions
The landscape of bidirectional search has changed signifi-
cantly in the past few years. We now know that minimiz-
ing node expansions in bidirectional search is equivalent to
solving a weighted minimum vertex cover and that VC is
strongly restrained. Furthermore, we have a general-purpose
algorithm, NBS, that will be within a factor of two of the
minimum number of node expansions by any DXBB front-
to-end search algorithm.

Given this foundation, there are many questions that still
need to be addressed. These include question of suboptimal
search, front-to-front search, and a better characterization of
how our problems and heuristics influence the success of
bidirectional search.
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