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Abstract

The Jump Point Search (JPS) algorithm is designed explic-
itly for search on grids; it uses grid-specific properties to
reduce symmetry and provide faster optimal search with-
out pre-computation. Recent work has broken the algorithm
down into three components: a best-first search, a canonical
ordering of states, and a jumping policy. This paper shows
how a canonical ordering can be built on general graphs and
used in a similar manner to the canonical ordering of JPS.
This approach is able to significantly reduce the number of
states generated by an A* search, but more work is needed
to optimize and fully characterize the correctness of the ap-
proach.

Introduction and Background
There has been significant work on improving the speed of
grid-based pathfinding algorithms (Sturtevant et al. 2015),
particular using pre-computed storage. One of the few al-
gorithms that performs well without pre-processing is Jump
Point Search (JPS) (Harabor and Grastien 2011). Unfortu-
nately, JPS has only been shown to be effective on grid maps,
although it has potential applications on other domains with
regular structure.

Recent work (Sturtevant and Rabin 2016) analyzed JPS,
breaking it down into three independent components. These
are (1) a best-first search, (2) a canonical ordering of states,
and (3) a jumping policy. While JPS is only designed to work
on grids, the pieces of this decomposition are not specific to
grids. This paper shows how a canonical ordering can be
used for successor pruning in general graphs, similar to JPS;
we do not study jumping policies here.

Although canonical orderings have been used previously
on general graphs, they have, to our knowledge, only been
used to improve the efficiency of other techniques (Gold-
berg, Kaplan, and Werneck 2006; Antsfeld et al. 2012) as op-
posed to as a technique on their own. Furthermore, since we
use canonical orderings for move pruning, they are not guar-
anteed to always be correct with a best-first search (Holte
and Burch 2014).

This paper shows how a canonical ordering can be used,
discusses the need for correctness, shows that a canonical or-
dering can reduce node generations, and shows that different
canonical orderings have different performance.

Canonical Orderings
Canonical orderings have commonly been used to prune im-
plicit state spaces (Holte and Burch 2014), but their use for
pruning explicit state spaces has not been widely studied.

Potential Gain of a Canonical Ordering
One application of a canonical ordering is to reduce sym-
metries and thus the number of equal-cost optimal paths be-
tween two vertices in a graph. By removing redundant paths,
the canonical ordering can prune successors, reducing the
number of node generations during search.

In the JPS canonical ordering, the successors of a state are
determined by the action that was used to reach the state. In
the basic JPS canonical ordering, if a state was reached by an
action moving to the east, then the only child generated from
that state will be to the east. If the action reaching a state is
north-east, then three children are generated via the actions
north, east, and northeast. Analogous rules are defined for all
directions, along with special rules for obstacles (Harabor
and Grastien 2011). These rules reduce nodes generations,
speeding up the search independent of the other components
of JPS (Sturtevant and Rabin 2016).

We illustrate this using the first line of Table 1 and the
graph in Figure 1. State A has neighbors S, B, and C. If, dur-
ing search, we know that the parent of A is S, we can prune
all successors except B, since C can be reached optimally
through B, and S is the parent of B. This avoids generating
two successors, and makes the search more efficient.

Need For Correctness
One approach for producing canonical orderings is to add
a small amount of random noise to all edges in the graph,
as this implicitly breaks ties. Goldberg et. al. (2006) used
a variant of this approach, noting that they couldn’t prove
correctness, but in practice that it worked. Using Table 1,
we illustrate a canonical ordering that prunes all possible
paths between two states. In the second line we decide that
B should have no successors when B is generated as a suc-
cessor of A, because all successors can be reached optimally
by other paths. However, when combined with the pruning
from state A, a search from S can no longer reach C or D.
The canonical ordering in this example can be fixed trivially;
the point is that we must consider the possibility of a canon-
ical ordering being incorrect.
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Figure 1: Canonical ordering example.

Table 1: A canonical ordering that cannot reach D from S.

(Parent →) State All Successors Canonical Successors
(S →) A S, B, C B (C via B)
(A →) B A, C, D – (C via A; D via C)

Local Computation Algorithm
We now propose a simple algorithm for generating a canoni-
cal ordering that we can use for pruning. We have not proved
the correctness of the result, but we haven’t yet, in limited
experiments, found cases where it produces incorrect canon-
ical orderings.

Recall that the valid successors of a state are determined
by the parent of that state. For every state s in the graph we
perform a Dijkstra search until the neighbors of the neigh-
bors of s are reached. Then, the parent pointers are followed
back to s. We illustrate this on the graph in Figure 1. We
search from S until we reach A, B, and C. We then fill in the
canonical successors of A according to the parent points of
B and C. When coming from S, A is on the shortest path to
both B and C, but not to S. So, S is not A’s successor in the
canonical ordering when reaching A via S. C can be reached
optimally both directly from A and through B, so, depend-
ing on the tie-breaking in the search, C may or may not be
considered a successor of A. This choice can influence the
effectiveness of a canonical ordering; the question of finding
the best canonical ordering is open.

Experimental Results
We have experimented on a number of maps and grids; due
to space restrictions we present results on a single map here
so we can compare the grid- and graph-based canonical or-
derings. We search on the map converted to a graph using
A* (G-A*) and Canonical A*1 (G-CA*). We also search di-
rectly on the grids using A*, and CA*. The canonical order-
ing on the graph is computed with our local algorithm from
the last section; on grids we use the JPS canonical ordering.
We report average results over 5000 random problems on the
brc203d Dragon Age: Origins map (from (Sturtevant 2012))
in Figure 2. Results on the AR0300SR Baldur’s Gate II map
(not shown) are similar. All searches use the octile-distance
heuristic.

We report time, states expanded, states generated, and the
size of the open list at the end of the search. We store the
canonical ordering in a hash table, not directly in the graph,

1This is A* with a canonical ordering (see (Sturtevant and Ra-
bin 2016))

Table 2: Results on the brc203d map with 20,712 states and
75,330 edges. The average path length was 192.1.

Alg Time Expanded Generated Open
G-A* 3.27ms 3,382 25,059 229

G-CA* 2.93ms 3,521 3,731 152
A* 2.36ms 3,382 25,059 229

CA* 1.14ms 3,387 3,386 91

so the time is not particularly relevant. The most impor-
tant metric is the number of states generated. The canonical
ordering in the graph reduces the number of state genera-
tions by a factor of 6.7. This is the primary impact of the
canonical ordering. But, note that JPS’s canonical ordering
reduces state generations by a factor of 7.4. Since the search
spaces and problems are identical, this indicates that there is
a choice of canonical orderings, and the choice can impact
performance.

Conclusions
This paper has shown that we can build and use canonical
orderings on graphs to reduce the number of states gener-
ated during a search, similar to what is done in JPS. More
work is needed to prove general correctness, study differ-
ent canonical orderings, and to compare against other tech-
niques which use constraints to prune states in graph search.
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