
Canonical Orderings on Grids

Nathan R. Sturtevant
Department of Computer Science

University of Denver
Denver, CO, USA

sturtevant@cs.du.edu

Steve Rabin
Department of Computer Science
DigiPen Institute of Technology

Redmond, WA, USA
steve.rabin@gmail.com

Abstract
Jump Point Search, an algorithm developed for fast
search on uniform cost grids, has successfully im-
proved the performance of grid-based search. But,
the approach itself is actually a set of diverse ideas
applied together. This paper decomposes the algo-
rithm and gradually re-constructs it, showing the
component pieces from which the algorithm is con-
structed. In this process, we are able to define a
spectrum of new algorithms that borrow and repur-
pose ideas from Jump Point Search. This decom-
position opens the door for applying the ideas from
Jump Point Search in other grid domains with sig-
nificantly different characteristics from two dimen-
sional grids.

1 Introduction
Grids are a common state space representation for map-based
movement and planning tasks, as they are simple, easy to im-
plement, and have many other desirable properties. But, grids
are also sometimes avoided because they represent a space
using a uniform decomposition, regardless of the size of the
space. This results in dense spaces with many transpositions
— meaning that best-first algorithms like A* must be used
over linear space algorithms like IDA*. These transpositions
can be costly to search, as a significant amount of time is
spent generating and detecting transpositions.

Recently, a number of different algorithms have been pro-
posed that take advantage of the underlying structure of
grids to significantly improve the performance of search
on grids. These include approaches like Jump Point
Search (JPS) [Harabor and Grastien, 2011], Subgoal Graphs
(SG) [Uras et al., 2013], and Transit Routing for grid maps
(TR) [Antsfeld et al., 2012]. To improve performance, all of
these approaches explicitly limit the optimal paths that will
be followed in a map. JPS does this by enforcing a canon-
ical ordering over shortest paths in the map. TR does this
by adding small random weights to edges in the map, which
provides implicit preference between paths when many paths
have the same cost. SG does this with a direct-h-reachable
relationship.

While these techniques have successfully increased perfor-
mance in grid-based maps, the underlying parts of their suc-

cess are not well-studied. In this paper we look particularly at
JPS. The original JPS work [Harabor and Grastien, 2011] de-
scribes the algorithms with a set of local rules for movement
with ‘forced neighbors’. This and follow-up work [Harabor
and Grastien, 2014] mention A*, but do not explore the rela-
tionship with A* search.

This paper shows how JPS can be broken into three compo-
nents: a best-first search, a canonical ordering of states, and
a specialized successor function. Clearly delineating these
components of the algorithm allows us to modify them in-
dividually. We introduce Canonical A*, which uses just the
best-first search and the canonical ordering. We introduce
Bounded JPS, which uses a parameterized successor func-
tion to improve performance. The Canonical Dijkstra’s al-
gorithm improves the performance of single-source shortest-
path searches. Finally, we can modify the best-first ordering
to create weighted (suboptimal) variants of these algorithms.

In addition to studying the performance of these ap-
proaches, we also consider the correctness of the canonical
ordering. The canonical ordering used in JPS is a special
case of work on symmetry reduction that has been applied
elsewhere [Holte and Burch, 2014], and is not generally cor-
rect in best-first search. We describe how one can validate the
correctness of the pruning in JPS.

1.1 Search Assumptions
There are many settings in which search algorithms are ap-
plied; each setting has its own set of related constraints on
memory, pre-processing, optimality, and other performance
metrics. This paper focuses on algorithms that do not use
pre-processing before search begins, but discover the envi-
ronment online during search. This setting is suitable for dy-
namic environments, or applications that have limited mem-
ory or time for pre-computation.

The work here is applicable to regular search environ-
ments, such as grids, that contain significant symmetry. Two-
dimensional pathfinding problems are an obvious example
application and the primary domain described in previous
work. Other possible domains include higher-dimension
grids, such as 3D voxels, or problems that have underlying
grid structure, such as the configuration space of a robotic
arm [Russell and Norvig, 2010].

In comparing the performance of different domains, the
primary difference between domain types will be the cost of

Algorithm 1 Best-First Search
BFS(start, goal()
1: Add start to open
2: while open not empty do
3: Get best from open
4: if best is goal then
5: Return path
6: end if
7: for all successors s of best do
8: if s in open then
9: Update cost to s in open

10: else if s not in closed then
11: Add s to open
12: end if
13: end for
14: Add best to closed
15: end while

generating successors. Most two-dimensional grids are stored
explicitly, and generating successors is as simple as checking
the eight adjacent neighbors of a given cell. In a robotic arm,
however, the domain is usually described implicitly, and thus
checking successors requires more expensive checks to see if
the line segments representing the robotic arm have collided
with any of the line segments representing the environment.
Even explicit domains may have significant costs as the num-
ber of dimensions increase – due to the cache locality of the
neighbors in memory. The algorithms in this paper will be
particularly applicable in domains with different performance
characteristics than two-dimensional grids.

2 Decomposing Jump Point Search
The first contribution of this paper is primarily pedagogical: a
clear decomposition of JPS into its component pieces. Given
an understanding of this decomposition, we can then easily
introduce a variety of new algorithms by describing their spe-
cific changes to one of these components.

2.1 Best-First Search
In this paper we are concerned with best-first search algo-

rithms. We review the concepts behind best-first search and
then discuss the characteristics of search on grids.

A best-first search expands states according to a cost func-
tion that determines the best possible state to expand next.
A*, for instance, is best-first search according to f = g + h,
where the g-cost of a state is the cost of the path from the start
state and the h-cost is an admissible (non-overestimating) es-
timate of the cost to the goal. We also assume that h is con-
sistent, obeying the triangle inequality.

Pseudo-code for best-first search is in Algorithm 1. The
search maintains open and closed lists. States on open have
been generated, but not expanded. States on closed have been
expanded. A state, s, is expanded when it is removed from
open, the successors of s are generated, and s is placed on
closed. A successor function generates the children of s by
determining the states that can be reached from s and adding
them to open. This paper will use several variants of best-
first search. The full JPS algorithm is best-first search with a
custom method of generating successors.

S

G

(a) (b)

Figure 1: Canonical Ordering in JPS

2.2 Canonical Ordering
On open (convex) maps without obstacles, such as in Fig-
ure 1(a), there can be many different optimal paths between
points. For the start (S) and goal (G) states shown, there are
three possible optimal paths between the start and the goal.
The difference between these paths is whether the action that
moves to the right is taken first, second, or last. If we were
to widen the grid by adding more grid cells, but keep the goal
in the lower-right corner, the number of possible paths would
grow exponentially. A* will not be forced to explore all of
these paths, since with a consistent heuristic it will only ex-
pand each state once. But, generating the same states along
different paths can still be costly.

One component of JPS is a canonical ordering which
serves to eliminate many of these redundancies. The canon-
ical ordering is a total ordering over paths; the preference is
for paths that contain diagonal actions (which move in two or
more axes) before cardinal actions (which only move in one
axis) whenever possible along a path. Thus, among the three
paths in Figure 1(a) JPS will always return the path in gray, as
diagonal actions are taken before cardinal actions. JPS does
not have to generate all paths and select between them to get
the canonical ordering; it can generate them incrementally by
considering the action used to reach a state.

On an empty convex map, these rules will provide a unique
path from any start state to every other state in the map. We
illustrate the canonical ordering for a given start state in Fig-
ure 1(b). The start state is in the upper-left portion of the
map marked with a circle. Lines are drawn from each state to
its possible successors. These lines proceed diagonally from
the start state, with vertical and horizontal portions extending
from the diagonals. Each state in the map is reached by ex-
actly one line. Thus, the search space is no longer a graph;
instead it is a tree.

We call this a basic canonical ordering; it is sufficient for
finding paths in convex state spaces with no obstacles. This
basic canonical ordering can be implemented by annotating
each state, s, with the action that was used to reach s. Multi-
ple actions are allowed – the start state, for instance, is consid-
ered to have been reached by every legal action. The canoni-
cal ordering determines the legal actions at each state. These
can be specified by two rules: (1) If action a to arrive at s is
one of the four cardinal directions, the only legal action at s
is a. (Assuming a is valid.) (2) If the action a to arrive at s
is a diagonal, with a1 and a2 cardinal components, the legal
actions at s are a, a1, and a2.

The basic canonical ordering rules fall short when maps are

(a) (b) (c)

Figure 2: Extended the Canonical Ordering with forced
neighbors

non-convex or contains obstacles, as the basic ordering rules
are not sufficient to provide a path to every state in the state
space. Consider the maze in Figure 2(a) with the start state
marked with a circle in the upper-right corner of the map.
The basic canonical ordering from this state will follow the
lines shown, but cannot reach the rest of the map. The basic
ordering assumes that the unreached states will be reached by
other paths, but this is prevented by the presence of obstacles.

To address this, JPS introduces the notion of jump points.
After a canonical path passes an obstacle, a jump point is
placed on the corner of the obstacle. Here, the canonical or-
dering is reset to allow the canonical ordering to explore the
portions of the state space that would otherwise be missed
due to the presence of obstacles. These added successors at
the jump points are called forced neighbors. Figure 2(c) adds
the jump points to Figure 2(a), marking them with squares.
We call this a full canonical ordering.

Jump points are only added when the search is proceeding
in a cardinal direction. If an action orthogonal to the current
movement direction (e.g. south when the canonical order-
ing is expanding to the west) is blocked due to an obstacle, a
jump point is added when that orthogonal action is no longer
blocked by the obstacle. In the top of Figure 2(b) the search
proceeds west in the row above the obstacle. Since south is
blocked, a jump point is added when the obstacle ends so that
the search can proceed south around the obstacle.

In the maze map of Figure 2(c) the full canonical ordering
is able to reach all states, and it will reach every state with
exactly one path. This is because there is only one path to
each state in the larger structure of the maze. In Figure 3(a)
there are multiple paths around the obstacles in the map. In
this example the jump points will direct the search around
each obstacle indefinitely if we do not check for duplicates.
The exact mechanism by which this occurs is part of JPS’s
specialized successor function, which we address next.

2.3 Successor Function
The final piece of JPS is a successor function that jumps over
states in the state space, significantly reducing the number
of states that are added to the open and closed lists. JPS
generates1 many states along the paths allowed by the canon-
ical ordering (computing the g-cost of each), but only adds
two types of states to open, goal states and jump points. The

1When describing JPS we use a broader definition of generate,
referring to all states that are checked along the canonical ordering,
whether or not they are added to open.

goal state must be added to ensure the search terminates with
the correct solution, as a best-first search terminates when the
goal is expanded. Jump points are added to keep the search
from going into an infinite loop as the full canonical ordering
wraps around obstacles.

So, to generate the successors of a state s, JPS follows the
basic canonical ordering out of s until the goal or a jump point
is reached, in which case the state is added to open, or a wall
is reached, in which case nothing is added to open. We illus-
trate this in Figure 2. Part (a) of the figure shows the states
that will be generated from the start state. Along these paths
JPS will find two jump points, which are marked in part (b)
with squares. In this case the start state has two successors
that are added to open. A best-first ordering is used to choose
which will be expanded next. Each of these states also has
exactly one successor, shown in part (b) marked with stars.
In summary, the successor function follows the canonical or-
dering from the parent, but only returns jump points and goal
states as successors.

2.4 Summary
Put together, we can now describe JPS as a best-first search
algorithm that generates states according to a canonical order-
ing. A basic canonical ordering is enhanced by jump points,
creating a full canonical ordering, and ensuring that every
state in the state space will be reached. To reduce the number
of states added to open, JPS only adds jump points and goal
states to open. JPS is equivalent to Algorithm 1 where best
is measured by f = g + h and the successor function (line 7)
generates successors according to the full canonical ordering
with jumping until a jump point or the goal is reached.

We observe that JPS has better performance than A* not
because it explores fewer states, but because it avoids costly
open list operations. JPS, similarly to A*, must generate or
expand every state with f -cost less than the optimal f -cost in
order to prove that the optimal solution has been found. The
advantage for JPS is that it will only generate many states that
A* expands.

3 Canonical Ordering Correctness
Previous work has focused on showing that the canonical
ordering itself is correct [Harabor and Grastien, 2011], but
there is a secondary issue which has not been addressed, the
correctness of using the canonical ordering with a best-first
search such as A*. A canonical ordering is a special case of
general move pruning techniques which can be automatically
detected and applied at runtime [Holte and Burch, 2014]. Un-
fortunately, these approaches are not always correct in a best-
first search - we can create canonical orderings or move prun-
ing rules that are locally correct, but prune all legal paths
between two states. The important question is whether the
canonical ordering used by JPS is correct.

To prove the correctness of the JPS canonical ordering in
best-first search, we must consider the case of a state s on
open reached by action a1 with cost c that is later reached by
action a2 also with cost c. Maintaining the s in open twice,
once with each parent action, blows up the state space, negat-
ing the efficiency of the canonical ordering. So, we must

(a) (b)

Figure 3: Canonical ordering starting in the upper-left corner
for an empty map.

show that maintaining only a single parent of s still guar-
antees that all states in the state space can be reached with
optimal cost. We have verified that this holds by enumerating
all pairs of actions that can reach a state and confirming that
even if we do not maintain two parent actions, all states will
still be reached with optimal cost. The full details are omitted
due to space constraints. Thus, when JPS reaches a state via a
different action with the same (or greater) cost, it can ignore
this new action and maintain correctness.

4 New Algorithms
Given the decomposition of JPS into best-first search, a
canonical ordering, and a specialized successor function, we
can now make small changes to each of these pieces in order
to observe its impact on JPS’s behavior.

4.1 Canonical A*
The first algorithm we propose is A* with a canonical or-
dering, or Canonical A*. This algorithm takes the best-first
search and the canonical ordering from JPS, but omits the
jumping step and only generates the next successor of each
state during search. That is, CA* is equivalent to Algorithm 1
where best is measured by f = g+h and the successor func-
tion (line 7) generates successors according to the full canon-
ical ordering without jumping. This approach will, in most
cases, expand exactly as many nodes as A*; it will just be
more efficient, because it won’t generate as many successors
for each state, avoiding redundant lookups on open. CA*
sometimes expands slightly more states near the goal because
it is restricted by the canonical ordering and regular A* is not.
As we will see in experimental results, about half the perfor-
mance gain from JPS comes from the canonical ordering.

4.2 Bounded JPS
This practice of jumping directly to the jump points reduces
the number of states added to and removed from open. But,
there is a significant drawback to this approach, which hasn’t
been explored previously. We illustrate this in Figure 3(b). In
this figure, the start is in the upper-left corner of the map and
the goal is in the lower-right corner. When solving this prob-
lem, the only successor of the start state that will be added to
open is the goal, which will then be expanded, terminating
the search. Thus, no matter the size of the map, JPS will only
perform two node expansions. But, JPS will generate every
state in the entire map while checking for jump points.

JPS Time
A* Time
x2·10-4

Ti
m

e
(m

s)

0

500

1000

1500

2000

2500

Map Radius
0 1000 2000 3000 4000 5000

Figure 4: JPS running on an empty map.

We validate this behavior in Figure 4. We created a series
of problems on open maps of size r × r, where the start is
at (0, 0) and the goal is at (r − 1, r − 1). We then solve
the problems with JPS and with A* and plot the time it took
to find the solution. We also plot the curve 10−4 × x2 for
comparison purposes. What we find is that the time required
for JPS to find a solution grows with the size of the map (r2),
while A*’s performance grows with the radius (r). This is
because A* has a perfect heuristic and thus only generates
the optimal path from the start to the goal. This suggests
that JPS’s policy of generating many states but only inserting
jump points and the goal into open may not always be the
best approach. Based on this observation we introduce the
bounded jump point search (BJPS) algorithm.

BLJPS is equivalent to Algorithm 1 where best is measured
by f = g + h and the successor function (line 7) gener-
ates successors according to the full canonical ordering with
jumping until a jump point or the goal is reached, or the jump
distance exceeds a threshold determined by a bounding func-
tion. Our bounding function takes a parameter b; a state is out
of bounds if it is more than distance b away from its parent;
other bounding functions are possible.

BJPS will clearly fix the r2 performance seen in Figure 4,
as it will generate rb2 states, where b is expected to be con-
stant. The exact choice of b will depend on the properties of
the domain. Interestingly, BJPS is a hybrid algorithm that in-
terpolates between CA* and JPS. With a bound of 0, BJPS
is CA*. With a bound of infinity, BJPS is the same as JPS.
As we will see in the experimental results, BJPS offers better
performance than both CA* and JPS.

4.3 Canonical Dijkstra
BJPS reduces the length of the jumps performed by JPS and
increases performance as a result. But, there is one setting
where performing longer jumps is reasonable. This is when
we are performing a single-source shortest-path computation.
In this context we are required to visit every state in the
state space, so jumping long distances will not necessarily
be wasted overhead.

We can modify any optimal best-first search algorithm to
find the shortest path to all states in the state spaces, but for
historical reasons we describe this approach applied to Di-
jkstra’s algorithm [Dijkstra, 1959], and name the approach
Canonical Dijkstra (CD). CD starts with a version of Algo-
rithm 1 where best is measured by f = g + h and the suc-
cessor function (line 7) generates successors according to the

full canonical ordering with jumping until a jump point or the
goal is reached.

The following additional modifications must be made:
First, when successors are being generated along the canon-
ical ordering, their g-costs must be written to the closed list.
Unlike a traditional Dijkstra search, these g-costs are not
guaranteed to be optimal. It is possible that we may revisit
these states when jumping from a different parent later in the
search. If, when jumping in the successor function, we find a
state with lower or equal g-cost, we can immediately termi-
nate the current jump. If we find a state with higher g-cost,
we update the g-cost and continue the jumping process. If
the state that was updated is a jump point (whether a state is
a jump point is determined by the direction from which we
reach it), we must take the state off of the closed list and
put it back on open with updated parent information from the
canonical search. This search continues until open is empty.

4.4 Suboptimal Variants
The final modification we propose to JPS is to use a differ-
ent metric for best. JPS traditionally orders its expansions
by g + h cost, but weighted A* [Pohl, 1970] uses a cost
function of g + w · h, where w is a parameter that trades
suboptimality for search speed.2 Weighted JPS and weighted
CA* are equivalent to Algorithm 1 where best is measured by
f = g+w ·h and the successor function generates successors
according to the respective rules for JPS and CA*.

If we consider that an algorithm like JPS is just a best-
first search on a graph formed by the start state, jump points,
and the goal, it is clear that we can modify the best-first met-
ric used to order expansions without touching the canoni-
cal ordering or the successor generation rules. Thus, these
weighted variants have the same solution quality bounds as
weighted A*.

5 Experiments
We have already shown (Figure 4) that the worst-case perfor-
mance of JPS can require the algorithm to visit every state
in the state space, when a perfect heuristic is able to guide
the search directly to the goal. The goal of our experimental
results is to measure the performance of our new search al-
gorithms, CA*, BJPS, and CD, as well as the weighted coun-
terparts of CA* and BJPS. We will evaluate these algorithms
by looking at the total time to solve a problem (in ms), the
number of expansions, the number of node generations (this
includes states that were analyzed during successor genera-
tion but not added to open), and the number of states on open
at the end of the search. These metrics paint a clear picture of
the benefits and drawbacks of each approach.

All of our experiments were run on a 2.3 GHz Intel Core
i7 laptop with 16 GB of RAM. Our priority queue is imple-
mented with a heap, with grid-based open and closed lists.
Our implementation of CD and CA* are based upon existing
A* code. Our implementation of BJPS is based on a cus-

2Far more advanced suboptimal search algorithms have been
proposed [Thayer et al., 2012]; we only explore the baseline com-
parison here.

tom JPS implementation. All searches use the octile distance
heuristic and ties are broken towards larger g-costs.

5.1 Optimal and Suboptimal Search
In this section we look at the performance of A*, CA* and
JPS along with the weighted (suboptimal) variants of these
problems. Our experiments are run on the Dragon Age: Ori-
gins maps from the Moving AI repository [Sturtevant, 2012].
The results of these experiments are found in Table 1.

First, we look at the comparative performance of A*, CA*
and JPS when finding optimal solutions (weight = 1). Our
average speedup isn’t as great as reported in the original
JPS work [Harabor and Grastien, 2011]. We have imple-
mented numerous optimizations in our code, but it is clear
that additional optimizations could improve performance fur-
ther. These do not, however, change the number of expan-
sions or generations. Thus, we still draw broader conclusions
about the best approach according to the relative cost of node
generation and expansion in a given domain/implementation.

Our results suggest that about half of the performance of
JPS comes from the canonical ordering, and the other half
comes from the successor generation policy. Both CA* and
A* expand very similar numbers of states; JPS expands over
50x fewer states on average. Although JPS generates fewer
states than A*, it generates four times more states than CA*
does. This is because JPS generates large numbers of states
when it is jumping that CA* does not expand. When finding
a solution, JPS has fewer states remaining on open than the
other two algorithms.

Increasing the weight used in the best first search increases
the number of states on open, while reducing the total number
of expansions and generations. CA* finds the highest qual-
ity solutions between the algorithms given a particular search
weight. This is because the canonical ordering prevents CA*
from quickly going around obstacles like weighted A* would.
The canonical ordering does not restrict JPS as much as CA*,
because JPS is searching over jump points not grid cells.

JPS has the best performance of the three algorithms for
any particular search setting. But, the large number of gen-
erations motivates BJPS which can reduce node generations
by restricting jumping. This will be particularly important in
domains where generations are more expensive than open-list
operations.

5.2 BJPS
In Tables 2 we look at the performance of BJPS with differ-
ent values of the search bound. The problems are taken from
Dragon Age: Origins and Starcraft maps respectively. On
both sets of maps there is a saddle point with a bound be-
tween 4 and 16 where the time is minimized, although this
generally corresponds to the setting that has the most nodes
on open. Clearly the JPS successor generation policy is not
always the best policy. The gains from using BJPS are larger
on Starcraft maps than on Dragon Age maps. This is because
the Starcraft maps are larger and tend to have larger open ar-
eas than the Dragon Age maps. Thus, the overhead of gener-
ating successors and performing the jumping is much higher
in Starcraft, and it is worth reducing this cost. Results in maze

Table 1: Average work by A* and Canonical A* with a weighted heuristic.

Time (ms) Expansions Generations Open Quality
Weight A* CA* JPS A* CA* JPS A* CA* JPS A* CA* JPS A* CA* JPS

1 5.325 2.647 1.895 13295 13302 228 99483 13301 59325 305 122 37 1.00 1.00 1.00
2 3.156 1.475 1.165 7720 8002 147 57325 8001 36476 526 164 39 1.04 1.01 1.02
5 2.175 1.057 0.919 5406 6003 115 39881 6002 29053 634 188 42 1.09 1.03 1.05

10 1.907 0.973 0.843 4800 5574 106 35298 5573 26552 669 196 43 1.10 1.04 1.07

Table 2: BJPS results on Dragon Age and Starcraft maps.

Dragon Age
Bound Time (ms) Expanded Generated Open

0 2.74 13037 13036 122
1 2.01 7387 15021 134
4 1.61 3963 21133 166

16 1.76 1869 36889 243
64 2.05 471 52777 159
∞ 2.05 227 59324 36

Starcraft
Bound Time (ms) Expanded Generated Open

0 13.02 48549 48548 363
1 9.06 26297 53061 390
4 6.54 12295 63550 441

16 6.29 5455 100096 668
64 6.89 1594 142105 734
∞ 9.38 400 204099 101

maps (not shown) show that there is no significant gain to us-
ing BJPS on these problems. This is because there are no
significantly large open areas in mazes that are costly for JPS
to generate.

Our results show the trade-off between generations and ex-
pansions in BJPS. If we want to consider extending BJPS to
other domains, the key question will be the cost of generating
versus expanding successors. BJPS can be tuned to balance
these costs and maximize performance.

5.3 Single Source Shortest Path
In this section we experiment with the single-source shortest-
path computation across a variety of maps types, shown in
Table 3. In these maps we only show the performance of an
A* implementation, a CA* implementation, and a CD imple-
mentation (which uses the JPS successor generation policy).
BJPS is omitted because experimental results showed that it
had the same or slightly worse performance than CA*.

Our results show that the CA* can speed up a single-source
shortest-path computation by a factor of 2, and CD up to 4.4
times faster than A*. This computation has many purposes,
such as building heuristics [Rayner et al., 2013], so improv-
ing the performance is a valuable contribution.

5.4 Discussion and Related Work
Canonical orderings have surfaced in the literature many
places, but have not been deeply studied. We highlight a few
areas of work here. Several papers suggest the importance of
canonical paths in passing, but do not study this in detail. A
short paper looking at hierarchy and grid graphs [Storandt,

2013b] alludes to many of the ideas studied here, as does
work on contraction hierarchies in grids [Storandt, 2013a],
but neither approach studies canonical orderings more deeply.
Older work on reach [Goldberg et al., 2006] discusses the
importance of canonical orderings in road networks, but did
not explore canonical orderings for experiments on grids later
in the paper. Work on transit routing on grids [Antsfeld et
al., 2012] essentially creates a canonical ordering of states
via small randomizations on edges. It is an open ques-
tion whether they would get the same performance using the
canonical ordering from JPS, or whether their approaches
benefit from the randomness of their orderings.

In real-time search, Sturtevant’s work on f -LRTA* [Sturte-
vant and Bulitko, 2011] dynamically built canonical order-
ings to prune paths in real-time search algorithms, but the
work never considered a priori applying a canonical order-
ing for pruning purposes. There is likely more work that
can be done in this direction. Related to this, the FRIT al-
gorithm [Rivera et al., 2014] looks at the ideal tree of shortest
paths to the goal, which has a strong connection to canonical
orderings.

6 Conclusions and Future Work
In this paper we have decomposed the performance of JPS,
showing that the algorithm can be broken down into a best-
first search, a canonical ordering, and a successor function
that jumps between jump points to reduce the number of
states on open. We use this breakdown to derive several new
algorithms that are variants of JPS. Detailed experimental re-
sults reveal that JPS performs a significant number of node
generations in order to reduce total node expansions. These
results suggest that JPS may not be applicable to state spaces
where there is a high cost of node generation relative to the
cost of adding and removing states from open. More work is
needed on a broader range of domains.

Table 3: Single-source shortest-path computation using A*,
CA*, and Canonical Dijkstra. Times are in ms; improvement
factor is over and above A*.

A* CA* CD
Maps Time Time Ratio Time Ratio |Map|
DA2 6.8 3.3 2.1 2.0 3.3 15,911.2
DAO 9.1 4.3 2.1 2.6 3.4 21,322.5
Mazes 86.8 40.9 2.1 26.4 3.3 207,940.7
Rand. 95.0 54.5 1.7 38.2 2.5 185,864.1
Rooms 124.7 60.5 2.1 28.3 4.4 232,785.2
SC 138.5 63.4 2.2 34.8 4.0 263,782.5

References
[Antsfeld et al., 2012] Leonid Antsfeld, Daniel Damir Hara-

bor, Philip Kilby, and Toby Walsh. TRANSIT routing on
video game maps. In Proceedings of the Eighth AAAI Con-
ference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE-12, Stanford, California, October
8-12, 2012, 2012.

[Dijkstra, 1959] E. W. Dijkstra. A note on two prob-
lems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[Goldberg et al., 2006] Andrew V. Goldberg, Haim Kaplan,
and Renato F. Werneck. Reach for a*: Efficient point-
to-point shortest path algorithms. In Proceedings of the
Eighth Workshop on Algorithm Engineering and Experi-
ments, ALENEX 2006, Miami, Florida, USA, January 21,
2006, pages 129–143, 2006.

[Harabor and Grastien, 2011] Daniel Damir Harabor and Al-
ban Grastien. Online graph pruning for pathfinding on grid
maps. In Proceedings of the Twenty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011, 2011.

[Harabor and Grastien, 2014] Daniel Damir Harabor and Al-
ban Grastien. Improving jump point search. In Pro-
ceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS 2014,
Portsmouth, New Hampshire, USA, June 21-26, 2014,
2014.

[Holte and Burch, 2014] Robert C. Holte and Neil Burch.
Automatic move pruning for single-agent search. AI Com-
mun., 27(4):363–383, 2014.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path find-
ing in a graph. Artif. Intell., 1(3):193–204, 1970.

[Rayner et al., 2013] D. Chris Rayner, Nathan R. Sturtevant,
and Michael Bowling. Subset selection of search heuris-
tics. In IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, 2013.

[Rivera et al., 2014] Nicolas Rivera, Leon Illanes, Jorge A.
Baier, and Carlos Hernández. Reconnection with the ideal
tree: A new approach to real-time search. J. Artif. Intell.
Res. (JAIR), 50:235–264, 2014.

[Russell and Norvig, 2010] Stuart J. Russell and Peter
Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010.

[Storandt, 2013a] Sabine Storandt. Contraction hierarchies
on grid graphs. In KI 2013: Advances in Artificial Intelli-
gence - 36th Annual German Conference on AI, Koblenz,
Germany, September 16-20, 2013. Proceedings, pages
236–247, 2013.

[Storandt, 2013b] Sabine Storandt. The hierarchy in grid
graphs (extended abstract). In Proceedings of the Sixth
Annual Symposium on Combinatorial Search, SOCS 2013,
Leavenworth, Washington, USA, July 11-13, 2013., 2013.

[Sturtevant and Bulitko, 2011] Nathan R. Sturtevant and
Vadim Bulitko. Learning where you are going and from
whence you came: h- and g-cost learning in real-time
heuristic search. In IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, pages
365–370, 2011.

[Sturtevant, 2012] Nathan R. Sturtevant. Benchmarks for
grid-based pathfinding. Transactions on Computational
Intelligence and AI in Games, 4(2):144–148, 2012.

[Thayer et al., 2012] Jordan Tyler Thayer, Roni Stern, Ariel
Felner, and Wheeler Ruml. Faster bounded-cost search us-
ing inadmissible estimates. In Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil,
June 25-19, 2012, 2012.

[Uras et al., 2013] Tansel Uras, Sven Koenig, and Carlos
Hernández. Subgoal graphs for optimal pathfinding in
eight-neighbor grids. In Proceedings of the Twenty-
Third International Conference on Automated Planning
and Scheduling, ICAPS 2013, Rome, Italy, June 10-14,
2013, 2013.

