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Abstract

In looking back on the last five to ten years of work in heuris-
tic search a few trends emerge. First, there has been a broad-
ening of research topics studied. Second, there has been
a deepened understanding of the theoretical foundations of
search. Third, and finally, there have been increased con-
nections with work in other fields. This paper, correspond-
ing to a AAAI 2012 invited talk on recent work in heuristic
search, highlights these trends in a number of areas of heuris-
tic search. It is our opinion that the sum of these trends re-
flects the growth in the field and the fact that heuristic search
has come of age.

Introduction
Heuristic search is coming of age. The classical heuristic
search problem is one where the environment is static, all
actions have unit edge costs, the goal state is fixed, and sig-
nificant computational resources are devoted to finding op-
timal solutions. There has been, and still is much to ex-
plore and understand in this setting, but in the last five to ten
years research has branched out in significant ways beyond
this foundation. This diversification, together with a better
theoretical understanding of search, a new comprehensive
textbook on the subject (Edelkamp and Schrödl 2012), and
the formation of the Symposium on Combinatorial Search
(SoCS), is indicative of the maturation of heuristic search as
a field.

This paper provides a brief overview of recent work in
heuristic search. It is not intended to be exhaustive, but rep-
resents some of the topics which are of interest to members
of the heuristic search community.

We broadly divide the work into three sections. At the
high level we look at theoretical advances. Then we turn to
algorithmic advances, followed by advances which are more
domain-specific.

Theory
One mark of a mature field is a the development of theo-
retical models that predict and explain behavior. Work in
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heuristic search is often focused on admissible heuristics:
lower-bounds on the cost to reach the goal from a particular
state in the state space. Despite this, the influence of heuris-
tics was not well understood for many years. Initial models
came out of work on Rubik’s cube (Korf 1997). Such models
have been continually improving (Korf, Reid, and Edelkamp
2001; Zahavi et al. 2010; Lelis, Zilles, and Holte 2011) and,
in certain domains, can now predict the cost of solving a
particular problem in a particular domain quite accurately.

Inconsistent heuristics also provide lower-bounds, but
do not follow the triangle inequality. Early work in the
field suggested that using inconsistent heuristics could in-
cur costly overheads and should be avoided when possi-
ble (Mero 1984), although it was unclear when inconsistent
heuristics would arise in practice. The understanding of in-
consistent heuristics has been greatly increased (Felner et
al. 2011). It is now understood that inconsistent heuristics
are easy to build and can be quite beneficial in practice. The
drawbacks previously studied do not apply to algorithms like
IDA*, and in practice the problems in A* can be fixed with
local propagation of heuristic values.

Algorithms
In this section we focus on general-purpose algorithms, in-
stead of those motivated by specific problem domains.

Suboptimal Search
In many problems, time or memory constraints rule out the
possibility of finding and proving an optimal solution. An
optimal heuristic search is doomed to expand every node
whose f -value is less than the optimal solution cost. But,
under such constraints, suboptimal solutions are almost al-
ways acceptable.

For many years just weighting the heuristic (Pohl 1973),
which creates an inadmissible heuristic, was considered to
be state-of-art, as this provides a bound on the final solu-
tion suboptimality. Extensions of this idea include dynami-
cally modifying the weights used (Likhachev, Gordon, and
Thrun 2003) or continuing the search after the first solution
is found (Hansen and Zhou 2007). But, there are several new
and active directions for solving problems suboptimally.

One recent direction is to directly build effective inadmis-
sible heuristics. This can be done off-line (Jabarri Arfaee,
Zilles, and Holte 2011) or on-line during search (Thayer and



Ruml 2011a). Another approach is to develop search meth-
ods explicitly designed to find solutions quickly. In domains
with non-uniform edge costs, one can take into account both
the solution length (the number of actions required) and so-
lution cost (the cost of the actions) via two different heuris-
tic functions. Using both heuristics together can reduce the
time required to find a solution (Thayer and Ruml 2011b;
Thayer et al. 2012) for a given suboptimality bound or re-
duce solution cost for a similar solving time. Another strat-
egy for providing solutions more quickly is to replace tight
suboptimality bounds with probabilistic bounds (Stern, Fel-
ner, and Holte 2011).

Real-Time Agent-Centered Search Algorithms
Real-time agent-centered problems (Koenig 2001) model a
real-time agent trying to reach a goal with limited percep-
tion of the world and limited computational power. As such,
agents are incapable of solving a problem in a single com-
putation, but must incrementally learn about the world by
interleaving search and movement.

Recent work in this area has shown that there are
bounds on the minimal required learning (Sturtevant, Bu-
litko, and Björnsson 2010). Recent work has either tried to
avoid learning by precomputation (Bulitko, Björnsson, and
Lawrence 2010), specialized exploration rules (Hernández
and Baier 2011), or new forms of alternate learning (Sturte-
vant and Bulitko 2011).

Other Novel Algorithms
Here we look at several other novel algorithms which are
able to improve on existing approaches.

Enhanced Partial Expansions A* A* with a consistent
heuristic is known to be optimal in node expansions, but
the theory has said little about nodes that are generated but
never expanded. Enhanced Partial Expansion A* (Felner et
al. 2012) is a variant of A* which greatly reduces node gen-
erations given domain-specific knowledge.

Single-Frontier Bidirectional Search Bidirectional
search has not been widely successful in heuristic search.
Single-Frontier Bidirectional Search (Felner et al. 2010)
converts traditional uni-directional search algorithms into
bidirectional search algorithms. It also generalizes previous
work that exploited dualities in pattern databases (Zahavi et
al. 2006).

Monte-Carlo Search A majority of work in heuristic
search has followed a best-first approach, for some met-
ric of the best state to expand next. Monte-Carlo meth-
ods have out-performed best-first approaches in a number
of solitaire games (Cazenave 2009; Schadd et al. 2008) and
have promise as an alternate approach for suboptimal search.

Hardware-Centered Search Algorithms
A number of search approaches have sought to push the lim-
its of hardware.

External Memory Search Work has continued in search
on more traditional problems using external memory – that
is, memory on a hard disk drive. Although hard drives are
too slow to use for random access, carefully designed algo-
rithms are able to use hard drives without a significant loss in
performance (Korf 2008; Zhou and Hansen 2011), primarily
by accessing data sequentially. Almost all work on external
memory has also looked at the issue of parallel search.

Parallel Search Modern multi-core machines offer great
potential for speeding up the running time of algorithms.
While parallel search was addressed in the past, major ad-
vances were recently made by providing intelligent methods
for distributing the search to different threads or cores. Such
distributions are made by abstracting the entire state space
into threads (Zhou and Hansen 2007; Burns et al. 2010), by
classifying a state based on its g and h values (Jabbar and
Edelkamp 2006) or by using a hash function on the descrip-
tion of the state (Kishimoto, Fukunaga, and Botea 2009). A
simple approach which has been successful for suboptimal
search is to search different configurations of the same algo-
rithm in parallel (Valenzano et al. 2010).

GPU Search Algorithms Most modern machines are
equipped with a graphics processing unit (GPU) with hun-
dreds or thousands of SIMD processors. Researchers
have been able to exploit this hardware for breadth-first
search problems (Edelkamp, Sulewski, and Yücel 2010)
and for domain-independent planning problems (Sulewski,
Edelkamp, and Kissmann 2011).

Domains
Specific problem domains may have special properties that
motivate specially-designed heuristics or algorithms. We
look here at a broader class of domains, and then at two
specific domains.

Explicitly Represented Domains
The traditional model of a problem in heuristic search has
been an exponentially growing search tree with the task of
finding an optimal path between the start state and a fixed
goal state. This describes puzzles like Rubik’s cube or the
sliding-tile puzzle. A different model of a search problem is
found in the video game industry. In this industry search is
used to plan character movement in virtual worlds. The en-
tire search graph representing the world usually fits in mem-
ory. Given both the real-time constraints of games and aes-
thetic considerations, the task is not to find an optimal so-
lution, but a reasonable path between any two states in the
state space in 1ms or less.

Overall, this forms a new class of heuristic-search prob-
lems: state spaces that are small enough to fit in memory, but
too large for the all-pairs shortest-path data to be efficiently
computed and stored in memory. Another application for
such work is planning on real-world maps. This class of
problems has required a novel set of solutions.

The process of building heuristics for these domains is
significantly different than previous techniques (Sturtevant
et al. 2009; Felner, Sturtevant, and Schaeffer 2009). There



are many state spaces where the all-pairs shortest-path data
can be compressed and used efficiently (Bast, Funke, and
Matijevic 2006; Botea 2011; Goldenberg et al. 2010). These
techniques rely on structure in the underlying state space. In
road networks, for instance, this has been formalized by the
notion of ‘highway dimension’ (Abraham et al. 2010).

Besides the use of heuristics to speed up search, abstrac-
tion and refinement approaches have been used to produce
optimal paths in road networks (Geisberger et al. 2008) and
suboptimal paths in commercial games (Sturtevant and Buro
2005; Sturtevant 2007; Sturtevant and Geisberger 2010).

Search in games is particularly interesting because of a
number of particular constraints. First, the path found by a
search algorithm is almost always post-processed in some
way, which reduces the need for optimal paths. A search
space, such as a grid world, is almost always a coarse ab-
straction of the way that characters move through the world.
In virtual worlds the topology of the world can also change
significantly over time, meaning that approaches should be
robust to changing worlds. In most games, the majority of
the CPU and memory budget is allocated to graphics, leav-
ing relatively little time for planning. This time also has
to be shared between multiple characters in the game, that
may have interaction in their plans. These constraints have
motivated work on robust world representations (Sturtevant
2011) and any-angle planning (Daniel et al. 2010), which
reduces the need for path post processing. Grid maps from
commercial games have also been extracted and made into
standard benchmark problems (Sturtevant 2012).

Multi-Agent Path Finding
Multi-Agent Path Finding (MAPF) is a unique problem
which spans the gap between exponential and in-memory
domains. The goal is for a set of agents to travel between
their respective start and goal positions without conflict-
ing with other agents. MAPF has practical applications in
robotics, video games, and vehicle routing. With just a sin-
gle agent, the problem is equivalent to path planning in an
in-memory domain. But, when the graph is full of agents,
save a single empty location, the problem is equivalent to
the sliding-tile puzzle, whose search space grows exponen-
tially in the depth of search. Thus, by varying the number of
agents, the problem smoothly transitions from single-agent
search in an explicit graph to exponential search in an im-
plicit graph. Work in this area has the potential to provide
important new insights for search. Two main ideas have
been taken to approach this problem: decoupled and cou-
pled search.

In decoupled approaches paths are planned independently
for each agent. Agents can share information about their
plans either explicitly, using shared information about their
locations (Silver 2005; Dresner and Stone 2008), or implic-
itly, by sharing rules for movement (Wang and Botea 2008;
Jansen and Sturtevant 2008).

On the border between coupled and decoupled approaches
is a set of algorithms which use both centralized and decen-
tralized control of agents (Wang and Botea 2009; Khorshid,
Holte, and Sturtevant 2011; Luna and Bekris 2011).

Work on coupled search has primarily focused on opti-
mal solutions. One focus has been on optimizations to A*-
like search (Standley 2010). An alternate approach has been
on bi-level approaches which split the solving process into
multiple parts which are solved independently (Sharon et al.
2011; 2012). One point of interest is that constraints be-
tween agents bear similarity to constraints in SAT or CSPs,
and so the relationship between these domains needs more
study (Rintanen 2011).

Search in Robotics
In robotics, heuristic searches have been highly successful
for low-dimensional (e.g., 2D or 3D) path planning. But up
until recently there has been a wide belief that these methods
do not apply to higher dimensional path planning problems
such as motion planning for robotic arms, foothold planning
for legged robots, path planning for aerial vehicles and kin-
odynamic planning for cars. While this belief is probably
correct for optimal heuristic searches such as A* search, al-
lowing for solutions that are within even small suboptimality
bounds proves to make a big difference.

Giving up optimality guarantees eliminates the need for a
thorough expansion of all the states that may possibly belong
to an optimal solution. Furthermore, the space of solutions
within a given suboptimality bound is typically much larger
than the space of provably optimal solutions and therefore it
often includes solutions that are much easier to find. Recent
research shows that these properties open up possibilities for
developing novel suboptimal heuristic searches that exploit
the specifics of motion planning in robotics such as common
presence of obstacle-free, easy-to-solve and/or intrinsically
low-dimensional subspaces of the high-dimensional search-
space (Likhachev and Stentz 2008; Gochev et al. 2011;
Gonzalez and Likhachev 2011). These and other subopti-
mal heuristic searches have been applied successfully to mo-
tion planning for various high-dimensional robotic systems
while providing consistency in solutions and rigorous guar-
antees on completeness and bounds on suboptimality (Co-
hen, Chitta, and Likhachev 2012; Gochev, Safonova, and
Likhachev 2012; Cohen et al. 2011; Vernaza et al. 2009;
Likhachev and Ferguson 2009).

Search in Planning
The fields of heuristic search and planning are, in many
ways, quite related, as the two fields employ many of the
same techniques and have seen the transfer of ideas.

Work on pattern database heuristics (Cullberson and
Schaeffer 1998), which originated in heuristic search, has
been used in planning domains (Edelkamp 2001). What
characterizes heuristic search in planning, by compari-
son to other applications of heuristic search, is the au-
tomatic extraction of heuristic functions from a declara-
tive description of the problem domain. The last decade
has seen a proliferation of different techniques for do-
ing so. These techniques can be broadly characterized
into four different classes of algorithms: critical-path
heuristics (Haslum and Geffner 2000), delete-relaxation
heuristics (Bonet and Geffner 2001), abstraction heuris-
tics (Edelkamp 2001; Helmert, Haslum, and Hoffmann



2007), and landmarks heuristics (Karpas and Domshlak
2009). Recent research (Helmert and Domshlak 2009) has
defined a formal framework for the comparison of classes
of admissible heuristics, and has shown that there exist non-
trivial connections across these major algorithm classes in
planning.

Researchers in other fields have often used portfolios or
restarts to improve problem coverage. These ideas are now
gaining traction in both heuristic search (Valenzano et al.
2010) and planning (Richter, Thayer, and Ruml 2010). The
parallel track of the 2011 International Planning Competi-
tion was won by the ArvandHerd planner (Valenzano et al.
2011) which has portfolio of algorithms, including one using
Monte-Carlo search.

Conclusions
This paper has briefly highlighted some of the broad areas
of research in heuristic search. Overall, heuristic search en-
compasses a broad range of topics in optimal and subop-
timal search with solution time constraints that range from
milliseconds to weeks. The breadth of advances in the field
suggest that heuristic search is now coming of age.
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