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Abstract

In a multi-agent path finding (MAPF) problem, the task is
to move a set of agents to their goal locations without con-
flicts. In the real world, unexpected events may delay some
of the agents. In this paper, we therefore study the problem of
finding a p-robust solution to a given MAPF problem, which
is a solution that succeeds with probability at least p, even
though unexpected delays may occur. We propose two meth-
ods for verifying that given solutions are p-robust. We also
introduce an optimal CBS-based algorithm, called pR-CBS,
and a fast suboptimal algorithm, called pR-GCBS, for find-
ing such solutions. Our experiments show that a p-robust so-
lution reduces the number of conflicts compared to optimal,
non-robust solutions.

1 Introduction
The Multi-Agent Path Finding (MAPF) problem is defined
by a graph G = (V,E) and a set of n agents {a1, . . . an},
where each agent ai has a start location si ∈ V and a
goal location gi ∈ V . At each time step, an agent can ei-
ther move to an adjacent location or wait in its current lo-
cation. The task is to find a sequence of adjacent locations
for each agent ai (single-agent plan) that moves it from si
to gi such that agents do not conflict (or synonymously, col-
lide), i.e., occupy the same location or swap locations at the
same time step. MAPF has applications in video games, traf-
fic control, and robotics (Felner et al. 2017; Ma and Koenig
2017). In many cases, there is also a requirement to min-
imize a given cost function, such as the sum of costs in-
curred by all agents before reaching their goal locations.
Solving MAPF optimally is NP-hard (Yu and LaValle 2013;
Surynek 2010). Nonetheless, practical optimal algorithms
exist, some even capable of finding optimal solutions for
more than one hundred agents (Wagner and Choset 2015;
Surynek 2012; Felner et al. 2018; Lam et al. 2019).

In practice, unexpected events may delay some of the
agents, preventing them from following their pre-determined
single-agent plans. When such an event occurs, the MAPF
solution should be adjusted to avoid conflicts. Such re-
planning may require costly computing and communication
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capabilities or may even be impossible. Thus, it is often de-
sirable to generate a robust solution that can withstand such
unexpected events, avoiding the need for re-planning if they
occur, especially in safety-critical settings such as air traffic
control.

To this end, Atzmon et al. (2018) introduced the notion
of a k-robust solution. A solution is k-robust iff each agent
can be delayed up to k times and still no conflict will occur.
This notion is especially suitable in cases where the maxi-
mum number of delays is known in advance. In this paper,
we explore a different, novel form of robustness called p-
robust. A solution is p-robust iff the probability that no con-
flict will occur is larger than or equal to 0 ≤ p ≤ 1. This
notion is, arguably, a more realistic form of robustness, since
it does not assume a strict limit on the number of unpre-
dictable delays per agent. Previously proposed MAPF algo-
rithms that consider delay probabilities, such as UM* (Wag-
ner and Choset 2017) and Approximate Minimization in Ex-
pectation (AME) (Ma, Kumar, and Koenig 2017), do not re-
turn a p-robust solution (see Section 8 for details).

We propose pR-CBS, an algorithm based on Conflict-
Based Search (CBS) (Sharon et al. 2015), that finds optimal
p-robust solutions. Whereas classic CBS resolves a conflict
by disallowing it (using a two-way split function), pR-CBS
also considers to allow it. This results in a novel three-way
split function. We also propose pR-GCBS, a fast subopti-
mal version of pR-CBS that reduces the planning time while
keeping the cost close to optimal. A challenge of both al-
gorithms is how to verify that a given solution is p-robust.
We propose two methods for doing so and prove their cor-
rectness. Finally, we evaluate our algorithms experimentally,
showing that they indeed find p-robust solutions and that ex-
ecuting p-robust solutions can reduce the number of con-
flicts compared to executing optimal, non-robust solutions.

2 Definitions and Background
A single-agent plan πi for agent ai is a sequence of loca-
tions from location si to location gi. πi(t) denotes the loca-
tion of agent ai at time step t (assuming no delays). Thus,
πi(0) = si and πi(|πi| − 1) = gi. In a single-agent plan πi,
between every two consecutive locations πi(t) and πi(t+1),
the agent can perform either a move action, i.e., locations



πi(t) and πi(t + 1) are adjacent locations, or wait action,
i.e., πi(t) = πi(t + 1). All actions have a unit cost. A so-
lution to a MAPF problem instance is a set of single-agent
plans π = {π1, . . . πn}.
Definition 1 (Conflict). A conflict 〈ai, aj , x, t〉 in a solution
π occurs iff agents ai and aj (i 6= j) occupy the same lo-
cation x at time step t, i.e., when πi(t) = πj(t) = x (ver-
tex conflict), or when they traverse the same edge x in op-
posite directions from time step t − 1 to time step t, i.e.,
when (πi(t − 1) = πj(t)) ∧ (πi(t) = πj(t − 1)), where
(πi(t− 1), πi(t)) = x (swapping conflict). 1

We say that a solution π is valid iff it is conflict-free.
A MAPF solver is sound iff it outputs a valid solution. In
this work, we allows following and cycle conflicts in a valid
solution (Stern et al. 2019). A following conflict occurs iff
agents ai and aj (i 6= j) occupy the same location at time
steps t and t + 1, respectively, i.e., πi(t) = πj(t + 1), and
a cycle conflict occurs iff each pair of agents in a set of
agents {a1, a2, . . . , al} has a following conflict, in a cycle,
i.e., π1(t) = π2(t+ 1) ∧ π2(t) = π3(t+ 1) ∧ · · · ∧ πl(t) =
π1(t + 1). Also, we assume that two agents cannot conflict
while traversing two different edges. We say that π is op-
timal iff it is valid and has the lowest cost among all valid
solutions. In this paper, we focus on minimizing the sum-of-
costs (SOC) cost function, which is the sum of the number
of actions (including wait actions) performed by all agents
until all agents reach their goal locations and stay there, i.e.,∑n
i=1(|πi| − 1).

2.1 Conflict-Based Search
Conflict-Based Search (CBS) (Sharon et al. 2015) is a com-
monly used MAPF solver that has two levels. The high level
of CBS searches the binary constraint tree (CT). Each node
N ∈ CT contains: (1) a set of constraints imposed on the
agents (N.constraints); (2) a single solution (N.π) that is
consistent with (i.e., satisfies) all constraints; and (3) the
cost of solution N.π (N.cost). CBS imposes two types of
constraints. A vertex constraint is a tuple 〈ai, v, t〉, meaning
that agent ai is prohibited from occupying location v at time
step t. An edge constraint is a tuple 〈ai, e, t〉, meaning that
agent ai is prohibited from moving along edge e at time step
t. The root node contains an empty set of constraints. The
high level performs a best-first search on the CT, expanding
the nodes in increasing order of their costs.

Generating a node in the CT. Given a node N , the low
level of CBS finds a shortest single-agent plan for each agent
from its start location to its goal location that satisfies all
constraints of node N imposed on the agent.

Expanding a node in the CT. Once CBS has chosen node
N for expansion, it checks its solutionN.π for conflicts. If it
is conflict-free, then node N is a goal node and CBS returns
its solution. Otherwise, CBS splits node N on one of the
conflicts 〈ai, aj , x, t〉 by generating two children for node
N . Each child node has a set of constraints that is the union
of N.constraints and a new constraint. The new constraint
is either 〈ai, x, t〉 or 〈aj , x, t〉, where x is the vertex or edge
the conflict 〈ai, aj , x, t〉 refers to.

1We follow the terminology of Stern et al. (2019).

2.2 Multi-Agent Path Finding with Delays
We follow the terminology of Atzmon et al. (2018) to define
what delays are, how they affect the execution of a MAPF
solution, and how to handle them by creating a robust solu-
tion before execution.

A delay in a MAPF solution π is a tuple 〈π, ai, t〉with t ≥
1, representing that agent ai stays idle in location πi(t − 1)
instead of performing the move action from location πi(t−
1) at time step t−1 to location πi(t) at time step t. A solution
π is robust to a delay iff the delayed agent can continue to
follow its single-agent plan after the delay without causing a
conflict. To define this formally for a solution π and a delay
D = 〈π, ai, t′〉, let D(π) be the solution after experiencing
the delay. D(π) is identical to π except that πi is replaced
with:

π′i(t) =

{
πi(t) t < t′

πi(t− 1) t ≥ t′. (1)

Definition 2 (Robust Solution). A solution π is robust to a
delay D iff the solution D(π) is valid. A solution π is ro-
bust to a set of delays D = {D1, . . . , Dr} iff the solution
Dr(Dr−1(. . . D1(π) . . .) is valid.

In real-life, the number of delays may be unlimited. For
example, an agent might be stuck and stay idle in its start lo-
cation forever. Therefore, for every type of robustness, some
bound on the degree of robustness must be given. One type
of robustness is k-robustness (Atzmon et al. 2018), which is
summarized in the next paragraph. In this paper, we intro-
duce a new type of robustness, called p-robustness, which
uses some of the building blocks of k-robustness.

k-Robust MAPF. A k-robust MAPF (kR-MAPF) solver
returns a k-robust solution, if possible, which is a valid so-
lution that is robust to any set of delays that contains at most
k delays for each agent. Classic MAPF is a special case of
kR-MAPF for k = 0.

Definition 3 (k-Delay-Conflict). A k-delay conflict
〈ai, aj , x, t〉 in a solution π occurs iff there exists a
∆ ∈ {0, . . . k} such that agents ai and aj (i 6= j)
occupy the same location x at time steps t and t + ∆,
respectively, i.e, πi(t) = πj(t + ∆) = x, or when they
traverse the same edge x in opposite directions from time
step t − 1 to time step t for agent ai and from time step
t + ∆ − 1 to time step t + ∆ for agent aj , i.e., when
(πi(t− 1) = πj(t+ ∆)) ∧ (πi(t) = πj(t+ ∆− 1)), where
(πi(t− 1), πi(t)) = x.

A solution is k-robust iff it does not contain any k-delay
conflicts. A classic conflict is a special case of a k-delay
conflict for k = 0. We use k-delay conflicts in Section 5, as
part of verifying whether a solution is p-robust.

3 p-Robust MAPF
A limitation of k-robust MAPF is that one needs to set k
appropriately. Setting k too low can result in too many con-
flicts during execution of a MAPF solution, while setting k
too high can increase the planning time and resulting solu-
tion cost.



One way of approaching this issue is to consider addi-
tional information about the problem at hand. In particu-
lar, we assume that we are given the delay probability pd,
i.e., the probability that an agent will be delayed at a given
time step instead of performing a move action. We also as-
sume that such delays are independent of each other, i.e., a
delay occurring does not affect the probability of other de-
lays occurring. For simplicity, we further assume that the
delay probability is constant across all agents, locations, and
time steps, although this assumption can be easily gener-
alized. In fact, some of our algorithms are already suitable
for any stochastic movement of the agents. Under these as-
sumptions, avoiding all k-delay conflicts for a fixed value
of k may be ineffective. Instead, it makes more sense to
resolve conflicts based on their probabilities of occurring,
rather than a fixed k.

In this work, we explore a new form of robustness, p-
robustness, that considers such additional information.
Definition 4 (p-Robust Solution). A solution π is p-robust
iff the probability that it will be executed without a conflict
is at least p.

The p-robust MAPF (pR-MAPF) problem is the problem
of finding a p-robust solution for a given p (0 ≤ p ≤ 1).
Different from the kR-MAPF problem, setting the parame-
ter is now related to the probability that the solution execu-
tion succeeds. Given the cost of a failure execution and the
benefit of a successful one, in some cases, the parameter of
pR-MAPF can be determined by a cost-benefit analysis.

We now present necessary and sufficient conditions for a
solution to be p-robust. Let π be a solution with m move
actions and D = {D1, . . . Dr} be a set of r delays. The
probability P (π,D) for experiencing exactly the delays in
D and no other delays while executing π is:

P (π,D) = pd
r · (1− pd)m (2)

since the agents experience r delays when attempting to ex-
ecute move actions, each with probability pd, and do not ex-
perience delays when executing m move actions, each with
probability 1−pd. LetRD(π) be the set of all sets of delays
that a solution π is robust to (Definition 2). The probability
P0(π) that one of the sets of delays inRD(π) occurs is:

P0(π) =
∑

D∈RD(π)

P (π,D). (3)

A solution is p-robust iff P0(π) ≥ p. However, computing
P0(π) as defined in Equation 3 is impossible, since the car-
dinality ofRD(π) may be infinite. We thus define the notion
of potential conflicts.
Definition 5 (Potential Conflict). A solution π has a poten-
tial conflict C = 〈ai, aj , x, t〉 iff there exists a ∆(C) ≥ 0
such that 〈ai, aj , x, t〉 is a ∆(C)-delay conflict.

A potential conflict C = 〈ai, aj , x, t〉 occurs iff agent
ai experiences di ≥ ∆(C) delays before successfully per-
forming its tth action and agent aj experiences di − ∆(C)
delays before successfully performing its t + ∆(C) ac-
tion. The agents conflict at time step t + di since πi(t) =
πj(t+ ∆(C)).

A key observation is that a set of delaysD is not inRD(π)
iff it causes a potential conflict to occur. Thus, 1 − P0(π)
can be calculated by calculating the probability that at least
one potential conflict occurs. Computing this probability is
challenging since the probability with which the different
potential conflicts occur are not independent, despite the fact
that delays occur independently (with probability pd). To see
this, consider a solution π with two potential conflicts in-
volving the same pair of agents. Clearly, these two potential
conflicts cannot both occur, because, when the first one oc-
curs, the agents cannot continue. An in-depth discussion of
this conflict dependency is provided by Wagner and Choset
(2017). Nevertheless, we provide practical ways of calcu-
lating and estimating P0(π) in Section 5 by computing the
probability that at least one potential conflict occurs.

4 p-Robust CBS
Solution π is optimal for pR-MAPF iff it is p-robust and
has the lowest cost among all p-robust solutions. Solv-
ing MAPF optimally is NP-hard (Yu and LaValle 2013;
Surynek 2010). MAPF is a special case of p-robust MAPF
for pd = 0 and p = 1, and thus solving pR-MAPF optimally
is also NP-hard. Next, we describe pR-CBS (Algorithm 1), a
CBS-based algorithm that finds p-robust solutions. pR-CBS
is complete and optimal. First, pR-CBS creates a root CT
node with no constraints and calculates an initial solution for
the agents as classic CBS does (Line 2). Then, it inserts that
node into the OPEN list (denoted by OPEN; Line 3). pR-CBS
is unique in how it handles CT nodes, chooses conflicts, and
splits CT nodes, as explained next.

4.1 Handling a CT Node
When a CT node N is chosen for expansion (Line 5), N.π
is sent to a verifier (Line 6) that returns TRUE if the solu-
tion is p-robust (P0(π) ≥ p) and FALSE otherwise, which
is similar to the goal test in classic CBS. We discuss imple-
mentations of specific verifiers in Section 5. If the verifier
returns TRUE, then the CT node is a goal node (Line 7).
In this case, the search terminates and N.π is returned. If
the verifier returns FALSE, then further high-level CT node
expansions are required.

4.2 Choosing a Conflict
pR-CBS checksN.π for potential conflicts. Choosing which
potential conflict to resolve cannot affect the correctness of
pR-CBS, as is explained below. In our implementation, we
choose the potential conflict C with the lowest ∆(C), i.e.,
the difference in arrival time steps of the two agents at the
same location. Ties are broken in favor of the earliest time
step t. Conflicts with low values of ∆(C) and t are likely to
have a high probability of occurring.

4.3 Splitting a CT Node
Consider a conflict 〈ai, aj , x, t〉 in solution N.π at location
or edge x for classic CBS. There are three possible cases:
(1) ai does not occupy x at time step t. To enforce this case,
we can add the constraint 〈ai, x, t〉. (2) aj does not occupy x
at time step t. To enforce this case we can add the constraint



Algorithm 1: High level of pR-CBS
1 Main(MAPF problem instance)
2 Init Root with an initial solution and no constraints
3 Insert Root into OPEN
4 while OPEN not empty do
5 N ← Pop the node with the lowest cost in OPEN
6 if Verify(N.π) then
7 return N.π // N is goal

8 C(a1, a2, t)← get-conflict(N )
9 ∆← get-delta(C)

10 x← get-conflicted-location-or-edge(C)
11 A1 ← GenChild(N ,negConst(a1, x, t))
12 A2 ← GenChild(N ,negConst(a2, x, t+ ∆))
13 A3 ← GenChild(N ,posConst(a1, a2, x, t, t+ ∆))
14 Insert A1, A2, and A3, into OPEN

15 return No Solution

16 GenChild(Node N , Constraint NewCons)
17 A.constraints← N.constraints ∪ {NewCons}
18 A.π ← N.π
19 if NewCons is a negative constraint then
20 Update A.π to satisfy A.constraints

21 A.cost← SOC(A.π)
22 return A

〈aj , x, t〉. (3) Both agents occupy x at time step t. Since this
case is illegal, CBS splits node N according to Cases 1 and
2 only, thereby eliminating Case 3.

A fundamental difference between CBS and pR-CBS is
that pR-CBS cannot eliminate Case 3. Case 3 is no longer
illegal because the probability for that conflict to actually
occur might be small enough to result in p-robust solutions.

Let N be a non-goal CT node selected for expansion by
pR-CBS, let C = 〈ai, aj , x, t〉 be the chosen unresolved
potential conflict in N.π. To resolve C, pR-CBS generates
two children of N with the additional constraints 〈ai, x, t〉
and 〈aj , x, t+ ∆(C)〉, respectively (Lines 11-12). These are
negative constraints, i.e., constraints that prevent the agents
from occupying a certain location at a certain time step or
traverse a certain edge in opposite directions between two
consecutive time steps (Cases 1 and 2 above). However, as
mentioned above, an optimal p-robust solution might con-
tain this potential conflict (Case 3). Therefore, pR-CBS gen-
erates a third child of N with the additional positive con-
straint (Li et al. 2019) 〈ai, aj , x, t, t+ ∆(C)〉, that forces
this potential conflict to occur by specifying that agent ai
must occupy location x at time step t and agent aj must oc-
cupy location x at time step t+ ∆(C), or that agent ai must
traverse edge x between time steps t− 1 and t and agent aj
must traverse edge x in an opposite direction between time
step t+ ∆(C)− 1 and t+ ∆(C) (Line 13). After imposing
a positive constraint, this conflict is marked as revolved and
will not be selected again in this subtree. This third child is
not a goal node as it contains the same solution as node N ,
but a descendant of it might be a goal node. Finally, pR-CBS
inserts the three children into OPEN (Line 14) and iterates.

Example. Figure 1(a) shows an example of a pR-MAPF
problem instance. Each of the three agents ai needs to
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Figure 1: Example of a pR-CBS constraint tree.

move from si to gi. Figure 1(b) shows the corresponding
CT. The root of the CT contains the shortest single-agent
plans of the three agents. There are two potential conflicts
in the root, namely CY = 〈a1, a3, Y, 1〉 (in location Y ) with
∆(CY ) = 1 and CZ = 〈a2, a3, Z, 1〉 (in location Z) with
∆(CZ) = 2. Assume that the verifier returned that the root
is not a goal node, i.e., the solution is not p-robust since the
probability of no conflicts is less than p. pR-CBS splits the
root according to the conflict CY = 〈a1, a3, Y, 1〉 because
∆(CY ) ≤ ∆(CZ). It resolves CY by adding the constraints
〈a1, Y, 1〉, 〈a3, Y, 2〉, and 〈a1, a3, Y, 1, 2〉, each generating a
new CT node. After new single-agent plans for the agents
are returned from the low level, it chooses the node with the
lowest cost for the next expansion, and performs another ex-
pansion.

4.4 Theoretical Properties
A verifier (discussed below) is sound iff it correctly deter-
mines whether a solution is p-robust. Given a sound veri-
fier, pR-CBS is sound. Its completeness and optimality are
proven next.

Lemma 1 (Completeness). If a p-robust solution exists, pR-
CBS returns a p-robust solution.

Proof outline. pR-CBS performs a best-first search on the
CT, where the cost cannot decrease, i.e., newly generated
CT nodes cannot have lower cost than the current lowest
costs of any CT node in OPEN. The number of solutions with
any given cost and the number of potential conflicts of each
solution are finite. Hence, the number of CT nodes with any
given cost is finite and, after expanding a finite number of
CT nodes, pR-CBS finds a p-robust solution, if one exists.

Lemma 2 (Optimality). When pR-CBS returns a solution,
the returned solution has the lowest cost among all p-robust
solutions.

Proof outline. pR-CBS never eliminates solutions by split-
ting a CT node. It performs a best-first search on the CT
where the costs cannot decrease. Thus, the cost of an ex-
panded node is a lower bound on the cost of all p-robust so-
lutions, and the first expanded node with a p-robust solution
contains the p-robust solution with the lowest cost.



5 Verifiers
Next, we describe two verifiers that can be called on Line 6
of Algorithm 1. They determine whether P0(π) ≥ p for a
given solution π. The first verifier, which we refer to as the
Deterministic Verifier, performs a search over the different
sets of delays and calculates the probability of conflicts oc-
curring. The second verifier, which we refer to as the Monte-
Carlo Verifier, executes simulations to determine the prob-
ability of no conflicts occurring and performs a statistical
hypothesis test.

5.1 Deterministic Verifier
The Deterministic Verifier, described on Lines 1-10 of Al-
gorithm 2, uses the following two functions: The first func-
tion, P (π, d), calculates the probability that each agent ex-
periences at most d delays while trying to execute solution
π. The second function, P0(π, d), calculates the probability
that no conflicts occur during solution execution, given that
each agent experiences at most d delays. Using these two
functions, the Deterministic Verifier iterates over different
values of d until it is able to verify whether solution π is
p-robust. The number of delays that each agent can experi-
ence is unlimited. Bounding this number by d is done only
to compute upper and lower bounds on P0(π), as we now
explain in more detail.

Calculating P (π, d). The Deterministic Verifier calcu-
lates the probability P (πi, d) of each agent experiencing at
most d delays during execution (Line 4), as follows: Con-
sider a single agent ai that executes mi move actions during
execution. There are

(
r+mi−1

r

)
different ways of inserting r

(indistinguishable) delays into an action sequence that con-
tains mi move actions, since a delay can occur only before
a move action or another delay. Consider a specific way of
inserting r delays into the action sequence. The probability
of this way occurring during execution is, similar to Equa-
tion 2, pdr · (1 − pd)

mi . Now consider all different ways
of inserting r delays into the action sequence. The proba-
bility of any of these ways occurring during execution or,
equivalently, the probability of agent ai experiencing exactly
r delays during execution is, pdr(1 − pd)mi

(
r+mi−1

r

)
. The

probability of agent ai experiencing at most d delays during
execution is

P (πi, d) =

d∑
r=0

pd
r(1− pd)mi

(
r +mi − 1

r

)
, (4)

where mi is the number of move actions in πi. Thus, the
probability of each agent experiencing at most d delays dur-
ing execution is:

P (π, d) =

n∏
i=1

P (πi, d). (5)

Calculating P0(π, d). The Deterministic Verifier calcu-
lates the probability P0(π, d) of no conflicts occurring dur-
ing execution provided that each agent experiences at most

d delays during execution (Line 5), as follows: First, it de-
termines all d-delay conflicts (Definition 3). Second, it par-
titions all agents that participate in at least one d-delay con-
flict into the largest number b of sets such that all d-delay
conflicts occur only between agents in the same set. Third,
for each resulting set of agents Gi (1 ≤ i ≤ b), it calcu-
lates the probability P0(π,Gi, d) of no conflicts occurring
during execution between agents in Gi, in a way similar to
the outline given the context of Equation 3: It considers only
the part of the solution for the agents in Gi and enumerates
all sets of delays for these agents that contain at most d de-
lays for each agent in Gi and that the resulting part of the
solution is robust to, i.e., that do not result in conflicts oc-
curring during execution between agents in Gi. It then cal-
culates P0(π,Gi, d) by adding the probabilities of experi-
encing each such set of delays. Fourth, it calculates P0(π, d)
using

P0(π, d) =

b∏
i=1

P0(π,Gi, d) (6)

Verification. Let X be the event that no conflicts occur
during execution and Y be the event that each agent expe-
riences at most d delays during execution. Then, the Deter-
ministic Verifier calculates an upper bound UB0 and a lower
bound LB0 on P0(π) as follows (Lines 6-7):

LB0 =P0(π, d)P (π, d) = P (X|Y )P (Y )

=P (X ∧ Y ) ≤ P (X) = P0(π)

=P (X) = P (X ∧ Y ) + P (X ∧ Y )

=P (X|Y )P (Y ) + P (X|Y )P (Y )

≤P (X|Y )P (Y ) + (1− P (Y ))

=P0(π, d)P (π, d) + (1− P (π, d)) = UB0.

The Deterministic Verifier calculates these bounds for
increasing values of d, starting with d = 0 (Line 2). If
LB0 ≥ p, then P0(π) ≥ LB0 ≥ p (which means that the
solution is p-robust) and the Deterministic Verifier returns
TRUE (Line 8). If UB0 < p, then P0(π) ≤ UB0 < p
(which means that the solution is not p-robust) and the De-
terministic Verifier returns FALSE (Line 9). Otherwise, the
Deterministic Verifier increments d and iterates (Line 10).

5.2 Monte-Carlo Verifier
The Monte-Carlo Verifier (Lines 11-21 of Algorithm 2) de-
termines whether a solution is p-robust based on executing
random simulations of the given solution and performing a
statistical hypothesis test. 1 − α is the confidence level of
the statistical test. In our implementation, we used α = 0.05
as this is standard in statistical tests. Next, we describe how
such a statistical test can be performed, how to set the initial
number of simulations to execute, and how the verification
process works.

Statistical test. Assume that no conflicts occur during P0

percent of s0 random simulations of executions. First, we
use as null hypothesis that no conflicts occur with probabil-
ity less than p and as alternate hypothesis that no conflicts
occur with probability greater than p. According to the null



Algorithm 2: Verifiers
1 Verify(Solution π) // Deterministic Verifier
2 d← 0
3 while TRUE do
4 Calculate P (π, d) // Equation 5
5 Calculate P0(π, d) // Equation 6
6 LB0 ← P (π, d) · P0(π, d)
7 UB0 = P (π, d) · P0(π, d) + (1− P (π, d))
8 if LB0 ≥ p then return TRUE
9 if UB0 < p then return FALSE

10 d← d+ 1

11 Verify(Solution π) // Monte-Carlo Verifier
12 Initialize s // Equation 8
13 Run s simulations
14 while TRUE do
15 Approximate P0 based on the simulations
16 Calculate c1 // Equation 7
17 Calculate c2 // Equation 9
18 if P0 ≥ c1 then return TRUE
19 if P0 < c2 then return FALSE
20 s← s+ 1
21 Run one more simulation

hypothesis, the percentage of simulations with no conflicts
is a normal distribution with mean p and variance p(1−p)

s0
for

large s0 (say, larger than 30). Thus, we can use a Z-test to
reject the null hypothesis (and conclude that the solution is
likely p-robust) if

P0 > p+ z1−α

√
p(1− p)
s0

(= c1). (7)

This inequality can only be satisfied if c1 < 1, which implies

s0 > z1−α
2 · p

1− p
. (8)

Thus, one needs to run at least s0 = max(30, dz1−α2 p
1−pe),

simulations. Second, we use as null hypothesis that no con-
flicts occur with probability greater than p and as alternate
hypothesis that no conflicts occur with probability less than
p. A similar derivation shows that we can use a Z-test to
reject the null hypothesis (and conclude that the solution is
likely not p-robust) if

P0 < p− z1−α

√
p(1− p)
s0

(= c2). (9)

Verification. The Monte-Carlo Verifier calculates s, runs
s simulations, and calculates c1 and c2 (Lines 12-17). If
P0 ≥ c1 (similarly to Line 8 of the Deterministic Verifier),
then the solution is likely p-robust and the Monte-Carlo Ver-
ifier returns TRUE (Line 18). If P0 < c2, then the solution
is likely not p-robust and the Monte-Carlo Verifier returns
FALSE (Line 19). Otherwise, the Monte-Carlo Verifier in-
crements s, runs one more simulation, and iterates (Lines
20-21).

Since the Monte-Carlo Verifier runs simulations of execu-
tions, it can be used with any motion model for the agents,

not only a motion model with a uniform delay probability
for all agents. Thus, pR-CBS (and pR-GCBS, that we intro-
duce next) can be used with any motion model if they use
the Monte-Carlo Verifier.

6 Greedy p-Robust CBS

Obtaining optimal solutions for high p values is pro-
hibitively slow in some cases. For such cases, we introduce
Greedy p-Robust CBS (pR-GCBS), which is based on pR-
CBS. pR-GCBS can use both verifiers described above. In
our implementation, we used the Monte-Carlo Verifier as it
performed better than the Deterministic Verifier in terms of
runtime. pR-GCBS runs faster than pR-CBS but loses opti-
mality. It contains the three modifications below.

Choosing a CT node for expansion. In order to obtain
optimal solutions, pR-CBS performs a best-first search, al-
ways expanding the CT node with the lowest cost, since an
optimal pR-MAPF solution has the lowest cost among all
p-robust solutions. pR-GCBS calculates P0 for each gener-
ated CT node and chooses to expand next the CT node with
the highest P0. Expanding nodes in increasing order of their
proximity to the goal, based on a given heuristic function,
showed great speed up for greedy algorithms. While this ex-
pansion order may lose optimality, it increases the chance to
find a CT node with a high P0 value and thus the chance to
find a goal node quickly.

Resolving conflicts. In order to obtain optimal solutions,
pR-CBS splits CT nodes according to Cases 1-3, since the
potential conflict might exist in the optimal solution. pR-
GCBS splits CT nodes only according to Cases 1-2 to ensure
that the conflict is resolved. Splitting CT nodes according
to Case 3 increases the size of the CT and, in many cases,
not useful as the conflict is not resolved, but it is necessary
for obtaining optimal solutions. With this conflict-resolution
strategy, pR-GCBS may lose optimality (in case the optimal
solution contains the potential conflict), but often increases
the chance to find a goal node quickly.

Imposing constraints. In order to obtain optimal so-
lutions, pR-CBS imposes the constraints 〈ai, x, t〉 and
〈aj , x, t+ ∆(C)〉 on agents ai and aj , respectively, to re-
solve the potential conflict C = 〈ai, aj , x, t〉 (Cases 1-
2). pR-GCBS imposes the range constraints (Atzmon et al.
2018) 〈ai, x, [t, t+ ∆(C)]〉 and 〈aj , x, [t, t+ ∆(C)]〉 to re-
solve the potential conflict 〈ai, aj , x, t〉. These constraints
prohibit both agents from occupying x during the time in-
terval [t, t+ ∆] and indeed resolve the potential conflict, but
also resolve additional potential conflicts between the agents
that might exist in the optimal solution. Thus, they increase
the chance to find a goal node quickly.

7 Experimental Results

In this section, we experimentally evaluate pR-CBS with
both verifiers and pR-GCBS with the Monte-Carlo Verifier
on an Intel R© Xeon E5-2660 v4 @ 2.00GHz processor with
16 GB of RAM.



Cost Expansions Runtime (ms)
p = 0.6 p = 0.7 p = 0.8 p = 0.6 p = 0.7 p = 0.8 p = 0.6 p = 0.7 p = 0.8

CBS 35.5 35.5 35.5 16.77 16.77 16.77 7 7 7
pR-GCBS 35.7 36.0 39.7 4.16 6.71 7.22 154 218 374
pR-CBS (MC) 35.5 35.6 35.9 148.63 161.00 183.50 2,811 3,505 4,823
pR-CBS (DT) 35.5 35.6 35.9 148.63 161.00 184.00 9,445 27,545 62,325

Table 1: Average solution cost, number of high-level node expansions, and runtime for CBS, pR-GCBS, and pR-CBS on an
8x8 4-neighbor empty grid with 8 agents and delay probability pd = 0.1.

Cost Runtime (ms)
p = 0.6 p = 0.7 p = 0.8 p = 0.6 p = 0.7 p = 0.8

CBS 659.8 659.8 659.8 81 81 81
pR-GCBS 660.0 661.7 664.7 732 1,201 3,473
pR-CBS (MC) 659.8 659.9 659.9 2,943 3,516 7,901

Table 2: Average solution cost and runtime for CBS, pR-
GCBS, and pR-CBS on a 64x64 4-neighbor empty grid with
16 agents and delay probability pd = 0.1.

𝑝𝑑
0.05 0.10 0.20

kR-CBS (k=2)

kR-CBS (k=1)

pR-CBS (DT) (p=0.7)
pR-CBS (DT) (p=0.6)
CBS

pR-GCBS (p=0.7)

pR-GCBS (p=0.6)

Figure 2: Average solution cost for CBS, kR-CBS, pR-CBS,
and pR-GCBS on an 8x8 4-neighbor empty grid with 8
agents.

7.1 Runtime and Solution Cost
We first compare classic CBS, pR-CBS (DT) with the Deter-
ministic Verifier, pR-CBS (MC) with the Monte-Carlo Veri-
fier, and pR-GCBS with the Monte-Carlo Verifier, for differ-
ent values of p (0.6, 0.7, 0.8) and delay probability pd = 0.1
on an 8x8 4-neighbor empty grid with 8 agents, where the
start and goal locations are chosen uniformly at random from
all cells. Table 1 shows the solution cost, the runtime, and
the number of high-level node expansions for the different
algorithms, averaged over 50 instances.

The cost of an optimal MAPF solution (for CBS) and the
costs of optimal p-robust solutions (for pR-CBS) are rela-
tively close (between 35.5 and 35.9). However, pR-CBS ex-
pands about one-order of magnitude more nodes and runs
about two to three order-of-magnitude more slowly. To guar-
antee p-robustness, pR-CBS splits each CT node into 3 chil-
dren and performs a verification on each node, which ex-
plains why it is slower than CBS (that does not provide any
robustness guarantee). The Deterministic Verifier performs
an exhaustive search, which explains why it is slower than
the Monte-Carlo Verifier. On the other hand, it is simpler
because it does not require the additional confidence pa-
rameter. pR-GCBS results in a good trade-off between the

runtime and the resulting solution cost. Its solution cost is
slightly higher than that of pR-CBS but it runs much faster
with fewer node expansions than pR-CBS with either veri-
fier.

We repeat the experiment of Table 1 on a 64x64 4-
neighbor empty grid with 16 agents. Table 2 shows that the
results remain similar. pR-CBS (DT) with the Deterministic
Verifier does not solve any instance within a 5 minute run-
time limit and is thus omitted from the table.

7.2 Delay Probability
We repeat the experiment of Table 1 for different values of
the delay probability pd (0.05, 0.1, 0.2). Figure 2 shows the
solution cost as a function of pd. We also included kR-CBS
for different values of k (1, 2).

As expected, larger values of pd and p result in higher
solution costs for both pR-GCBS and pR-CBS, while they
do not change the solution costs of CBS and kR-CBS as
these algorithms do not use these values. kR-CBS results
in a higher solution cost than the optimal pR-CBS and thus
may be too restrictive.

7.3 Number of Conflicts
We repeat the experiment of Table 1 for different values of
p (0.6, 0.7, 0.8, 0.90), different values of k (1, 2), and delay
probability pd = 0.2. Table 3 shows the percentage R of
50 simulations with no conflicts. pR-CBS does not solve all
instances and is thus omitted from the table. CBS results in
the lowest runtime and solution cost but also the lowest per-
centage of simulations with no conflicts. Larger values of p
and k result in higher runtimes and solution costs but also
higher percentages of simulations with no conflicts. As ex-
pected, pR-GCBS results in a percentage of simulations with
no conflicts that is larger than its value of p since it provides
a probabilistic robustness guarantee except for its greedy na-
ture. kR-CBS with k = 2 and pR-GCBS with p = 0.7 result
in about the same percentage of simulations with no con-
flicts. kR-CBS runs faster but does not provide any proba-
bilistic robustness guarantee, and it is unclear how to choose
the value of k for a desired probability of no conflicts.

We also performed a similar experiment on a larger map
(brc202d) from the Dragon Age Origin video game, avail-
able in the movingai repository (Sturtevant 2012), for dif-
ferent numbers of agents (10, 20, 30), different values of p
(0.6, 0.7, 0.8, 0.9), different values of k (1, 3, 5, 7), and de-
lay probability pd = 0.2. Table 4 shows the results. Dif-
ferent from the smaller environment, the solution costs are
now about the same in all cases (since this environment is



Cost Runtime (ms) R
CBS(k = 0) 35.5 7 0.42

kR-CBS (k = 1) 36.9 297 0.62
kR-CBS (k = 2) 39.2 973 0.84

pR-GCBS (MC) (p = 0.6) 38.4 1,734 0.77
pR-GCBS (MC) (p = 0.7) 40.6 5,550 0.84
pR-GCBS (MC) (p = 0.8) 41.1 10,683 0.89
pR-GCBS (MC) (p = 0.9) 45.5 25,402 0.94

Table 3: Average solution cost, runtime, and the percentage
of conflict-free simulations R for CBS, kR-CBS on an 8x8
4-neighbor empty grid with 8 agents and delay probability
pd = 0.2.

Runtime (ms) R
#Agents 10 20 30 10 20 30

CBS (k = 0) 268 888 2,377 0.77 0.54 0.37
kR-CBS (k = 1) 728 3,568 11,382 0.81 0.57 0.38
kR-CBS (k = 3) 1,635 9,771 28,361 0.85 0.64 0.44
kR-CBS (k = 5) 7,219 27,086 61,832 0.93 0.76 0.57
kR-CBS (k = 7) 12,014 41,913 104,449 0.96 0.85 0.73

pR-GCBS (MC) (p = 0.6) 8,833 36,051 70,815 0.96 0.90 0.86
pR-GCBS (MC) (p = 0.7) 10,063 40,114 79,081 0.98 0.90 0.88
pR-GCBS (MC) (p = 0.8) 10,141 53,091 87,206 0.99 0.94 0.92
pR-GCBS (MC) (p = 0.9) 10,192 79,299 112,994 0.99 0.98 0.96

Table 4: Average runtime and the percentage of conflict-free
simulations R for CBS, kR-CBS, and pR-GCBS for differ-
ent numbers of agents on the brc202d map.

not congested with agents) and thus not shown in the table.
For example, the runtime is 8.833ms and the solution cost
is 1, 309.3 for 10 agents and p = 0.6, while the runtime in-
creases to 10, 192ms but the solution cost stays at 1, 309.4
for 10 agents and p = 0.9. Larger values of p and k again re-
sult in higher runtimes but also higher percentages of simu-
lations with no conflicts. The percentage of simulations with
no conflicts decreases for both pR-GCBS and kR-CBS as the
number of agents increases. But it decreases only slightly
for pR-GCBS and remains larger than its value of p since
pR-GCBS provides a probabilistic robustness guarantee ex-
cept for its greedy nature, while it decreases substantially for
kR-CBS, which provides no such guarantee. For example,
for 10 agents, CBS achieves R = 0.77, and kR-CBS with
k = 7 achievesR = 0.96, while for 30 agents, CBS achieves
R = 0.37, and kR-CBS with k = 7 achieves R = 0.73. The
same trends are also observed in other domains, for other
numbers of agents, and for other delay probabilities, which
demonstrates the inability of CBS and kR-CBS to guarantee
a specific value of p. Thus, one might prefer to use pR-CBS,
if p is known or can be calculated, otherwise one could use
kR-CBS as it is simpler.

8 Related Work
UM* (Wagner and Choset 2017) is a MAPF algorithm de-
signed for delay probabilities. It returns a solution in which
the probability of conflicts for each agent is below a given
threshold. This is different from finding a p-robust solution,
where the probability of conflicts for all agents together is
below a given threshold. For example, assuming we have a
threshold of p = 0.02 in UM* and a solution consisting of
100 agents, in which each agent has a probability of 0.01 to

conflict. Although the total probability for no conflict at all
is very low, in UM* this solution is acceptable. In contrast, a
solution in which only two agents (out of 100) have a prob-
ability of 0.03 to conflict and all other agents have 0 proba-
bility to conflict is not an acceptable solution. Moreover, as-
suming a solution that is acceptable for both pR-MAPF and
UM*, by removing a single-agent plan of one agent from the
solution, the resulting solution will stay p-robust. However,
it might no longer be an acceptable solution for UM* (see
an example in Wagner and Choset (2017)).

AME (Ma, Kumar, and Koenig 2017) is a MAPF algo-
rithm designed for delay probabilities. It aims to minimize
the expected travel time and only guarantees no conflicts in
the next time step. For subsequent time steps, it can utilize
a set of robust online execution policies to avoid conflicts.
However, these policies demand communication during ex-
ecution, which might not be possible.

Lastly, one may consider formulating the pR-MAPF prob-
lem as a single, large Markov Decision Process (MDP), in
which a state consists of the locations of all agents and an
action is the joint action of all agents. However, this would
result in a large state space and a large branching factor, re-
sulting in large runtime for more than a few agents.

9 Conclusions and Future Work

We proposed a new form of robustness for MAPF, called
p-robustness, where p is the probability that no conflicts
(i.e. collisions) occur during execution. Finding robust so-
lutions for this form of robustness is possible when we have
some knowledge of the delay probability of the agents. We
explained why CBS-based algorithms have to perform an
additional split to obtain optimal p-robust solutions. We
proposed a complete and optimal CBS-based algorithm,
pR-CBS, and a greedy CBS-based algorithm for finding
p-robust solutions, both with two possible verifiers. We
showed that p-robust solutions typically cost more than non-
robust solutions, but can decrease the number of conflicts
that occur during execution. We showed that kR-CBS, an
existing CBS-based algorithm, typically runs faster than pR-
CBS but cannot guarantee any specific required value for p.

There are many possible lines of future work, (1) adapt-
ing other MAPF solvers, such as ICTS (Sharon et al. 2013),
to find p-robust solutions; (2) integrating p-robust solutions
with execution policies, as suggested by Ma et al. (2017);
and (3) designing additional verifiers that approximate, in
more efficient ways, the probability of no conflicts occur-
ring when executing a given solution.
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