
W-restrained Bidirectional Bounded-Suboptimal Heuristic Search

Dor Atzmon1, Shahaf S. Shperberg2, Netanel Sabah2, Ariel Felner2, Nathan R. Sturtevant3

1 Department of Computer Science, Royal Holloway, University of London, United Kingdom
2 Department of Software and Information Systems Engineering, Ben-Gurion University, Israel

3 Department of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada
dor.atzmon@rhul.ac.uk, shperbsh@bgu.ac.il, sabahn@post.bgu.ac.il, felner@bgu.ac.il, nathanst@ualberta.ca

Abstract

In this paper, we develop theoretical foundations for bidi-
rectional bounded-suboptimal search (BiBSS) based on re-
cent advancements in optimal bidirectional search. In addi-
tion, we introduce a BiBSS variant of the prominent meet-in-
the-middle (MM) algorithm, called Weighted MM (WMM).
We show that WMM has an interesting property of being W -
restrained, and study it empirically.

1 Introduction
In optimal search, the task is to find the least-cost path be-
tween two vertices, start and goal, in a given graph. Uni-
directional heuristic search (UHS) admissible algorithms,
such as A* (Hart, Nilsson, and Raphael 1968), that order
nodes n according to the f(n) = g(n) + h(n) formaliza-
tion, return an optimal solution (Dechter and Pearl 1985) (of
cost C∗), if h is admissible (never overestimating).

In many cases, finding optimal solutions is infeasible due
to the immense computation required. Bounded-suboptimal
search (BSS) is a paradigm which trades the quality of the
solution for faster running time. In BSS, we are given a
bound W ≥ 1, and are required to find a solution with
cost ≤ W · C∗. A classical BSS algorithm is Weighted
A* (WA*) (Pohl 1970), which expands nodes n according
tof(n) = g(n) + W · h(n). Given an admissible heuris-
tic, WA* is guaranteed to return a bounded-suboptimal so-
lution. Other BSS algorithms, include Dynamic Potential
Search (DPS) (Gilon, Felner, and Stern 2016), Explicit Es-
timation Search (EES) (Thayer and Ruml 2011), XDP and
XUP (Chen and Sturtevant 2019, 2021), and improved ver-
sions of these algorithms (Fickert, Gu, and Ruml 2022).

Bidirectional heuristic search (BiHS) is an alternative to
UHS that progresses simultaneously from start (forward)
and goal (backward) until the two frontiers meet. Recent
work presented theoretical study and practical ways for us-
ing BiHS with tremendous achievements (Barker and Korf
2015; Holte et al. 2017; Eckerle et al. 2017; Shaham et al.
2017; Chen et al. 2017; Shperberg et al. 2019a,b, 2021;
Alcázar, Riddle, and Barley 2020; Alcázar 2021).

Yet, while unidirectional BSS (UBSS) was broadly stud-
ied, bidirectional BSS (BiBSS) has barely been explored.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper aims to build a new foundation for BiBSS and
takes a first step towards adapting the recent advancements
in BiHS to the BSS setting. First, we extend the theory
of must-expand pairs (Eckerle et al. 2017) and of Focal
Search to BSS. Then, we develop WMM — a W -restrained
BiBSS algorithm based on the meet-in-the-middle (MM) al-
gorithm (Holte et al. 2017). WMM never expands nodes
with cost > W · C∗

/2. WMM is empirically evaluated and
cases where it is beneficial are presented and explained.

2 Background on BiHS
In BiHS, two open lists OPENF and OPENB are main-
tained for the forward and backward searches, respectively.
Each node is associated with a g-value, an h-value, and an
f -value (gF , hF , fF and gB , hB , fB for the forward- and
backward searches). MM (Holte et al. 2017) is a BiHS
algorithm that guarantees that the search frontiers meet
in the middle. In MM, nodes n in OPENF (respectively
OPENB) are prioritized by prF (n) = max(fF (n), 2gF (n)).
Let prminF and prminB be the minimum priority on
OPENF and OPENB. MM expands the node with prior-
ity C = min(prminF , prminB). Let U (initially set
to ∞) denote the incumbent solution cost. When OPENF
and OPENB contain the same node n, a solution is
found and we set U ← min(U, gF (n) + gB(n)). Let
LB = max(C, fminF , fminB , gminF + gminB), where
gminF , gminB , fminF and fminB are the lowest g-
and lowest f -values in OPENF and OPENB, respectively.
LB is a lower bound on C∗.1 Thus, MM halts when
U ≤ LB. Given a fraction 0 ≤ p ≤ 1, Fractional
MM (fMM(p)) (Shaham et al. 2017) extends MM and pri-
oritizes nodes by prF (n) = max(fF (n), gF (n)/p) and
prB(n) = max(fB(n), gB(n)/(1− p)). A BiHS algorithm
is restrained (Shaham et al. 2017) with respect to a fraction
0 ≤ p ≤ 1 if the forward- and the backward search never ex-
pand a node n with fF (n) > p·C∗ and fB(n) > (1−p)·C∗,
respectively. MM is restrained with respect to p = 1/2, while
fMM(p) is restrained with respect to any fraction p.

Existing BiBSS algorithms. As opposed to the rich lit-
erature on UBSS, the work on BiBSS is very limited. Köll
and Kaindl (1993) presented BSS variants of two early BiHS

1If known, the cost of the least-cost edge can be used through-
out the paper in our lower-bound definitions (Shaham et al. 2018).



algorithms, BHPA (Pohl 1971) and BS* (Kwa 1989). A*-
connect (Islam, Narayanan, and Likhachev 2016) is another
BiBSS algorithm designed for motion planning. A*-connect
uses BHPA with an additional inadmissible heuristic that
aims to connect the two frontiers quickly.

2.1 Must-Expand and Never-Expand Nodes
Dechter and Pearl (1985) classified nodes in UHS into the
following three categories. (1) Nodes with f(n) < C∗ are
called must expand nodes (MEN) as any optimal algorithm
must expand these nodes to verify the optimality of C∗. (2)
An algorithm (e.g., A*) is optimally efficient if it never ex-
pands nodes with f(n) > C∗. We denote such nodes as
never expand nodes (NENs). (3) Some nodes with f(n) =
C∗ may be expanded; this depends on the tie-breaking rule
defined by the algorithm. Figure 1(a) shows the three cat-
egories.2 The blue circle contains the MENs and the outer
area contains the NENs. We denote the yellow area as the
leeway zone. It contains nodes with f(n) = C∗; some of
which are expanded to find a solution. This analysis relies
on the following three assumptions. (1) Algorithms are de-
terministic, have no domain knowledge other than the given
heuristics, and generate nodes only via expansions (known
as the“DXBB” assumption (Eckerle et al. 2017). (2) Algo-
rithms are admissible, i.e., they must return optimal solu-
tions (if such exist) when given an admissible heuristic. (3)
The algorithms are running on instances with a consistent
heuristic (i.e., h(n) ≤ c(p, n) + h(p) for all nodes n, p). We
make the same three assumptions throughout this paper.

Eckerle et al. (2017) extended the above analysis to BiHS
and defined a Must-Expand Pair (MEP). Two nodes u and v
(from the forward and backward sides, resp.) are a MEP if
all of the following three conditions hold: (1) fF (u) < C∗,
(2) fB(v) < C∗, and (3) gF (u) + gB(v) < C∗; this means
that either u or v must be expanded by any optimal BiHS
algorithm. Also, similarly to UHS, BiHS algorithms should
never expand neither forward nodes u with fF (u) > C∗,
nor backward nodes v with fB(v) > C∗. The blue circles
in Fig. 1(c) show the nodes that are part of MEPs that are
expanded by MM, the yellow area is the leeway zone (nodes
n in direction D with gD(n) = C∗

/2 and fD(n) = C∗), and
the outer area contains the never-expand nodes.

3 MEPs and NENs in BSS
We now adapt the theory of MEPs and NENs to BSS. For
BSS, algorithms do not need to be admissible (assumption
2), but rather be bounded (Chen and Sturtevant 2021), i.e.,
guaranteed to find a solution of cost ≤W ·C∗ when given a
cost-bound W and an admissible heuristic. With this revised
assumption 2, we begin by formulating the UBSS case. In
UBSS, a node n with f(n) < C∗

/W must be expanded to
verify that the cost of the found solution is below the bound
W , when given a consistent heuristic. Likewise, a node n
with f(n) > W ·C∗ should never be expanded as no solution
with cost ≤ W · C∗ passes through n. An illustration of the
zones is shown in Fig. 1(b). As W increases, the MEN zone

2For clarity, the figures depict brute-force search, in which for
every node n, h(n) = 0 and thus g(n) = f(n).

is smaller and BSS algorithms spend less time to prove the
bound W . Likewise, the leeway zone is larger in BSS as it
contains all nodes n with C∗

/W ≤ f(n) ≤W ·C∗ and such
algorithms have more leeway to find a solution. Therefore,
increasing W usually decreases the running time.

3.1 MEPs and NENs in BiBSS
Theorem 1. A pair of nodes (u, v) is a MEP in BiBSS if
all of the following conditions hold: (1) fF (u) < C∗

/W , (2)
fB(v) < C∗

/W , and (3) gF (u) + gB(v) < C∗
/W .

Proof. By contradiction. Assume that there exists a bounded
algorithm A, a problem instance I1 with optimal solu-
tion C∗

1 , consistent heuristics hF and hB , and a pair of
nodes u, v that satisfy the above conditions, but that A
does not expand either u or v. We denote the cost of
the solution found by A when running on problem I1 as
A(I1). Since A is bounded, C∗

1 ≤ A(I1) ≤ W · C∗
1 .

To show the contradiction, another problem instance I2
can be constructed, which is identical to I1 with the ex-
ception of an edge between u and v with cost c(u, v) =

max{hF (u)− gB(v), hB(v)− gF (u),
C∗
1/W−gF (v)−gB(u)

2 }.
By construction, the shortest path from start to goal that
passes through u and v in I2 has a cost of gF (u) +

gB(v)+c(u, v) = max{fF (u), fB(v),
C∗
1/W+gF (v)+gB(u)

2 }.
The first two elements in this max term are strictly smaller
than C∗

1/W , due to conditions 1-2, respectively. In addition,
since gF (u) + gB(v) < C∗

1/W (condition 3), the last ele-
ment in the max term is also strictly smaller than C∗

1/W , as
C∗
1/W+gF (v)+gB(u)

2 <
C∗
1/W+C∗

1/W
2 = C∗

1/W . Thus, the op-
timal solution cost of I2, C∗

2 , holds that C∗
2 < C∗

1/W . In
addition, hF and hB are admissible on I2, due to the ad-
missibility and consistency on I1. Thus, any BSS algorithm
must return a solution of cost ≤W ·C∗

2 < W ·C∗
1/W = C∗

1 .
Since A cannot differentiate between I1 and I2 without ex-
panding either u or v, A would expand the exact set of nodes
when running on I1 and on I2, thus A(I1) = A(I2). There-
fore, we get that A(I2) = A(I1) ≥ C∗

1 > W · C∗
2 . As a

result, A fails to find a bounded-suboptimal solution for I2,
in contradiction to the assumption that A is bounded.

NENs in BiBSS are defined similarly to UBSS: a node n
should never be expanded in direction D if fD(n) > W ·C∗.

3.2 W -restrained
Recall that fMM(p) is restrained with regards to p. We now
extend this property to BSS.

Definition 1 (W-restrained). We say that a BiHS algorithm
is W-restrained with regards to a fraction 0 ≤ p ≤ 1 and a
constant W ≥ 1 if the forward search never expands a node
n with gF (n) > W · p · C∗ and the backward search never
expands a node n with gB(n) > W · (1− p) · C∗.

When p = 1/2 (as in MM), either direction D never ex-
pands nodes n with gD(n) > W · C∗

/2. By definition, if
an algorithm is W -restrained, it is also restrained for ev-
ery W ′ > W . In particular, MM and fMM are also W -
restrained for any W ≥ 1. Nonetheless, since MM and fMM



Figure 1: (a) UHS (b) UBSS (c) BiHS (d) BiBSS. Zones: Blue - MEN, Yellow - leeway, White - NEN. (e) Maximal leeway.

are restrained (for W = 1) they will always find an opti-
mal solution , thus they cannot utilize the leeway enabled by
larger values of W . To this end, we define another property
that enables an algorithm to use its entire leeway:
Definition 2 (maximal leeway). A BiBSS algorithm A is
said to have a maximal leeway if for every weight W and
every path P from start to goal of cost W · C∗ there exists
a problem instance I such that: (1) the optimal path in I from
start to goal is of cost C∗, (2) I also contains P , and (3) A
can return path P when running on I .

Fig. 1(d) shows the zones for BiBSS. The nodes that are
part of MEPs and must be expanded by any W -restrained
BiBSS algorithm with W = 2 and p = 1/2 are depicted as
blue circles with radius C∗ · p/W = C∗/4. The leeway zones
are the yellow circles with radius r = W ·C∗ · p = C∗. The
meeting zone is the intersection of the leeway zones (dark
yellow) and is the zone where the frontiers will meet. For
W = 1 and p = 1/2 the meeting zone is exactly the nodes
n with gD(n) = C∗

/2, hence such algorithms are forced to
meet in the middle, which is the MM case (Fig. 1(c)).

4 W -restrained Bidirectional Focal Search
Focal Search (FS; also known as A∗

ϵ ) (Pearl and Kim 1982;
Ebendt and Drechsler 2009; Valenzano et al. 2013) is a
UBSS algorithmic scheme that maintains a focal list: FO-
CAL = {n ∈ OPEN|f(n) ≤W · fmin}, where fmin is the
lowest f -value in OPEN. Every algorithm that expands only
nodes from FOCAL is guaranteed to be bounded-suboptimal.
FS algorithms vary in the way that they order the focal list.

We next propose a W -restrained bidirectional focal
search algorithmic scheme (BiFS), which extends FS to
BiHS. Given a weight W and a fraction p, BiFS maintains
two focal lists FOCALF = {n ∈ OPENF|prF (n) ≤W ·LB}
and FOCALB = {n ∈ OPENB|prB(n) ≤ W · LB}, where
prF and prB are the priority functions of fMM(p). LB is the
lower bound, as defined above for fMM(p). BiFS halts when
U ≤W · LB, where U maintains the cost of the incumbent
solution (as opposed to fMM which halts when U ≤ LB).
Note that just like A* is a special case of fMM (with p = 0)
where nodes are only chosen from OPENF, FS is a special
case of BiFS where nodes are only chosen from FOCALF.

Implementations of BiFS vary in: (1) how they choose
from which side to expand next (FOCALF or FOCALB) and
(2) how they order the nodes in the focal lists (as in FS).
Any instantiating of these attributes is W -restrained and is
guaranteed to return a bounded-suboptimal solution.

Theorem 2. BiFS is W -restrained

Proof. FOCALF and FOCALB only contain nodes with
prF (n) ≤ W · LB and prB(n) ≤ W · LB.
As prF (n) = max(fF (n), gF (n)/p) and prB(n) =
max(fB(n), gB(n)/(1 − p)), the nodes n in the focal lists
have gF (n) ≤W ·p ·LB and gB(n) ≤W · (1−p) ·LB, re-
spectively. Since LB ≤ C∗, BiFS will never expand nodes
with gF (n) > W · p ·C∗ or gB(n) > W · (1− p) ·C∗.

Theorem 3. BiFS is bounded-suboptimal.

Proof outline. BiFS terminates either when the open lists
are empty or when a solution was found such that U ≤
W ·LB. Since LB ≤ C∗, BiFS only terminates and returns
U if U ≤ W · C∗. Thus, if a solution is returned, it is guar-
anteed to be bounded-suboptimal. We now show that BiFS
must return a solution, if such exists. Let P = n1, . . . nk

be a W -bounded suboptimal solution (of cost ≤W · C∗) to
the given problem instance. Due to admissibility, for every
node ni and direction D, gD(ni) + hD(ni) ≤W · C∗. Fur-
thermore, for every node ni, either gF (ni) ≤ W · p · C∗ or
gB(ni) ≤W ·(1−p)·C∗. Since either prF (ni) ≤W ·C∗ or
prB(ni) ≤W ·C∗, all nodes in P will be in the open lists of
BiFS. Consequently, BiFS is guaranteed to find a bounded-
suboptimal solution, if such exists. □

5 Creating a WA* Version of MM (WMM)
WA* is a special case of FS that does not require to maintain
FOCAL in a separate list as all nodes expanded by WA* must
be in FOCAL, as was noted by Ebendt and Drechsler (2009).
In this section, we develop a WA* version of MM (WMM).
That is, a BiBSS algorithm that instantiates BiFS without ex-
plicitly maintaining FOCAL lists and, instead, the algorithm
orders the OPEN lists similarly to WA*, which guarantees
to return a bounded-suboptimal solution. For simplicity, for
the remainder of the paper we limit the discussion to the MM
case (p = 1/2). But, all definitions and proofs can be directly
adapted to any fMM(p). In our attempts below, we want to
mimic WA* by multiplying the h-value by W .

First Attempt – Note that the priority function of MM
can be written as prD(n) = gD(n) + max (gD(n), hD(n))
for side D of the search. Therefore, the term
max (gD(n), hD(n)) can be seen as the h-value in the
f = g + h formalism. Thus, the first attempt (denoted
WMM1) multiplies that part by W :



0

1

2

3

4

5

6

7

1.0 2.0 3.0 4.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1.0 2.0 3.0 4.0

0

50

100

150

200

250

300

1.0 2.0 3.0 4.0

0

2

4

6

8

10

1.0 2.0 3.0 4.0

#E
xp

an
si

o
n

s 
(t

h
o

u
sa

n
d

s)

(a) (b) (c) (d)
W W W W

WA*-F
WA*-B
WMM

Figure 2: #Expansions on (a) 15-STP with MD (b) 15-STP with MD\5 (c) 14-Pan with GAP (d) 14-Pan with GAP\2

prWD(n) = gD(n) +W ·max (gD(n), hD(n))

Clearly, WMM1 is an instantiation of BiFS, and is there-
fore W -restrained. However, it does not conform to the max-
imal leeway condition defined above (Definition 2). The rea-
son is as follows. Let n be a node with prWD(n) ≤W ·C∗.
Since (W + 1) · gD(n) ≤ prWD(n) ≤ W · C∗, then
gD(n) ≤ W

W+1 · C
∗. For W = 1, we get gD(n) ≤ C∗

/2
which is similar to MM. However, for large values of W ,
W

W+1 converges to 1, and g(n) ≤ C∗. Thus for any value
of W , the search will never venture further from g(n) =
C∗. Given the path P = start, C,D, goal in Figure 1(e),
WMM1 will never return P for any problem instance, as
prWF (C) = prWB(D) = (1 +W )(W · C∗

/2) > W · C∗.

Second Attempt – The second attempt (denoted WMM2)
multiples the h-values by W in a more restrictive way:

prWD(n) = gD(n) + max (gD(n),W · hD(n))

Theorem 4. WMM2 has a maximal leeway

Proof outline. Let P be any path of cost W · C∗. We can
construct I similarly to the problem instance presented in
Figure 1(e), except for path P which is given and replaces
the path of C and D. Also, we set hF (A) = hB(B) = C∗,
and ∀n ∈ P, hD(n) = 0. Thus, prWF (A) = prWB(B) =
W · C∗ and ∀n ∈ P either prWF (n) ≤ W · C∗ or
prWB(n) ≤ W · C∗. Therefore, path P with cost W · C∗

can be returned by WMM2. □

In A*, the f -value is monotonically increasing between a
node and its children. By contrast, in WA*, since h is inflated
by W , a child c can have a smaller gD(c) +W · hD(c) than
its parent. Thus, in WA* the minimal priority in OPEN can
decrease (this might cause reopening of nodes (Sepetnitsky,
Felner, and Stern 2016)). The same phenomenon may hap-
pen in BiBSS. If the algorithms choose the node with the
minimal priority among both sides, it will cause one side
of the search to always have the minimal priority (among
both sides) which continues to decrease. This phenomenon
causes MMW2 to expend the entire leeway in one direction
before moving to the other direction, which hinders the task
of connecting the frontiers for finding a solution.

Third (final) Attempt – The variant of the third attempt
(WMM3) uses the priority function of WMM2, but with a
major change. In the first step, WMM3 chooses the side D
to expand by alternating between the two sides.3 Then, it

3Other criteria can be used, such as Pohl’s cardinally criterion.

expands a node in the chosen side according to the priority
function. This will prevent the starvation of sides described
for WMM2. However, to keep WMM3 being W -restrained,
if the node n with the lowest priority is outside Focal (i.e.,
prD(n) > W ·LB), it is not expanded and WMM3 jumps to
the other side. Since WMM3 solved both issues of WMM1
and WMM2, we use it for the empirical evaluation. For clar-
ity, hereafter we refer to WMM3 simply as WMM.

6 Experimental Study
It was shown (Holte et al. 2017; Sturtevant et al. 2020) that
optimal BiHS algorithms are generally weaker than UHS
algorithms with an accurate heuristic, but outperform them
with mediocre or weak heuristics. Our aim here is not to de-
velop the strongest BiBSS algorithm possible, but rather to
explore whether the same trend is valid for BiBSS.

We experimented on the 15-sliding tile puzzle (15-STP)
and the 14-pancake puzzle (14-Pan) with WA* and WMM
(Figure 2) with W values that range from 1 to 4 (x-axis).
We report the number of expansions (y-axis) averaged over
100 random instances. As some domains are unbalanced, we
executed forward- (WA*-F) and backward WA* (WA*-B).

Figure 2(a) presents the results for 15-STP with the Man-
hattan Distance heuristic (MD). Here, WA* outperformed
WMM. When we weakened the heuristic to MD\5 (tiles 1
to 5 were not considered), Figure 2(b) shows that WMM
outperformed WA* for W ≤ 2.5. Figures 2(c) and 2(d)
show the results on 14-Pan with the GAP heuristic and with
the less accurate GAP\2 heuristic (which excludes the two
smallest pancakes). In both domains we see the same known
trend that, with a weak heuristic, BiBSS outperforms its
UHS counterpart. Nonetheless, we observe a clear transition
in performance at around W = 2. For W ≥ 2 goal is part of
the leeway zone of the forward search and vice versa. Deeper
study is needed to completely understand this impact.

7 Conclusion and Future Work
This paper takes a first step towards extending recent the-
oretical advancements in BiHS to BSS (BiBSS), and intro-
duces WMM which is based on two fundamental algorithms,
WA* and MM. Future work will develop more BiBSS algo-
rithms by hybridizing more advanced UBSS and BiHS al-
gorithms. WMM can also be enhanced by dividing W un-
evenly between the two sides of the search, e.g., by setting
WF and WB such that W = WF · p+WB · (1− p).



Acknowledgements
This work was funded by the United States-Israel Binational
Science Foundation (BSF) under grant numbers 2017692
and 2021643, and by the Canada CIFAR AI Chairs Program.
We acknowledge the support of the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

References
Alcázar, V. 2021. The Consistent Case in Bidirectional
Search and a Bucket-to-Bucket Algorithm as a Middle
Ground between Front-to-End and Front-to-Front. In
ICAPS, 7–15.
Alcázar, V.; Riddle, P. J.; and Barley, M. 2020. A Unify-
ing View on Individual Bounds and Heuristic Inaccuracies
in Bidirectional Search. In AAAI, 2327–2334.
Barker, J. K.; and Korf, R. E. 2015. Limitations of front-to-
end bidirectional heuristic search. In AAAI, 1086–1092.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-End Bidirectional Heuristic Search with
Near-Optimal Node Expansions. In IJCAI, 489–495.
Chen, J.; and Sturtevant, N. R. 2019. Conditions for Avoid-
ing Node Re-Expansions in Bounded Suboptimal Search. In
IJCAI, 1220–1226.
Chen, J.; and Sturtevant, N. R. 2021. Necessary and Suffi-
cient Conditions for Avoiding Reopenings in Best First Sub-
optimal Search with General Bounding Functions. In AAAI,
3688–3696.
Dechter, R.; and Pearl, J. 1985. Generalized Best-First
Search Strategies and the Optimality of A*. JACM, 32(3):
505–536.
Ebendt, R.; and Drechsler, R. 2009. Weighted A* search
- unifying view and application. Artificial Intelligence,
173(14): 1310–1342.
Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient conditions for node expansion in bidi-
rectional heuristic search. In ICAPS, 79–87.
Fickert, M.; Gu, T.; and Ruml, W. 2022. New Results in
Bounded-Suboptimal Search. In AAAI, 10166–10173.
Gilon, D.; Felner, A.; and Stern, R. 2016. Dynamic Potential
Search—A New Bounded Suboptimal Search. In SoCS, 36–
44.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. MM: A bidirectional search algorithm that
is guaranteed to meet in the middle. Artificial Intelligence,
252: 232–266.
Islam, F.; Narayanan, V.; and Likhachev, M. 2016. A-
Connect: Bounded suboptimal bidirectional heuristic search.
In ICRA, 2752–2758.
Kwa, J. B. H. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence, 38(1): 95–
109.

Köll, A. L.; and Kaindl, H. 1993. Bidirectional Best-First
Search with Bounded Error: Summary of Results. In IJCAI,
217–223.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Trans. Pattern Anal. Mach. Intell., 4(4):
392–399.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence, 1(3-4): 193–204.
Pohl, I. 1971. Bi-directional search. Machine Intelligence,
6: 127–140.
Sepetnitsky, V.; Felner, A.; and Stern, R. 2016. Repair Poli-
cies for Not Reopening Nodes in Different Search Settings.
In SoCS, 81–88.
Shaham, E.; Felner, A.; Chen, J.; and Sturtevant, N. R. 2017.
The Minimal Set of States that Must Be Expanded in a
Front-to-End Bidirectional Search. In SoCS, 82–90.
Shaham, E.; Felner, A.; Sturtevant, N. R.; and Rosenschein,
J. S. 2018. Minimizing Node Expansions in Bidirectional
Search with Consistent Heuristics. In SoCS, 81–98.
Shperberg, S.; Felner, A.; Shimony, S.; Sturtevant, N.; and
Hayoun, A. 2019a. Improving bidirectional heuristic search
by bounds propagation. In SoCS, 106–114.
Shperberg, S. S.; Danishevski, S.; Felner, A.; and Sturte-
vant, N. R. 2021. Iterative-deepening Bidirectional Heuristic
Search with Restricted Memory. In ICAPS, 331–339.
Shperberg, S. S.; Felner, A.; Sturtevant, N. R.; Shimony,
S. E.; and Hayoun, A. 2019b. Enriching non-parametric
bidirectional search algorithms. In AAAI, 2379–2386.
Sturtevant, N. R.; Shperberg, S. S.; Felner, A.; and Chen, J.
2020. Predicting the Effectiveness of Bidirectional Heuristic
Search. In AAAI, 281–290.
Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In IJCAI, 674–679.
Valenzano, R. A.; Arfaee, S. J.; Thayer, J. T.; Stern, R.; and
Sturtevant, N. R. 2013. Using Alternative Suboptimality
Bounds in Heuristic Search. In ICAPS, 233–241.


