Benchmarks for Pathfinding in 3D Voxel Space

Daniel Brewer, Digital Extremes Nathan Sturtevant, University of Denver

SoCS 2018

DANIEL FELIX RITCHIE SCHOOL OF ENGINEERING & COMPUTER SCIENCE

Warframe

Warframe

Overview

- Data Set Origins
- In-Game Usage
- Problem Set Creation
- Open Research Questions

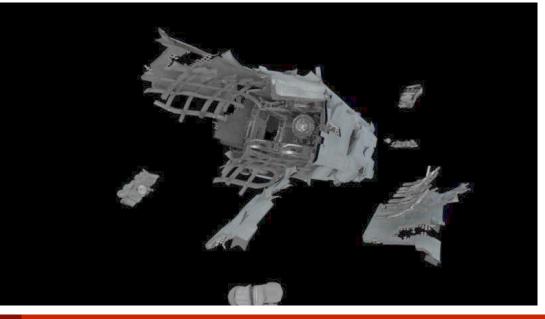
Data Set Origins

CAN'T STOP THE SIGNAL —

Valve leaks Steam game player counts; we have the numbers

Valve plugged the hole, but important data has already escaped.

KYLE ORLAND - 7/6/2018, 1:38 PM



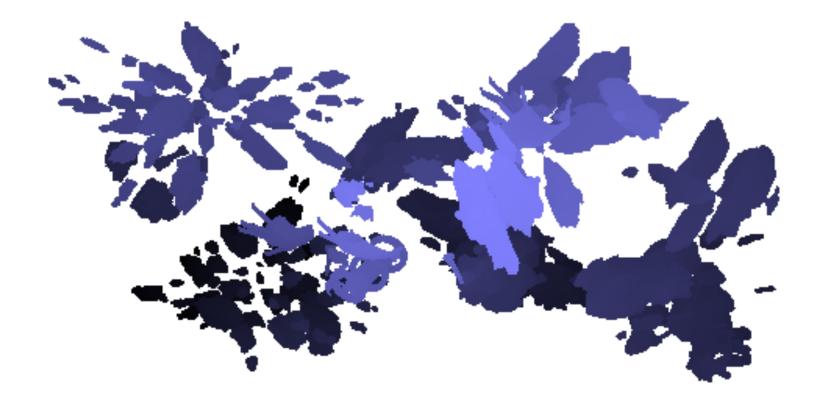
	TITLE	PLAYER ESTIMATE
1	Team Fortress 2	50,191,347
2	Counter-Strike: Global Offensive	46,305,966
3	PLAYERUNKNOWN'S BATTLEGROUNDS	36,604,134
4	Unturned	27,381,399
5	Left 4 Dead 2	23,143,723
6	PAYDAY 2	18,643,807
7	Garry's Mod	18,576,379
8	Warframe	16,332,217
9	Counter-Strike: Source	15,001,876
10	Paladins	14,371,946

Warframe

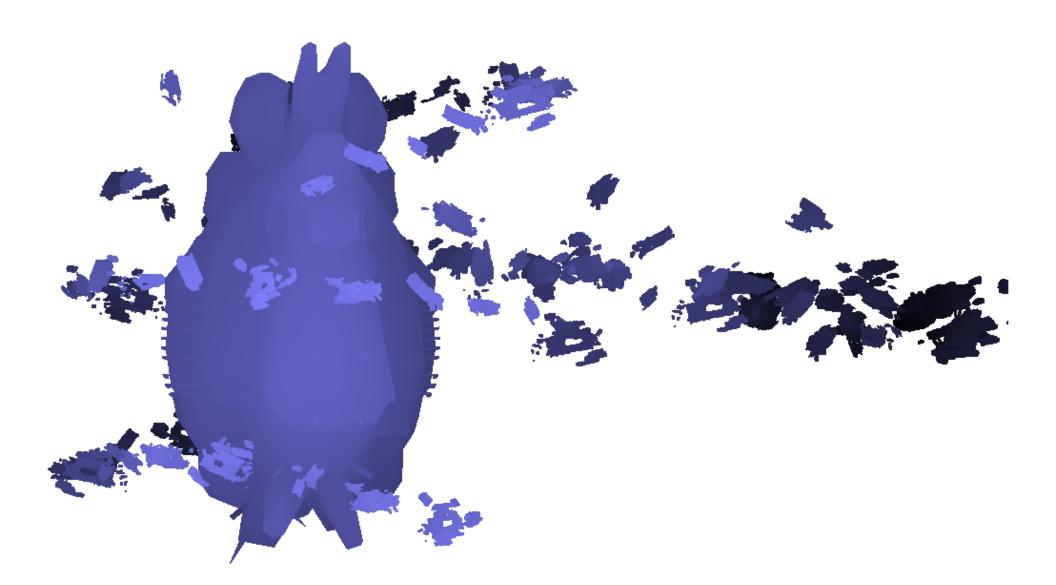
- Many game types
- Archwing space combat
 - Released November, 2014
- Procedurally generated debris fields
- Prefabricated objects
- Up to 2km × 2km × 2km
 - 1m or 2m resolution

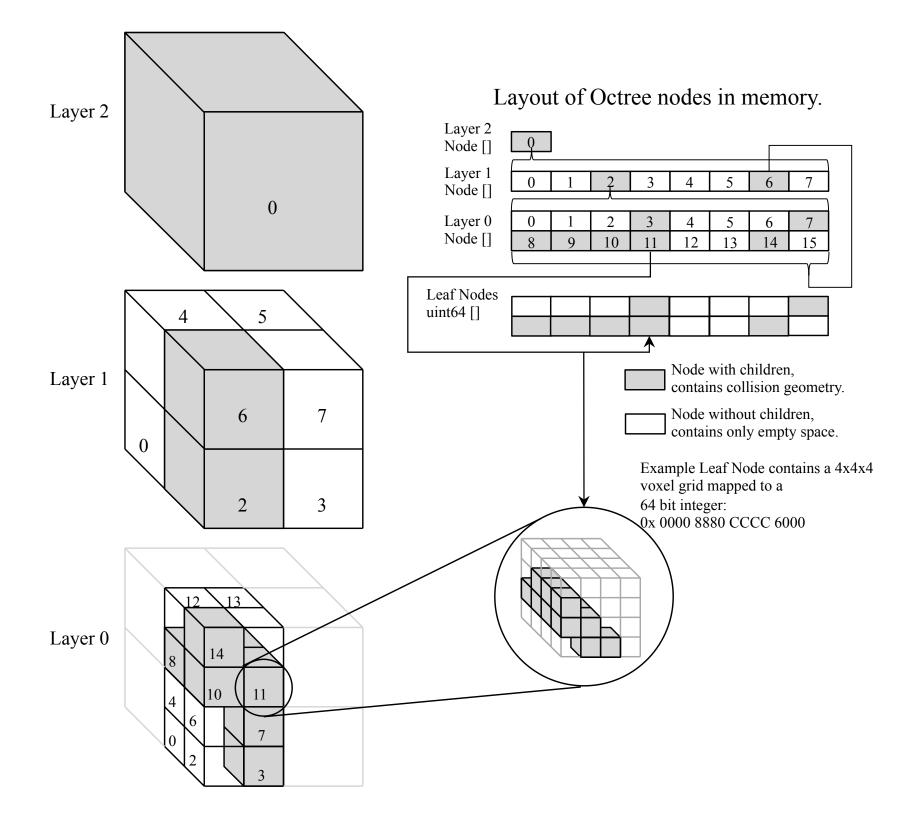
Benchmarks for Pathfinding in 3D Voxel Space

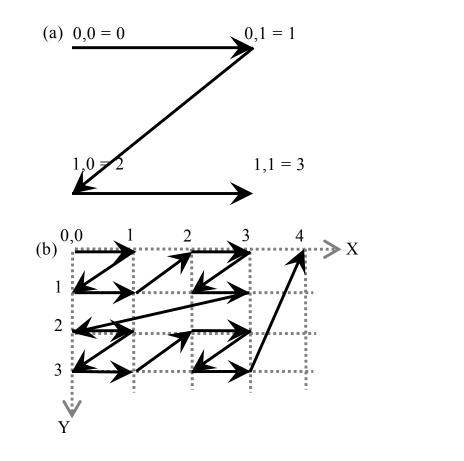


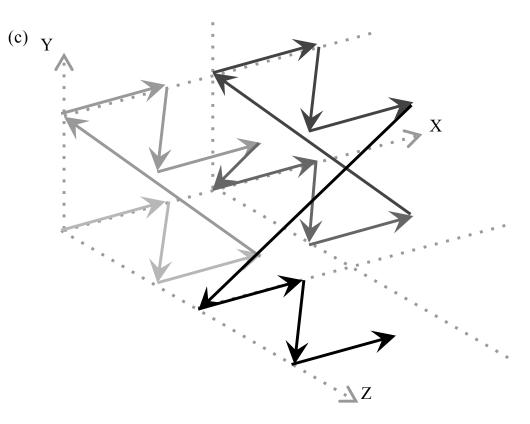


Speed requirements

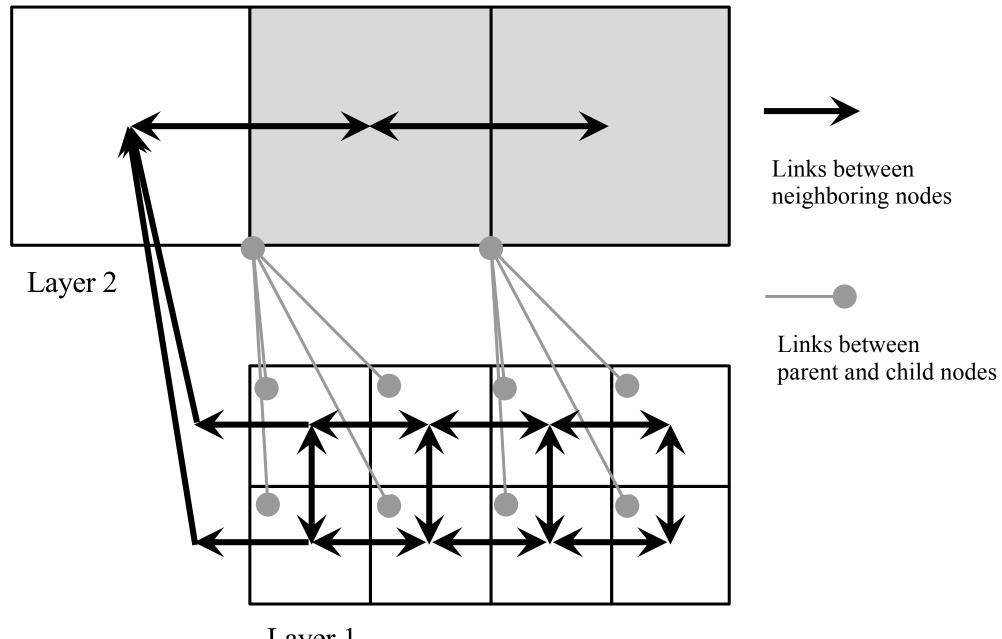

- Paths need to be found as fast as possible, with target ideal times of less than 1ms
 - Worst case of 100ms
- Hardware requirements:
 - Similar to an XBOX ONE
 - 8GB Ram with a 8 Core 1.75 GHz CPU

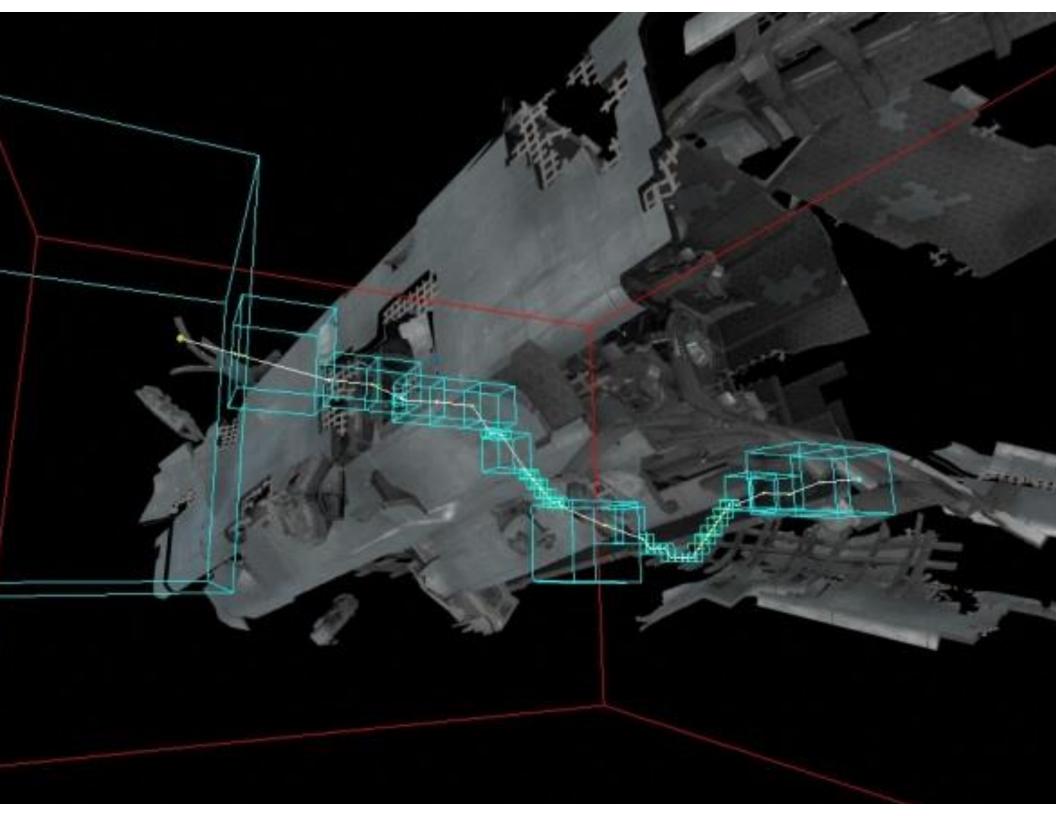



In-Game Usage



In game usage


- How is the data stored?
- How does pathfinding take place?
- How does the AI plan?



Morton / z-order curve

Details

- See Game Al Pro 3 (article)
- GDC Valut (video/slides)
 - https://www.gdcvault.com/play/1022016/Gettingoff-the-NavMesh-Navigating
 - https://www.gdcvault.com/play/1022017/Gettingoff-the-NavMesh-Navigating

Game AI NPC Behavior

- Typically between 4-20 active enemies in the game
 - Fly in formations before engaging player
 - Choose locations to move in range from player
 - Paths and target destinations updated 2x per second
 - Human players expected to be in constant motion

Problem Set Creation

Problem Definition

- Many possible problem definitions
 - Any-angle
 - Hierarchical
 - Uniform voxel grid
 - Visibility graph
 - etc

Uniform Voxel Grid

- Simplest representation (eg no research required)
- Voxel heuristic
 - Extension of octile distance

•
$$h_{voxel} = (\sqrt{3} - \sqrt{2})d_{min} + (\sqrt{2} - 1)d_{mid} + d_{max}$$

- 26-connected graph
- Can only move diagonally if all relevant cardinal angles are free

Problem Sets

- Wanted interesting test problem
 - Random problems are mostly trivial
 - Data is sparse
- Find all empty voxels within 5 voxels of an obstacle
- Repeat:
 - Random select start/goal
 - Discard if no solution or perfect heuristic

Data

- - - - -

-

Maps

Benchmarks

ſ	VO)	kel	896	390	255
	74	80	63		
	74	81	63		
	74	82	63		
	75	80	63		
	75	81	63		
	75	82	62		
	75	82	63		
	76	79	63		
	76	80	62		
	76	80	63		
	76	81	62		
	76	81	63		
	76	82	62		
	76	82	63		
	77	80	63		
	77	81	62		
	77	81	63		
	77	82	62		
	77	92	62		

	version 1							
A1.3dmap								
	303 171 130 125 81 159 224.88200598 1.002							
	523 228 135 749 302 153 262.46925033 1.000							
	71 92 142 777 261 98 790.08330712 1.000							
	632 275 144 215 135 135 478.43622033 1.001							
	82 101 76 742 281 151 759.27115000 1.001							
	105 105 197 740 289 101 742.45972183 1.001							
	593 211 133 122 130 153 513.39332481 1.005							
	141 110 100 78 100 58 88.26430440 1.056							
	666 273 153 610 213 126 92.36335155 1.006							
	114 111 85 760 262 113 718.90979237 1.002							
	635 296 166 446 190 124 246.54493085 1.001							
	105 111 202 129 100 150 66.11949795 1.010							
	458 199 114 51 77 180 479.97541442 1.003							
	56 60 177 767 291 144 818.00038906 1.001							
	69 80 97 239 154 144 217.44728957 1.009							
	708 273 120 115 106 115 665.41970533 1.002							
	633 269 110 649 288 106 28.17011496 1.047							
	116 84 91 88 109 151 80.91163619 1.017							

Open Research Questions

Existing Research

- Optimal Paths
 - NP Hard (Canny & Reif, 1987)
- Any-angle paths
 - Field D* (Carsten et al, 2006)
 - Theta* (Nash et al, 2010)
- Abstraction
 - (Wardhana et al, 2013)

Questions

- Best* representation
- Application of 2D techniques
- Any-angle and other approximation techniques
- Online planning problem
 - Moving Target Search
- New approaches?

Data

- <u>https://movingai.com/benchmarks/</u>
- <u>https://movingai.com/benchmarks/voxels.html</u>
- <u>https://movingai.com/benchmarks/warframe/</u>

Download all maps (40M)

Download all scenarios (7.5M)

Preview (static)	Preview (Click for larger view)	Мар	Dimensions	# states	Scenario
		<u>A1.3dmap</u> (264K)	896x390x255	88,983,963	A1.scen
*		A2.3dmap	006-200-255	00 001 201	