Near-Optimal Bidirectional Search

Jingwei Chen and Nathan R. Sturtevant, University of Denver Robert C. Holte, University of Alberta, Sandra Zilles, University of Regina

• Unidirectional algorithms must expand all states with $f < C^*$. Such states are called "surely expanded" (s.e.).

What Must-Expand Graph gives us:

• The set of states expanded by any admissible algorithm must be a vertex cover in Must-Expand Graph.

- Bidirectional algorithms do not have s.e. states, but s.e. pairs (Eckerle et al., 2017): at least one of *u* and *v* must be expanded for all pairs with $lb(u,v) < C^*$, where
- $Ib(u,v) = max\{f_{F}(u), f_{B}(v), g_{F}(u) + g_{B}(v)\}.$
- Surely Expanded pairs can be represented by a bipartite graph (Must-Expand Graph).

A sample problem instance and its Must-Expand Graph.

- A new framework to analysis the necessary node expansions for all bidirectional algorithms:
- The minimum number of node expansions among all possible algorithms is equal to the size of minimum vertex cover in Must-Expand Graph.

We present a new bidirectional front-toend algorithm, Near-Optimal Bidirectional Search (NBS), with following properties:

- It will always return optimal solution.
- It will never do more than twice the minimum necessary node expansions.
- Its bound, two, is tight.

Pseudocode of NBS

While *Ib_{min}* < currentSolution Choose the pair (*u*,*v*) with min *lb* $Ib_{min} = Ib(u,v)$

Forward-expand *u*, backward-expand *v*

Highlights of NBS implementation:

- NBS is adapted from a greedy vertex cover algorithm (Papadimitriou and Steiglitz, 1982).
- The tie-breaking matters. We choose to break ties towards pairs with low f-cost.
- Naive implementation of pair selection needs all-pair computation, which requires $O(n^2)$ time per selection operation.
- Our efficient data structure for pair selection only needs O(log n) amortized

- It can be implemented with efficient data structure to be practical.

End While

time per selection.

The general trend:

- When the heuristic is very strong, A* performs best.
- As the heuristic get weaker, or the problems get harder, the bidirectional approaches become competitive.

NBS is practical:

- NBS can do less node expansion and can run faster on some domains.
- **NBS** is an insurance:
- When NBS is not the best approach, it is never far from the best; when NBS is the

A comparison between necessary expansions by NBS(yaxis) and best alternative(x-axis) on each instance

Average running time to solve an instance (in										
seconds)										
Domain	h	A *	BS*	MMe	NBS					
DAO	Octile	0.005	0.006	0.015	0.007					
Mazes	Octile	0.035	0.022	0.060	0.019					
TOH4	12+2	3.23	2.44	4.17	3.54					
TOH4	10+4	52.08	23.06	30.64	6.60					
Pancake	GAP	0.00	0.00	0.00	0.00					
Pancake	GAP-2	4. 6	4.9	5.25	5.23					
Pancake	GAP-3	N/A	212.33	72.13	77.17					
15 puzzle	MD	47.68	29.59	41.38	37.67					

Average states expansions to solve an instance

Domain	h	Strength	A *	BS*	MMe	NBS	MM0
DAO	Octile	+	9,646	11,501	13,013	12,085	17,634
Mazes	Octile	_	64,002	42,164	51,074	34,474	51,075
4 peg TOH	12+2	++	1,437,644	1,106,189	1,741,480	1,420,554	12,644,722
4 peg TOH		-	19.340.099	8.679.443	11.499.867	6.283.143	12.644.722

best approach, it could be much better than existing alternatives. NBS is the only algorithm with bounded suboptimality.

