
A Polynomial-time Algorithm for Non-optimal Multi-Agent Pathfinding

Mokhtar M. Khorshid
Computing Science Department

University of Alberta
Edmonton, AB, Canada T6G 2E8
mokhtar@ualberta.ca

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB, Canada T6G 2E8
holte@cs.ualberta.ca

Nathan Sturtevant
Computer Science Department

University of Denver
Denver, CO, USA

sturtevant@cs.du.edu

Abstract

Multi-agent pathfinding, where multiple agents must travel to
their goal locations without getting stuck, has been studied
in both theoretical and practical contexts, with a variety of
both optimal and sub-optimal algorithms proposed for solv-
ing problems. Recent work has shown that there is a linear-
time check for whether a multi-agent pathfinding problem
can be solved in a tree, however this was not used to ac-
tually produce solutions. In this paper we provide a con-
structive proof of how to solve multi-agent pathfinding prob-
lems in a tree that culminates in a novel approach that we
call the tree-based agent swapping strategy (TASS). Exper-
imental results showed that TASS can find solutions to the
multi-agent pathfinding problem on a highly crowded tree
with 1000 nodes and 996 agents in less than 8 seconds. These
results are far more efficient and general than existing work,
suggesting that TASS is a productive line of study for multi-
agent pathfinding.

Introduction
In multi-agent pathfinding there are a number of agents sit-
uated on a graph, each with their own goal location. The
agents must move to their goal locations, but cannot move
into nodes occupied by other agents, and cannot simultane-
ously cross edges at the same time as another agent.

Multi-agent pathfinding has been studied in both theoreti-
cal and practical contexts, with a variety of both optimal and
sub-optimal algorithms proposed for solving problems. Re-
cent work (Masehian and Nejad 2009) has shown that there
is a linear-time check for whether a multi-agent pathfind-
ing problems can be solved in a tree, however this was not
used to actually produce solutions. In this paper, we provide
a constructive proof of how to solve multi-agent pathfind-
ing problems in a tree in polynomial time using a novel
tree-based agent swapping strategy (TASS). Experimental
results showed that TASS can find solutions to the multi-
agent pathfinding problem on a highly crowded tree with
1000 nodes and 996 agents in less than 8 seconds. These
results are far more efficient and general than existing work,
suggesting that TASS is a productive line of study for multi-
agent pathfinding. Our approach also allows us to quickly
identify, for a given tree, the maximum number of agents for
which we are guaranteed to find complete solutions given
any valid configuration of such agents.

Background and Related Work
In this paper we study movement on a tree, but we are even-
tually interested in decomposing graphs into trees in order to
efficiently find solutions. Some problems, like mazes, are al-
ready represented as trees. For other problems, we have de-
vised Graph-to-Tree Decomposition (GTD) algorithms that
can induce trees from general graphs (see Slidable Induced
Trees below). We are confident that a large number of multi-
agent pathfinding problems can be represented and solved
as trees, hence the goal of this paper, which is to provide a
foundation for studying this approach.

Multi-agent pathfinding has been studied in a range of
contexts, including agent simulations for interactive enter-
tainment (Silver 2005) and robotics (Ryan 2008). A variety
of algorithms have been developed for both optimal and sub-
optimal solutions. We highlight a few here that define the
necessary context for this work.

Finding optimal solutions in the general multi-agent
pathfinding problem is NP-complete (it reduces to the
sliding-tile puzzle (Ratner and Warmuth 1986)), which is
probably why there has not been extensive work on op-
timal solutions. One notable optimal approach (Standley
2010) used the idea of operator decomposition to simplify
the problem and extend the range of problems that can be
solved optimally.

Optimal approaches require centralized planning, al-
though centralized planners can also be used to find subopti-
mal solutions. Ryan (2010), for instance, used a constraint-
based model to find solutions more quickly, at the cost of
losing optimality. In this paper, like Ryan, we take a central-
ized approach that results in sub-optimal solutions.

Most other approaches to the problems are distributed.
Silver (2005) developed a hierarchy of algorithms culminat-
ing in Windowed Hierarchical Cooperative A* (WHCA*).
In this approach each agent plans cooperatively over a slid-
ing window. Wang and Botea (2008; 2009) have provided
multiple improvements on this approach. Most importantly,
they introduced a class of problems called SLIDEABLE,
which can be solved in low polynomial time. While they
showed that minor relaxations to this problem could still be
solved, we will show that TASS can handle problems which
are not slideable, we will also provide an algorithm, GTD-
SLIDABLE, that converts SLIDEABLE problems into solv-
able trees.



One piece of work which is orthogonal to these ap-
proaches is (Surynek 2009) which looks at methods for im-
proving the quality of existing solutions. The solutions pro-
duced by TASS are inefficient in general. The focus of this
paper is on how to actually solve multi-agent pathfinding
problems on trees while guaranteeing completeness within
the domain of solvable trees; improving solution quality is a
matter of future work.

Our work in this paper is primarily based on that of Mase-
hian and Nejad (2009). Their notion of Solvable Trees and
detecting solvable trees is central to our work. Our simpli-
fied solvability criteria follows directly from their work, but
we have provided our own complete constructive proof of
solvability that not only answers the question whether a so-
lution exists, but also constructs this solution. Therefore,
the focus of this paper is on constructing this algorithm and
analyzing its performance.

Finally, (Luna and Bekris 2011) in parallel to our work,
had a similar algorithm to solve multiagent problems on gen-
eral graphs. Their solving approach shares with ours the idea
of swaping agents at specific junctions but the overall solu-
tion as well as the scope differs. GTD and TASS have a
narrower scope defined by more strict requirements on the
topology of the graphs we can handle so far, however, TASS
has a lower asymptotic runtime and seems to be orders of
magnitude faster. In a quick independent collaborative ex-
periment with the authors, we found out that on trees, TASS
performed more than 2 orders of magnitude faster and pro-
duced results that are half as long as their Push and Swap
algorithm1.

Solving Multi-Agent Path Planning on a Tree
We will begin by making a few key definitions; the first
two of which are restated from (Masehian and Nejad 2009).
In all of these definitions and lemmas there is some fixed
(given) undirected tree T in which each node is either a
“hole” or contains an “agent”. All agents are distinct. An
agent that is adjacent to a hole can swap places with it. The
number of nodes in T is n, the number of agents is m, and
the number of holes is H = n − m. Agents have goal lo-
cations that they are trying to reach; each goal location must
be distinct for a problem to be solvable.

Definition 1 (Masehian and Nejad 2009) A junction is any
node in T with 3 or more neighbours.

Definition 2 (Masehian and Nejad 2009) Two junctions are
“near” if there is no junction on the path between them.

Tree Solvability Conditions
Based on the work in (Masehian and Nejad 2009) we have
adapted the following three sufficient conditions for a tree,
T , to be solvable for any configuration of agents:

1. T contains at least one junction.

1Please note that this experiment was conducted in two different
environments on systems with different processing powers and so
the results are not conclusive. It is also worth noting that their
results were comparable to our initial implementation before our
algorithm was refined to produce shorter results.

2. There are at most H − 1 edges on the path between any
node and the junction nearest to it.

3. The path connecting any two junctions that are near con-
tains at most H − 2 edges.

Definition 3 Let v be any node in T and S any set of nodes
in T . Trees(v, S) is defined as the set of trees that result
when v is removed from T , excluding any such tree that con-
tains one or more nodes in S.

Definition 4 Let v be any node in T and S any set of nodes
in T . Holes(v, S) is defined to be the total number of holes
in Trees(v, S).

Definition 5 Let u and v be any two nodes in T . E(u, v) is
the number of edges on the path from u to v in T .

Note: If u 6= v then E(u, v) is also the number of nodes
on the path if you include one endpoint and exclude the
other. That’s how we are going to think of it in most of
what follows.

Definition 6 Let u and v be any two nodes in T . H(u, v) is
the number of holes on the path from u to v in T excluding
u.

Note: H(u, v) and H(v, u) will differ by one if one of the
endpoints is a hole and the other one isn’t.

Definition 7 Let u and v be any two nodes in T . A(u, v) is
the number of “agents” on the path from u to v excluding u.
This is equal to E(u, v)−H(u, v).

Lemma 1 Let x and y be any two adjacent nodes in
T , and J any junction nearer to y than to x such that
Holes(J, {x, y}) ≥ A(y, J) + 2. Then there exists a se-
quence of moves that, when completed, swaps the contents
of x and y and leaves the contents of all other nodes un-
changed.

Proof. Figure 1 depicts the general situation, where y and
J are distinct. There are E(y, J) nodes between y and J
(including J but not y) and J has at least two neighbours,
which we will refer to as “ports,” A and B, in addition to
the node on the path between y and J . Let T ′ be the tree
rooted at J excluding the subtree that contains x and y. By
the premise of the lemma, T ′ contains at least A(y, J) + 2
holes. This is enough holes to clear all the nodes between y
and J (including J but not y) and to clear A and B as well,

x	
 y	

J	


E(y,J) nodes	


A	


B	


Figure 1: This arrangement of holes allows x and y to be
swapped (cf. Lemma 1). Any node not labelled with a letter
inside it is considered to be a hole. There may be more nodes
to the left of x; they are irrelevant so are not shown.



since in the starting configuration there are A(y, J) agents
on the path from y to J (including J but not y). A sequence
of moves S that establishes the configuration in Figure 1 is
constructed as follows. Let A and B be any two neighbours
of J . Move holes within T ′ as necessary so that there are at
least A(y, J) + 2 holes in the A and B subtrees combined
and at least one hole in each. Now move these holes into
the nodes on the path from y to J , starting with the node
closest to y and finishing with J , being sure to always leave
at least one hole in each of the A and B subtrees. Finally,
move a hole from A’s subtree into A and a hole from B’s
subtree into B. All this can be done without disturbing x
and y since the holes are all being drawn from and moved
to the part of the tree on the opposite side of y from x. This
establishes the configuration shown in Figure 1. Let S be
the sequence of moves executed thus far. Now move y into
A and x into B, and then move y to the node in which x
began and then x to the node in which y began. x and y have
swapped positions. All that remains is to reverse sequence S
to get all the nodes that have been disturbed by S back into
their initial positions. S did not disturb x and y when it was
executed, so reversing S will not disturb them either.

When y = J the above reasoning does not apply since
the sequence S may move y out of J . This case divides into
three subcases.

1. If J has two neighbours (not counting x), A and B, whose
subtrees each contain at least one hole then, just as we did
above, we can clear A and B using those holes without
disturbing x and y (let S′ be the sequence that does this),
move y into A and x into B, and then move y to the node
in which x began and then x into J . x and y have swapped
positions, and A and B are clear. We can now reverse S′

to restore the A and B subtrees to their original configu-
ration without disturbing x and y.

2. If there is at least one hole on the opposite side of x from
y, it can be moved to J . Let S′ be the sequence that does
this. This keeps x and y adjacent and does not decrease
Holes(J, {x, y}), but y is no longer in J so we can apply
the general case to swap x and y. When this is finished J
will be clear and when we apply S′ in reverse x will move
into J , y will move into the node that originally contained
x and the other nodes that were disturbed to get this hole
into J will be restored to their original configuration.

3. If neither of the above is possible it means all H holes
are in one subtree rooted at a neighbour of J other than
x. This subtree must contain a junction because it con-
tains at least H nodes and T has the property that there
are at most H − 1 edges on the path between any node
and the junction nearest to it. Let J ′ be the junction in
this subtree that is nearest to J . J ′ is obviously nearer to
y than x and does not contain y so if we can establish that
Holes(J ′, {x, y}) ≥ A(y, J ′) + 2, then we can use this
junction and the method in the general case to swap x and
y. T has the property that the path connecting any two
junctions that are near contains at most H − 2 edges. J
and J ′ are near, so this property ensure that E(y, J ′) ≤
H − 2, and therefore A(y, J ′) + 2 ≤ H −H(y, J ′). But
H − H(y, J ′) is equal to Holes(J ′, {x, y}) because all

H holes are in this subtree, so H − H(y, J ′) of them
are in Trees(J ′, {x, y}). Thus we have established that
Holes(J ′, {x, y}) ≥ A(y, J ′)+2 and can use J ′ to swap
x and y.

�

Definition 8 Let u and v be any two adjacent nodes in T .
J(u, v) is the junction in T , if it exists, that is closest to u
and closer to u than to v.

Lemma 2 Let u and v be any two adjacent nodes in T .
Then at least one of J(u, v) and J(v, u) exists.

Proof. Let J be the junction closest to u. This must exist be-
cause T contains at least one junction. If J is closer to u than
to v then J(u, v) exists (because J satisfies the definition of
J(u, v)). If J is closer to v than to u then J(u, v) does not
exist but J(v, u) does (because J satisfies the definition of
J(v, u)). �

Theorem 3 Let u and v be any two adjacent nodes in T .
Then there exists a junction J such that at least one of the
following holds:

1. Holes(J, {u, v}) ≥ A(u, J) + 2

2. Holes(J, {u, v}) ≥ A(v, J) + 2

Proof. From Lemma 2 we know that at least one of Ju =
J(u, v) and Jv = J(v, u) exists. We will show that at least
one of these satisfies the requirements for J in the Theorem
statement.

We will begin with the general case, shown in Figure 2,
where both Ju and Jv exist, u 6= Ju, and v 6= Jv . We
simplify our notation to make the following proof sim-
pler. Thus K1, H1,K2, H2,W1, and W2 in the figure are
E(u, Ju), H(u, Ju), E(v, Jv), H(v, Jv), Holes(Ju, {u, v})
and Holes(Jv, {v, u}) respectively. So to prove the the-
orem is to prove that either W1 ≥ (K1 − H1 + 2) or
W2 ≥ (K2 −H2 + 2).

Ju and Jv are near junctions, so there are at most H − 2
edges on the path connecting them, i.e., at most H−1 nodes
including both Ju and Jv . Hence K1 + K2 + 2 ≤ H − 1,
i.e., K1 + K2 + 3 ≤ H = H1 + H2 + W1 + W2. Hence
3 + (K1 −H1) + (K2 −H2) ≤W1 + W2.

Now suppose that the theorem is false, i.e., that W1 ≤
(K1 − H1 + 1) and W2 ≤ (K2 − H2 + 1). This implies
W1 +W2 ≤ (K1−H1 + 1) + (K2−H2 + 1) = 2 + (K1−
H1) + (K2 − H2), contradicting the fact we just derived,
W1 + W2 ≥ 3 + (K1 −H1) + (K2 −H2).

u	
 v	

Jv	


K2 nodes	

H2 holes	


Ju	


K1 nodes	

H1 holes	


H4 holes	
H3 holes	


Figure 2: The general case analyzed in Theorem 3.



The same reasoning applies when either u = Ju or v =
Jv (or both) since these are the cases K1 = H1 = 0 and
K2 = H2 = 0 respectively.

The final case to consider is when one of the junctions,
say Ju does not exist. In this case we have W1 = 0 and
a total of K1 + K2 + 2 nodes from the “leftmost” node on
this chain, X (which can be visualized as Ju in Figure 2
with the understanding that the subtree to its left is empty),
to Jv (including X , Jv , u and v) which means K1 +K2 + 1
edges. We know the number of edges on the path from X
to Jv (the junction nearest to X in this case) cannot exceed
H − 1 (this is one of the properties we have assumed of T ),
so K1 + K2 + 2 ≤ H = H1 + H2 + W2. This implies that
W2 ≥ 2 + (K1 −H1) + (K2 −H2). Since (K1 −H1) ≥ 0
we are guaranteed that W2 ≥ 2 + (K2−H2) as required by
the theorem. �

Corollary 4 Let u and v be any two adjacent nodes in T .
Then there exists a sequence of moves that, when completed,
swaps the contents of u and v and leaves the contents of all
other nodes unchanged.

Proof. Use Theorem 3 to obtain a junction J . If case (1) of
Theorem 3 holds, invoke Lemma 1 with J , x = v and y = u;
otherwise invoke Lemma 1 with J , x = u and y = v. �

Lemma 5 The number of moves described in Corollary 4 is
polynomially bounded.

Proof. Finding the correct closest junction, as required by
Theorem 3 and Lemma 1 requires looking at no more than n
nodes. Swapping elements, as described in the general case
of Lemma 1, can require moving at most n holes distances
n before and after the swap, or 2n2 total moves. The other
cases of Lemma 1 have the same bound. Swapping x and
y can take no more than 4n moves. Thus, the number of
moves required to swap two agents is bounded by O(n2). �
Theorem 6 If we have the ability to swap any two agents in
polynomial time, we can solve any multi-agent problem in
polynomial time.

Proof. There is a path of at most length n between any
agent’s start and goal location. Therefore, any individual
agent can be moved from its start to goal location with no
more than n swaps with a neighbor. There are m total
agents, with m < n, so any problem can then be solved
in O(n4) time. �

This bound also applies to the maximum solution length,
meaning that solutions will be no larger than O(n4) moves
long. For completeness, the full algorithm follows:
• Starting at the leaves of the tree and working inward, find

the first goal state that is not occupied by its target agent.
• Move this agent to its goal by swapping it with any agents

along the path to the goal.
• Repeat until all agents are on their goal states.
The swapping algorithm is:
• Find the nearest junction that has enough holes to allow

the agents to swap at that junction.
• Move all holes towards the agent until the junction can be

used for the swap.

• Swap the agents.

• Return the holes to their original positions, restoring all
other agents as well.

Worked Example
To illustrate how TASS works, we will go over the example
shown in Figure 3. Suppose we want to swap agents u and
v on the original tree (a). The first step would be to iden-
tify a junction that meets the conditions of Theorem 3. The
first such junction we have is the one currently occupied by
u. This meets the conditions of the theorem, however, it is
not safe to do the swap as it falls under the third category
of Lemma 1. Following the reasoning in the proof, we use
another junction that is safe, as labelled in Figure 3(a), and
use it to swap the agents instead.

The first step of TASS is to clear the junction and two of
its ports2. To do this TASS moves agents 1, 2, and 3 out of
the way and end up with the configuration in Figure 3(b).
TASS then clears the path between u and the junction by
importing the hole in the lower left of the graph3 and we get
the configuration in Figure 3(c). Now that the junction, the
path to it, and two of its ports are clear we can do the swap.
As shown in Figure 3(d) we swap by moving u into one port,
v into the other, and then pull them out in reverse order to
obtain the configuration shown in Figure 3(e). The final step
is to return the other agents to their original locations from
the beginning of the procedure by reversing their actions.
This achieves the final state in Figure 3(f).

Slideable Induced Trees
The long term goal of our work is to solve multi-agent prob-
lems on as general graphs as possible. Our first step in this
direction is solving a class of problems that (Wang and Botea
2009) called SLIDEABLE. This class of problems was shown
to be solvable in polynomial time. The original definition for
SLIDEABLE problems given in (Wang and Botea 2009) can
be rewritten as follows:

Definition 9 A problem is SLIDEABLE if the following con-
ditions hold:

1. A full path, call it Pi, exists for each agent i from its start-
ing location to its destination.

2. For each three consecutive steps a, b, and c on the path
Pi, an alternative path, Ωiac, exists from a to c that does
not pass through b.

3. The first step on Pi is vacant.
4. No destination for any agent will be on any Pi where i is

a different agent.
5. No destination for any agent will be on any of the alter-

native paths for any of the agents.

2The exact order of which to clear first is not significant, since
holes can be easily moved around the graph.

3Note that when we move a hole, agents on its path occupy the
same nodes before and after the move, with the exception of the
node where the hole started its movement and the node where the
hole ended.



3!

5!

2!

1!

u! 4!

v!

Safe 
Junction!

Initial 
Junction!

3! u! 4!

v!5!

1!

2! Ports!

(a) Original tree. We want to switch u and v. (b) First step: Clear the junction and the two ports.

u! 4!

v!3!5!

1!

2!

v!

u!

4!

3!5!

1!

2!

(A) Move u first!

(B) Then move v!

(c) Second step: Clear the path to the junction. (d) Third step: Move the two agents to the ports.

v! 4!

u!3!5!

1!

2!

(B) Then move u!

(A) Move v first 
to its goal node!

3!

5!

2!

1!

v! 4!

u!

(e) Fourth step: Move the agents to their goals in reverse order. (f) Fifth step: Return all other agents back to where they were.

Figure 3: Example run of TASS

Lemma 7 We can always decompose a SLIDEABLE prob-
lem into an induced tree that is guaranteed to be solvable.

Proof. The GTD-SLIDABLE algorithm creates trees as fol-
lows. Create the induced tree by adding all the nodes and
edges on Pi for i = 1 → m and breaking any cycles that
are created arbitrarily. We will prove the solvability for the
general case where we have at least 3 junctions or more.
If we have less than 3 junctions, then exhaustive analysis
has shown that edges on the main path can be swapped with
edges from the alternative paths to either create new junc-
tions or reduce distances to existing junctions to make the
problem solvable.

Let ` be the number of leaves. By the definition of SLIDE-
ABLE and the GTD-SLIDABLE algorithm every goal node
must be on a leaf which is initially vacant, and at least
one extra node is vacant4. This implies that ` ≥ m, so

4An exception is if every agent is adjacent to its goal node, in
which case the problem is trivially solved by moving every agent

H = n −m ≥ n − `. Now, consider the three conditions
required for tree solvability:

Condition 1: (T contains at least one junction.) This is
satisfied trivially since we are assuming we have 3 junctions.

Condition 2: (There are at most H − 1 edges on the path
between any node and the junction nearest to it.) Pick any
node q and near junction J . E(J, q) ≤ n− `+1−3. On the
right-hand side of the equation we add 1 because q can be
a leaf node. We subtract 2 for the two junctions that cannot
be on the path and an additional 1 because the left-hand side
is expressed in edges instead of nodes. Since H ≥ n − `,
E(J, q) ≤ n − ` − 2 ≤ H − 2, which is stronger than
necessary.

Condition 3: (The path connecting any two junctions that
are near contains at most H − 2 edges.) Because we have
at least three junctions in total, ` ≥ 5. For all near junctions
Ja and Jb, E(Ja, Jb) ≤ n − ` − 1 − 1. This is because

directly to its goal.



4	
 5	
 J2	


7	


J1	
 3	


6	


7	


6	


Figure 4: A problem which is not slideable, but can be
solved by TASS. Agents at J1 and J2 need to swap posi-
tions.

(1) leaves cannot be on the path between junctions (2) at
least one other junction will not be on the path between Ja
and Jb and (3) E(Ja, Jb) counts edges which is one more
than nodes. We have already established that H ≥ n− ` so
E(J1, J2) ≤ n − ` − 2 ≤ H − 2. This establishes that the
distance between any two near junctions is less than or equal
H − 2. �

Note that the SLIDEABLE class of problems is a strict sub-
set of the problems that our thee algorithm solves. Figure 4
shows an example that is not SLIDEABLE because there are
no alternate paths, yet this can easily be solved by TASS.

Experimental Results
We performed a number of experiments to better understand
the practical performance of our algorithm. Our experiments
were primarily performed on binary and ternary trees, as
shown in Figure 5. These trees have branching factors of
3 and 4 respectively, except for the leaves and the root of the
tree. They grow exponentially in the depth, so they are dif-
ferent from the trees that could be induced from grid maps;
however, 4-connected grid maps will have a branching fac-
tor similar to these trees, as each state in a grid has at most
four neighbors.

Our initial experiments were very promising on their own
as we were able to solve problems with trees of 1000 nodes
in 50 minutes which is far better than any of the existing
approaches. However, after performing a first round of op-
timizations on our algorithm we achieved more than 300
times faster performance and solution lengths were divided
in half. These results further strengthens the applicability of
TASS to real world applications.

In this section, we begin with scalability experiments and
then look at the distribution of solution lengths on fixed size
trees.

Scaling Experiments
A number of experiments were conducted to measure the
scalability of TASS. In each experiment trees of increasing
sizes were systematically populated with agents with which
they can still be solvable. The experiments were run on a
2.66 GHz Q8400 processor.

To make the experiments easily replicable, we have incre-
mentally built binary and ternary trees starting with trees of

size 6 all the way up to 1000 in increments of one node. For
a tree of size n, there are m = n− 4 agents in the tree.

The tree nodes are labelled starting from 0 at the root all
the way to TreeSize-1. We increment the node labels by the
level; so the first level only has the 0 node which is con-
nected to nodes 1 and 2 on the second level. Then on the
third level we have 3 and 4 which are connected to node 1
and 5 and 6 to node 2, and so on.

The agents start on nodes TreeSize-1 through node 4 and
their destinations span the nodes from 0 to TreeSize-5. For
example, in the binary tree in Figure 5, there would be three
agents that start on locations 6, 5 and 4 with respective goals
of 0, 1 and 2.

In the results below, for binary and ternary trees, two pairs
of graphs are presented to show the relationships between
the number of nodes vs. computation time and between the
number of nodes vs. solution length.

Binary Trees Results on binary trees are in Figure 6 which
shows planning time (left) and overall plan length (right).
In this experiment we could solve a tree of 267 nodes in
less than a second. Our largest tree of size 1000 nodes was
solved in a bit below 22 seconds. It is important to note that
these trees are almost completely filled with agents, condi-
tions under which most, if not all, existing algorithms would
fail.

The solution sizes are, as expected, quite large. These
problems are hard in nature and only some attempts have
been made to optimize the solution lengths. In future work,
we intend to further improve the suboptimiality of the solu-
tions. In the smallest tree, our algorithm found the optimal
solution of length 3, while the largest tree of 1000 nodes had
a solution plan of 663,056 moves. As it could take up to
O(n2) actions just to swap two agents, this is clearly much
better than the worst possible case.

Ternary Trees The results for the ternary trees, shown in
Figure 7, share the same characteristics as the results of
binary trees, except that solution lengths and runtimes are
lower. The solution lengths are shorter because with the in-
creased branching factor all the nodes are closer together.

Our largest ternary tree also had 1000 nodes and 996
agents. This took about 8 seconds and 378,744 moves to
solve, which is approximately three times faster and with
half the solution length required to solve the 1000-node bi-
nary tree.

Plan length distribution
Since it is possible that our experiment problems were par-
ticularly easy or hard, we wanted to get a better understand-
ing of the distribution of the solution lengths over a fixed
tree size. To do this, we fixed the size of two ternary search
trees, one with 14 nodes and the other with 40 nodes. On
the smaller tree we ran TASS on all permutations of destina-
tions with 10 agents on the tree. On the larger tree, we ran
TASS on 2,024,401 problems with 36 of the 40 nodes occu-
pied. Results are in Figure 8. The x-axis is the plan length,
while the y-axis is the frequency of paths of that length in
thousands.



0	


4	


1	


3	


2	


6	
5	


0	


3	


11	
 12	
5	


1	


10	
4	
 6	


2	


8	
7	
 9	


Binary Tree Ternary Tree

Figure 5: Sample of the trees used in the experiments.

Pl
an

ni
ng

 T
im

e 
(S

ec
on

ds
)

0

5

10

15

20

25

Tree Size (Nodes)
0 200 400 600 800 1000

Pl
an

 L
en

gt
h 

(×
10

00
)

0

200

400

600

800

Tree Size (Nodes)
0 200 400 600 800 1000

Figure 6: Timing and solution-length results on binary trees.

The distributions appears to be heavy-tailed. It is an open
question as to whether this is the result of the optimal so-
lutions being skewed, or the result of how TASS handles
different problem instances. Certain aspects of our imple-
mentation hint to the latter, as some portions of the algo-
rithm are still unoptimized and would negatively affect the
solution lengths in certain problem instances.

Conclusions and Future Work

In this paper we have presented a new algorithm which can
solve multi-agent pathfinding problems on trees. We have
demonstrated that this algorithm runs in polynomial time,
and shown that in practice it can scale up to thousands of
agents.

This work is just one step in classifying problems which
can be solved in polynomial time. The next step would
be expanding the family of GTD algorithms to decompose
more general graphs into trees and optimize the trees gener-
ated for shorter solutions. This will help classify what graph
properties make multi-agent pathfinding problems truly dif-
ficult. Another future improvement is to refine our approach
to make use of edges that were removed through the decom-
position in a controlled manner to significantly improve so-
lutions on graph problem. Furthermore, we intend to study
the optimality of the solutions created by TASS on smaller
problems for which optimal solutions can be computed.

References
Ryan Luna and Kostas E. Bekris. Push and swap: Fast coop-
erative path-finding with completeness guarantees. In Inter-
national Joint Conference on Artificial Intelligence, 2011.
Ellips Masehian and Azadeh Hassan Nejad. Solvability of
multi robot motion planning problems on trees. In IROS,
pages 5936–5941, 2009.
D. Ratner and M. K. Warmuth. Finding a shortest solu-
tion for the N × N extension of the 15-puzzle is intractable.
In National Conference on Artificial Intelligence (AAAI-86),
pages 168–172, 1986.
Malcolm R. K. Ryan. Exploiting subgraph structure in
multi-robot path planning. J. Artif. Int. Res., 31:497–542,
March 2008.
Malcolm Ryan. Constraint-based multi-robot path planning.
In ICRA, pages 922–928, 2010.
David Silver. Cooperative pathfinding. In AIIDE, pages
117–122, 2005.
T. S. Standley. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, 2010.
Pavel Surynek. Making solutions of multi-robot path plan-
ning problems shorter using weak transpositions and critical
path parallelism. In Proceedings of the 2009 International
Symposium on Combinatorial Search, 2009.
Ko-Hsin Cindy Wang and Adi Botea. Fast and memory-



Pl
an

ni
ng

 T
im

e 
(S

ec
on

ds
)

0

2

4

6

8

Tree Size (Nodes)
0 200 400 600 800 1000

Pl
an

 L
en

gt
h 

(×
10

00
)

0

100

200

300

400

500

Tree Size (Nodes)
0 200 400 600 800 1000

Figure 7: Timing and solution-length results on ternary trees.

Fr
eq

ue
nc

y 
(×

10
00

)

0

50

100

150

Solution Length
0 100 200 300 400 500 600 700 800

Fr
eq

ue
nc

y 
(×

10
00

)

0

5

10

15

Solution Length
0 1000 2000 3000 4000 5000

Solution length distribution over all Solution length distribution over 2,024,401 random
14 node trees with 10 agents. 40 node trees with 36 agents.

Figure 8: Distribution of solution lengths on 14- and 40-node trees.

efficient multi-agent pathfinding. In ICAPS, pages 380–387,
2008.
Ko-Hsin Cindy Wang and Adi Botea. Tractable multi-agent
path planning on grid maps. In IJCAI’09: Proceedings of the
21st international Joint conference on Artificial intelligence,
pages 1870–1875, San Francisco, CA, USA, 2009.


