Partial Pathfinding Using Map Abstraction and Refinement

Nathan Sturtevant and Michael Buro
Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8

{nathanst,mburp@cs.ualberta.ca

Abstract

Classical search algorithms such as A* or IDA* are useful
for computing optimal solutions in a single pass, which can
then be executed. But in many domains agents either do not
have the time to compute complete plans before acting, or
should not spend the time to do so, due to the dynamic na-
ture of the environment. Extensions to A* such as LRTA*
address this problem by gradually learning an exact hézirist
function, but the learning process is quite slow. In this pa-
per we introduce Partial-Refinement A* (PRA¥), which can
fully interleave planning and acting through path abstoact
and refinement. We demonstrate the effectiveness of PRA*
in the domain of real-time strategy (RTS) games. In maps
taken from popular RTS games, we show that PRA* is not
only able to cleanly interleave planning and execution,itut

is also able to do so with only minimal losses of optimality.

Introduction and Related Work

Consider the problem of driving a car from Los Angeles to
New York. A human approaching this task would likely be-
gin by first answering high-level questions, such as which
states to drive through. But low-level decisions such as
which lane on the highway to drive in will not even be con-
sidered until moments before it is necessary. Furthermore,
if we take a short detour around traffic in Tulsa, we will not
have to revise any computed plans about what to do after
leaving Tusla. Similarly, if we change our final destination
in New York, we do not have to re-plan our entire route;
just the last few steps. In fact, we do not even have to con-
sider these details until we arrive in New York. This plan-
ning involves several levels of reasoning. First, it regsir
an abstract model of the world, so we can reason at both low
levels (what lane to drive in) as well as high levels (what
cities to visit en route). It also involves planning and exe-
cuting partial plans or paths through the world. It would be

them into low-level actions as needed. Partial-path refine-
ment means building paths in a manner that interleaves act-
ing and planning, and thus spreading cost of path compu-
tation more evenly over the path execution time. This is a
highly desirable property, providing robustness in theefac
of a dynamic environment and minimizing the amount of re-
computation that needs to be done when the world changes.

One application we are particularly interested in is real-
time strategy (RTS) games. RTS games make up a signif-
icant portion of the computer game market; titles such as
Starcraft and Warcraft by Blizzard Entertainment have sold
millions of copies. RTS players are assisted by the computer
in tasks such as pathfinding, yet pathfinding also tends to be
one of the most criticized parts of many games, because ex-
isting pathfinding systems can easily be confused. Addition
ally, the real-time graphics and simulation demands of RTS
games leave only a small portion of the CPU for Al tasks,
meaning that pathfinding must be extremely efficient. RTS
games can also be viewed as abstract simulations in which
robots move around and interact. Therefore, robot naviga-
tion can also benefit from pathfinding algorithms which can
interleave pathplanning and plan execution.

Related Work

A* (Hart, Nilsson, & Raphael 1968) and IDA* (Korf 1985)
have been explored thoroughly with regard to finding opti-
mal paths in a well-known and stationary environment. D*-
Lite (Koenig & Likhachev 2002) is able to do limited re-
planning if the world changes, but it can’t handle changes
like a moving target. Furthermore, these algorithms are not
necessarily well-suited for acting in dynamic environnsent
because they cannot fully interleave planning and acting.
LRTA* (Korf 1990), which learns a perfect heuristic func-
tion, is more suited for this, but it can take a significant
amount of time for LRTA* to learn an accurate heuristic

unreasonable to consider planning every lane change for the function. A comparison of D*-lite and LRTA* can be found

entire trip before setting out. Yet, this is exactly how trad
tional search algorithms have approached the task, bgildin
a complete plan before starting. In this paper, we introduce
the Path-Refinement A* (PRA¥) algorithm which can build
high-level plans about the world, and progressively refine

Copyright © 2005, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

in (Koenig 2004). LRTA* is shown to work well in envi-
ronments where there are only minor obstacles between the
start and goal, which means the heuristic is very accurate
to begin with. But, in domains where the initial heuristic
is poor, LRTA* also performs quite poorly. Thus, if we are

in a non-stationary environment, do not have a good initial-
heuristic (cannot guarantee heuristic quality is highwer

do not have time to do full planning before starting to act,

we need something better than these algorithms. é /i
While the ideas of abstraction and path refinement are —< —<
not new, they have not previously been developed and an- ﬁ%& R
alyzed with regard to partial solution generation. There is L. AR
however, a wide body of work related to speeding up A*
search. (Botea, Miller, & Schaeffer 2004) does an excel-
lent job of reviewing research on pathfinding, and (Reese)
& Stout 1999) also contains an overview of different met- reduction of the full state graph, where each node represent
rics that we may want to optimize during search. Notably ©ne or more states in the lower level graph, and an edge ex-
absent from the overview is partial pathfinding. Similar to ists between two nodes if there is any operator which can
our work, (Holteet al. 1996a) uses abstraction and refine- D€ applied to any state abstracted by the first node which
ment in a graph representation of the problem space to speedWill take you into any other state abstracted by the second
solution time. Abstraction and refinement can also be used node. We define aabstractable search probleas the tu-
to build heuristic functions for unabstracted space (Hette ~ ple {S°, s,G, O, H", A}. The abstractable search problem
al. 1996b). Instead of abstracting directly from a graph is enhanced from a standard search problem in the follow-
representation, Hierarchical Pathfinding A* (HPA*) (Botea ing ways: a state is now associated with an abstraction,level
Miiller, & Schaeffer 2004) overlays a map with large sec- SO S* is the set of states that has been abstracted dt'the
tors and calculates optimal paths between limited sets of level. S° must be defined as part of the problem, but all
entrances and exits to the sectors. Through the process ofother levels of abstraction can be built given an abstractio
smoothing, high quality paths can be obtained. Beyond sim- function A(s¥...s¥) — sk*1 which takes states at thé™
ple pathfinding, abstraction has been investigated in other level of abstraction and maps them to a single state at the
areas such as robotics (Fernandez. & Gonzalez 2001) andabstraction levek 4+ 1. Each node is only abstracted once.
planning (Yang, Tenenberg, & Woods 1996). Finally, the heuristic function must be enhanced to take two
The remainder of the paper is organized as follows: we sStates at any level of abstractidr, and return an estimate
first present the spatial abstraction technique we are using of their distance. Given an abstractable search problem we
and the partial pathfinding algorithm. Then, we show em- can automatically build abstractions8t using a variety of
pirical performance results of PRA* in various settingggan methods. While an abstraction function may be able to take
conclude by outlining future work. any arbitrary set of states and abstract them, in practice we
generally want to abstract states that are local to eacln.othe

Figure 1: Abstracting tiles into a hierarchy

Abstractions

In order for a search algorithm that only calculates partial
solutions to be complete, it must have higher-level informa
tion about the structure of the world. For instance, if we try
to use A* for partial planning by limiting the search to some
depthd, we are vulnerable to being trapped in a dead-end
of sized + 1, unless the terrain is pre-defined to guaran-
tee we can avoid such traps. Instead of relying on specific
problem features, we instead rely on the abstractability of
the problem space. In pathfinding, for instance, we can treat
four neighboring tiles as a single abstract tile locatedhat t

Abstractions for Pathfinding

For pathfinding, the world is commonly discretized into
tiles, which we then abstract based on their octile connecti
ity; that is their connectivity with respect to the eight iram
diately adjacenttiles. A simple example for an empty map is
shown in Figure 1. Abstraction can be seen as the process of
reducing the resolution of the map, while maintaining con-
nectivity information in the abstraction. In an empty map,
a grid of sixteen tiles is quite similar to an abstract grid of
just four tiles, which again can be represented by a single
- . > : . tile. In practice we only use the tile representation at the
center of the original tiles. By building an abstraction hi- bottom level of the hierarchy, and use a graph representatio

erarchy of the world, any problem can be quickly solved in - - "ioher evels of abstraction. Instead of overlaying some
abstract space. If we then use the abstracted solution as a

uide for generating a solution in the actual problem space, Strocture upon the search space — like in HPA* — we in-
9 9 9 al p PaCe, <iead abstract states based on local features of states. We
we are guaranteed to never get trapped in local dead-ends,

and to generate feasible solutions. We will discuss the full abstract nodes based on two patterigjuesandorphans

X ; : . ; The largest clique we look for in this domain is a 4-clique.
*
PRA* algorithm using abstractions in the next section after \ynon pyilding static abstractions, we first iterate through
describing how abstractions can be built and used.

the space looking for cliques in the nodes that have yet to be
. - . abstracted. These cliques are reduced to a single node in the
Automatically Building Abstractions parent abstraction. By abstracting cliques we are guagédnte
A search problem is traditionally defined as a tuple, that all nodes in an abstraction are able to reach any other
{S,s,G,0,H}, whereS is the set of all states; is a start state in the abstract node within a single step, exoept
state,g is the set of goal states or a goal test functiOnis phanechodes. An orphanis a node that can only be reached
a set of operators, arfd is a heuristic function. In orderto by a single operator. When abstracting the graph, we just
build an abstracted space from a search problem, we need tojoin them into the same abstracted node as their neighbor.
enhance this problem representation. A search problem can We demonstrate these methods in Figure 2. In this exam-
be described as or transformed into a graph, where nodesple we start with a graph containing twelve nodes and 18
are states and edges are operators. An abstract graph is a&dges. There are two cliques of (maximal) size 4, so those

Figure 2: Abstracting a general graph

are reduced into set$ and B. Connected to the clique in set

A there is also an orphan that can only be reached through
that set, so it is merged intd as well. There are single
nodes connecting setd and B. Node D has no neigh-
bors, so it remains alone, but no@ehas a single orphan,

which also forms a 2-clique, so these nodes are abstracted

together. The final abstracted graph has four nodes and
four edges. While we do not show the process explicitly,
we could repeat the reduction twice more, first creating a

graph with two nodes and one edge, and then reducing the

graph to a single node. In our pathfinding domain, given

an abstracted node, we define the abstracted position to be

the average position of all nodes abstracted by that graph.
The heuristic distance between any two nodes is then the
octile distance between the abstract location of thosesjode
V2 min(|Az], |Ay[) + | [Az| - [Ay] |.

Abstraction Costs

Givenn nodes at the bottom level of an abstraction hierar-
chy, the expected height of the hierarchy will ©¢€log n).
There are pathological orderings that will create a hidmarc
of height©(n), but they do not occur in practice. To ab-
stract a single graph, we will visit each node iy at most

a constant number of times, assuming the graph is sparse.

So, the total time to build the hierarchy will l8&(n). If our
knowledge of the world is incomplete or the world topology
is dynamic, it is possible to repair abstractiongltiog n)
time per update. A full description of these methods, how-
ever, is beyond the scope of this paper.

Pathing Through Refinement

In this section we demonstrate a simple mett@uickPath

for finding plausible paths in the world without doing any
significant search. After building an abstraction hiergrch
all connected nodes will be abstracted into a single node at
the highest level of abstraction. Thus, to check if any two

nodes are connected, we can simply check to see if they ever

merge into the same parent within the abstraction hierarchy
If the base-level graph hasnodes, this will takeéD(log n)

time. This is a quick check for pathability between two
nodes, but can also be expanded for generating full paths,

ABCD Level 2
&
AB @m@ Level 1
‘m‘ ‘n‘ Level 0

Figure 3: Using abstraction to quickly refine a path

PRA* (abstractGraph, start, goal, k)

GetAbstractionHierarchy (start, goal)

s = GetStartLevel(start, goal)

emptypath

for each level=s..1
path = RefinePath(path, start[i], tail(path))
truncatepath to lengthk

returnpath

RefinePathpath, start, goal)
returnaStar(start, goal) subject to nodes ipath

Figure 4: PRA*{) Pseudo-Code

which we demonstrate in Figure 3. In this figure, we wish to
find a path between A and D. In practice there will be many
more nodes at each level, but we only show the nodes rele-
vant to this example. As a first step, we simply traverse the
hierarchy looking for a common parent fagr and D. We
find this in abstraction level 2 at nodeBC D. Becaused B
andC D are part of the same abstract node and not orphans,
they must have an edge between each other at abstraction
level 1. We are then faced with the general problem of refin-
ing the path. There are two components of a path that must
be refined in order to create a path at a lower level of ab-
straction, nodes and edges. To refine the edge betwékn
andCD we must look at the nodes iIAB and see which
of them has an edge connecting to any nod€'i. In this
case, nodd3 in AB connects to nod€ in CD. Then, we
must refine the portion of the path that passes through nodes
AB andCD. But, because each node is made of cliques,
this is trivial, since our abstraction mechanism guarastee
an edge betweeA and B, and similarly betwee® andD.
QuickPathreturns a path between two nodes as described
above. In the worst case, the total time to build this path wil
be O(Zli(’jl” |pi]), wherep; is the refined path at level
QuickPathwill find a path between two nodes, but the path
generated may be highly suboptimal. Still, this method is
a stepping stone to introduce Partial-Refinement A*, which
refines this simple method to produce higher-quality result

Partial-Refinement A*

We show the pseudo-code for Partial-Refinement A*
(PRA*) in Figure 4. PRA* works similarly taQuickPath

but it contains four enhancements which we describe here.
First, it uses a heuristic to guide search at any level of ab-
straction, instead of just refining the nodes on a path. Sec-
ond, it allows path refinement to occur in a corridor or swath
outside of the abstract path. Third, it does not start plagni
from the top of the abstraction hierarchy. Finally, it only
does partial pathfinding at each step.

Replacing Refinement with Search

The QuickPathalgorithm does not perform search like clas-
sical A*. There may be multiple ways of doing refinement
of a path, but it makes no effort to find better ways of re-
finement. Instead of generating any candidate path between
nodes afuickPathdoes, we instead use a single A* search
through an abstracted level, using the abstract heunistic-f

tion H*. We minimize the cost of search by only allowing stractions. In a future paper we will analyse the perforreanc
A* to generate nodes whose parents are part of the abstractof a dynamic PRA* variant applied to dynamic environ-
path we are refining. So, each abstract path defines a swathments. Here, we will first demonstrate that PRA| has

of nodes in a lower level of abstraction, through which A* similar performance properties as HPA*: it is much faster
finds an optimal path. However, finding an optimal path than A* in static pathfinding setups — while its solution
through this swath does not guarantee global optimality. quality is very close to optimal with high probability. In a
Choosing Abstraction Levels second set of experiments we will measure the PRAp@r-

tial pathfindi f th let th probl
One explanation for the sub-optimality is that we are begin- 2 Paliinging Pertormarice or 1he compiee pain proviem

. - . and when planning and execution can be interleaved.
ning our pathfinding at a level that is too abstract. If we

: . ; . , In a first phase, we extracted maps from the popular
mst_ead begin on the finest grid, we would be _able to find an games Baldur's Gate and Warcraft 3, discarding those that
optimal path. Thus, we would like to dynamically find an

bstraction level that i ther t 0 introd . were either too small or consisted of only one large con-
abstraction fevel that IS neitner too coarse 1o INroduge Sl - Ko teq area. We then scaled up the resulting 116 maps to size
nificant sub-optimality nor too fine to introduce significant

h ts. In th . ’ d trated h 512x512 while retaining their topological structure. In a fi-
search CoslsS. In In€ previous section we aemonstrated NOW a1 hreprocessing step, we generated a large number of ran-
traversing the parents of any two nodes will determine the

o ; dom location pairs and saved ten optimal paths for each ma
path_ab|llty between those_ nodes. In the worst case this op- and every patﬁ buckébetween 0 anF(; 127 (Fz);\ path of length P
eration will takeO(logn) time, but, if we assume that any

. de h | brobability of bei 4 with belongs to bucketif and only ifi = |1/4]). This procedure
given node has an equal probability of being merged with - oo o -4te4 1160 paths in each bucket of the 128 buckets we
any of its neighbors in any abstraction step, then the ex-

X . considered totaling 148480 paths with length between 0 and
pected level at which two nodes are merge®igog |p|), 511. Maps are represented as square tile grids with the com-
wherep is the path between those nodes. So, the process v ysed octile neighborhood relation. Blocked tiles are
of traversmg_the parents of two _r_10d_e$ until they merge is marked as such. At any given time during pathfinding the
not only a quick check for pathability, itis also avery c@rs . ing object is located on an unmarked tile and is allowed
heuristic measure of the path length between two nodes. Ad- ,, 0 ceed to one of its up to eight unmarked neighbors. We
ditionally, in any abstraction h'.efarChY there V‘."". always are not allowed to cut corners diagonally, i.e. in case aahr
at least two nodes who are adjacent in the original problem ;2 r1ed tiles in & x 2 block, diagonal moves through the
graph, which do not merge until the last step of abstraction. center are not possible. Al éxperiments are single-tredad
So, we can increase the accuracy of this heuristic by measur- _ 4 \vere run on a dual-CPU Power-Mac running at 2 GHz
ing the level in the abstraction at which two nodes are first with 1 GB of RAM using gcc 3.3
connected by a single edge. We currently use this heuris- e
tic to choose to select the level at which we begin our ini- PRA*(o0) Complete Path Performance
tial path, as we can balance between too granular a starting
level, which leads to suboptimal results, and too fine a-start
ing level, which leads to slower performance. We opt for the
level of abstraction half-way between where two nodes are
first connected by an edge in the abstraction hierarchyt but i
is a point of future research to investigate this in moreitieta

The first set of experiments examines how PRA&}(per-
forms on the classic pathfinding problem — namely to find
a shortest path between two locations on a static map — if
one exists. We use A* as a benchmark algorithm to judge
the quality of PRA*6o) paths and its runtime. Neither A*

i] nor PRA* have been fully optimized for speed. Our A* im-
Partial Refinement plementation, however, utilizes a heap for the open listaand
The final enhancement of PRA* ov&uickPathis that in- look-up table for the closed list. Figures 5a) and b) show in-
stead of refining the entire abstract path from beginning to teresting percentiles of the A* and PRA%() runtime with
end, we instead only refine a partial segment of the abstract respect to the (optimal) A* path length, which we use as
path at each step. We do this by truncating the path we are a simple path complexity measure. Fig. 5a) demonstrates
refining to a fixed length, and then searching for an optimal that A* for increased path length eventually explores large
path to the last node in this truncated path. We also exit as fractions of the search space which here is roughly of size
soon as we find an optimal path to any node that is abstracted 5122/2. The median (50% percentile) not being centered
by the goal state. Because we always have a complete pathbetween the8 and 99" percentiles indicates that A*'s run-
from the start to goal state at some level of abstraction, we time distribution is skewed, meaning the mean and variance
can guarantee that we will eventually reach our goal state. are not adequate to describe the results. PRA*'s runtime
As an additional optimization, we can cache some of the grows more slowly with respect to the path length, which
high-level planning that is done in partial refinement to mak is what was to be expected from the analyses in the previ-
the process as efficient as PRA* with full refinement. The ous sections. Its variance is also much smaller. We also
version of PRA* which does not do partial refinement, we measured runtime in terms of expanding nodes in both algo-
refer to as PRA*(o). Otherwise, PRA*) refers to the fact rithms, which also is the number of calls to théunction.

that we are refining nodes out of each abstract path. Both measures are highly correlated. On the computer we
. used for the experiments one micro second of execution time
Experiments on average corresponds to 2.2 expanded nodes. For a more

In this section we present empirical performance results of detailed runtime comparison, we have plotted percenties f
PRA* when neglecting the time it takes to build map ab- runtime ratios based on individual paths in Fig. 5¢). Again,

a) A* time percentiles

b) PRA*(inf) time percentiles

¢) PRA*(inf) speed-up percentiles

600 —— o 60— L n—
95% 0 95% % 12195%
@ 500t 509 - 5 50 L 50% - 5 11 [50% N
g 5% - 3 5% - S 10l 5%
o » g S
S 400 2 40 o
s E z 8
g a0 = w0 :
~ £ // - ~
g = o
g 20 e s 2 € i
< 100 e < 10 g 3
S & e
0

0 50 100 150 200 250 300 350 400 450 500 550
A* path length

0 e
0 50 100 150 200 250 300 350 400 450 500 550
A* path length

0 50 100 150 200 250 300 350 400 450 500 550
A* path length

Figure 5: Runtime performance of A* and PRA()
:CE» a) PRA*(inf) path length ratio percentiles < b) 98th PRA*(k) path length ratio percentiles c) 95th percentile of total PRA*(k) time
5 114 g 12 ‘ g 450
= o k=2 —— c
< 113 12 S
- c L k4 g 400f .
s 112 % 118 9 k=2 ——
2 111 aQ ' k=8 - O 350 k=4 e
X 11 r 116 k=16 = k=g I
S 109 <11 E 300nc6 '
5 108 g 112 o 250
2 107 2 £
3 106 5 1 =200
£ 105 t 108 S € 150
g Toal € 106/ A <
o 103t = 104 e @ 100
102 £ o % 5
g Ml g g8 o =g
o e 0 50 100150200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550

0 50 100150200 250 300 350 400 450 500 550
A* path length

A* path length

A* path length

Figure 6: PRA*60) and PRA*() path quality, total PRA*) runtime

the result is in favour of PRA*0), whose gains appear to
increase approximately linearly with longer paths. Howgve
only looking at the runtime does not convey the entire pic-

Interleaving Path Planning and Excecution

To measure PRA*'s performance in environments which
permit simultaneous pathfinding and execution, we model

ture because PRA* computes approximate paths. Fig. 6a) the timing conditions in RTS games. Because RTS games —

shows that PRA*0) is very accurate with high probability.
For instance, we can see that 98% of the time the PRA*(
path length is within 1% of optimal, and 95% of the time it
is better than 1.00% optimal. Looking at the maximal ratio
values, it appears that PRAX() paths more than 10% above
optimal are very rare. (Botea, Milller, & Schaeffer 2004) re
port similar performance — maximum 10 times speed up and
less than 1% error from optimal.

PRA*(k) Complete Path Performance

In the following experiment we determined the quality of
complete paths constructed by PRAYfor & = 2,4, 8, 16.

Fig. 6b) shows the 98 percentile of the path length ratio
when computing the full path with PRA%]. The paths
are longer compared with PRA{), but still short enough

to be acceptable for many purposes. The total runtime
of PRA*(k) is super-linear in the path length (Fig. 6c),

which at their core are clocked simulations — often feature a
large number of moving objects and large terrains, pathfind-
ing is currently one of the most time-consuming RTS Al
tasks. In each simulation frame, game objects can receive
instructions from players or Al modules, which then get ex-
ecuted. In the following timing model we account for the
fact that object motion and path planning can be interleaved
Assuming a static environment, the total cost in simulation
cycles,tsim, to move a unit to a goal location has three com-
ponents: 1) the initial planning time, 2) the sum of maxima
of the planning time for the next step and the execution time
for the previous step, and 3) the time to execute the last step
in the world. To formalize this definitiort, (1 < i < n)

is the time used for planning move sequehnoé Euclidean
lengthi; measured in tile-widthgy is the simulation frame
period,t,, is the maximal time in a frame that can be used
for pathfinding for a single object, andis the speed of the

which is caused by the increasing number of planning steps object (tile-widths per second). Thus,

(=~ C'-lengthk), the longer time for top-level searches, and
more levels to be searched. Increasingeduces the to-
tal runtime considerably, but it would increase the cost of

individual planning steps and thus decrease performance if

bt gy y

S~tf S-tf-| (1)

tsim = |_tt_l~| + Zmax([tt_i]v [
m = m

Note that this timing model is quite general and also ap-

replanning was triggered by external events such as chang-plies to “real” robot motion planning.

ing the target location. The total runtime of PRA*(16) for
paths of length 508-512 is roughly equal to the PRA)(
time (< 60 msec in 95% of the cases). The difference is that
PRA*(k) can spread this computation time over the entire
path, which we consider next.

For the experiments we choge = 100 msec (i.e. 10
frames per second) which is typical for RTS games. A small
t., value forces the pathfinding system to spread path plan-
ning over multiple simulation cycles, if more time thgpis
required. This technique — which is commonly used in RTS

A* path length

A* path length

()
uE.> a) tm = 10 msec g b) tm = 2 msec g c) tm = 1 msec
= 1.35 T 5 18 ——— T s 2.6 ——
3] S-A* S S-A* 3] S-A*
2 13 S-PRA¥ v 3 L7F S-PRA* wrre | € 240 S-PRA* s |
3 PRA2) ¢ | prAv) All 8, Pra(Y- Al
g 1.25 o 161 PRA*(4) v ! g 4 PRA*(4) ’v !
£ S 15| PRAYB) E oL PRAYE)
= £ = *(16) -
E 12 £ L N W £ L PRA*(16) R
s 115 / S v o WM
£ A s 13 7 £ 16 r
; 11 M £ 1.2 ,/\/'/J. E 1.4 ,/\I'/J~
S \ W = - r 5] . 7
2 e c Ve B-]
3 105 2 11 3 12
o N 3 \oer = s o \ o -
g 1 . oo 2 1 s sy B A S A SO % 1 - p——
0 50 100150200 250300 350400450500550 & 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550

A* path length

Figure 7: 98 percentile curves of path execution slowdowns in clocke8 B&me simulations far,, = 10,2, and 1 msec

games in conjunction with regular A* — limits the load of
the CPU caused by pathfinding and frees it up for other time

consuming tasks such as graphics. As a baseline we com-

pare PRA*{) to versions of A* and PRA*), which we
call s-A* and s-PRA¥*, that do all their planning in the first
step which gets spread over multiple frames if necessary.
Unit speeds influences the total path execution time in
equation (1) directly: the faster units are, the more thigki
time contributes tosim. The way popular RTS games are de-
signed, the choice of = 10 tiles/sec is quite high and lead-
ing us to more conservative conclusions. In Fig. 7 the sim-
ulation timing results for s-A*, s-PRA*, and PRAE] with
caching are summarized in form of ©@®ercentile curves.
Here we consider the ratio ofi,, and the minimal possible
path execution time in the clocked simulation, i.e. disrdga
ing thinking time in (1). The spread-execution variants of
A* and PRA*(c0) plan only once per path, sois set to 1.
As seenin all graphsin Fig. 7, for short paths the initiahpla
ning step outweights the path execution time resulting in a
singularity-like relation around 0. For longer paths sprea
ing the path computation does not help s-A* or s-PRA* any-
more because the runtime of A* and PRAX] is super-
linear in the path length (Fig. 5 a,b). It is also apparent tha
frequent partial refinement comes at a price, especiallyh.whe
the paths are long. However, choosing= 16 results in an
excellent real-time performance for the large maps we con-
sidered. The path execution time is better than for s-A* and
s-PRA* and replanning triggered by external events will not
slow PRA*(k) down as much as s-PRA*. Even if the plan-
ning time is restricted to just 1% (1 msec/frame), long paths
generated by PRA*(16) are less than 5% away from opti-
mal in 98% of the cases. The remaining CPU time (99%)
is available for other game tasks including simultaneously
finding paths for more objects.

Conclusions and Future Work

In this article we have presented an A* variant, Path-
Refinement A*, which speeds up pathfinding both in com-
plete path generation and in partial-path generation, &t th
cost of a slight decrease in path quality. This is the firsetim
that partial pathfinding methods have been implemented and
analyzed. Our results show that partial refinement is quite
effective at interleaving planning and acting, and thus can
free up CPU time for other tasks. Our current implemen-
tation treats all other agents in the world as static obsgacl

to be avoided. Given the success of PRA*, we would like
to extend our implementation to allow cooperative behavior
between agents in the world, as well as investigating other
scenarios, such as chasing games. Other topics of interest
are establishing tight theoretical average and worst oase t
and quality bounds for PRA*, improving the computation
of the start level and refinement paraméteand applying
PRA* to other planning domains.

Acknowledgments

We thank Markus Enzenberger for valuable feedback on this
paper. Support was provided by NSERC and iCORE.

References

Botea, A.; Muller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-findingl. of Game Develof.(1):7-28.

Fernandez., A., and Gonzalez, J. 20®Multi-Hierarchical
Representation of Large-Scale Spakduwer.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Trans. on Systems Science and Cyb&r00-107.
Holte, R.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996a. Speeding up problem solving by abstraction:
A graph oriented approachrtif. Intell. 85(1-2):321-361.
Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A.
1996b. Hierarchical A*: Searching abstraction hierarshie
efficiently. InAAAI/IAAI Vol. 1, 530-535.

Koenig, S., and Likhachev, M. 2002. Improved
fast replanning for robot navigation in unknown terrain.
http://citeseer.ist.psu.edu/koenig02improved.html

Koenig, S. 2004. A comparison of fast search methods
for real-time situated agents. Rroceedings of the Third
International Joint Conference on Autonomous Agents and
MultiAgent System864—871. ACM.

Korf, R. 1985. Depth-first iterative-deepening: an optimal
admissible tree searchrtif. Intelligence27(1):97-109.

Korf, R. 1990. Real-time heuristic searchutificial Intel-
ligence42(2-3):189-211.

Reese, B., and Stout, B. 1999. Finding a pathfinder
http://citeseer.ist.psu.edu/reese99finding.html.

Yang, Q.; Tenenberg, J.; and Woods, S. 1996. On the im-
plementation and evaluation of ABTweakomputational
Intelligence Journal 2(2):295-318.

