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• 1959 - Dijkstra’s Algorithm
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• 1968 - Heuristic Search (Hart, Nilsson & Raphael)
• 1969 - Bidirectional Heuristic Search (Pohl)
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Overview
• Bidirectional Theory

• Eckerle et al, ICAPS 2017
• Optimal algorithm (offline)

• Shaham et al, SoCS 2017
• Near-optimal algorithm (online)

• Chen et al, IJCAI 2017
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Assumptions
• Front-to-end bidirectional search
• Admissible algorithms

• Performance with consistent heuristics
• Deterministic, black box algorithm
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Unidirectional Theory
• ANY admissible unidirectional search algorithm:

• Must expand ALL states with:
• f(s) = g(s) + h(s) < C*

• Otherwise we can construct instances on which it 
won’t find the optimal solution
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What states must be 
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Conclusion
• Given a single state s

• There exists a bidirectional algorithm that does not 
expand s

• Given some pairs of states (u, v)
• We can avoid expanding u
• We can avoid expanding v
• We can’t avoid expanding BOTH u and v
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Theorem

• If lb(u, v) < C* then we must expand either u or v
• Leads implicitly to termination conditions

 14

lb(u, v) = max(fF (u),

fB(v),

gF (u) + gB(v))

Sufficient Conditions for Node Expansion in Bidirectional Heuristic Search, 
Jurgen Eckerle, Jingwei Chen, Nathan Sturtevant, Sandra Zilles and Robert Holte, 
International Conference on Automated Planning and Scheduling (ICAPS), 2017

f-cost:
estimate of total 

path length
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Fractional MM
• Takes a parameter ƒ

• Cost of the state space to explore in each direction
• Costs correspond to different vertex covers

• We can (offline) compute the best algorithm for a 
given search problem

 37

The Minimal Set of States that Must be Expanded in a Front-to-end Bidirectional Search, 
Eshed Shaham, Ariel Felner, Jingwei Chen and Nathan R. Sturtevant, 
Symposium on Combinatorial Search (SoCS), 2017 
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a Bipartite Graph
• Approximation algorithm:

• Repeat until all vertices covered
• Choose any edge/line with uncovered vertex
• Place both states into vertex cover

• Gives 2x approximation to optimal vertex cover
• (Papadimitriou & Steiglitz, 1982)
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Using this algorithm
• We don’t know the full graph ahead of time
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Using this algorithm
• We don’t know the full graph ahead of time

• Build the graph as we go
• We don’t know the optimal solution cost

• Must estimate C*
• We must avoid re-expanding states

• Carefully order state expansions
• Computing lb(u, v) could be expensive

• Efficient data structures

 39
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NBS
• Put start/goal onto forward/backward priority queues
• While forward/backward not empty

• Among all state on queues:
• Select the pair with lowest lb
• Expand both of them

• Terminate when lb ≥ best path
• Gives 2x bound on optimal number of expansions

• Bound is tight

 40

Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, 
Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, 
International Joint Conference on Artificial Intelligence (IJCAI), 2017
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Summary
• Theory

• First definition of necessary node expansions
• fMM - implements optimal bidirectional search

• Practice
• Near-optimal approach (NBS)
• Node expansions are bounded by 2x optimal

• Demos & videos will appear at:
• https://www.movingai.com

 44
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Open Questions
• What can we learn about bidirectional search from 

the minimum vertex cover?

• Is there an algorithm with better average 
performance?

• Efficient front-to-front search?
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