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Search Problem
• Given:

• Start state
• Goal state
• Successor function
• Cost function
• Heuristic function

• Find:
• Optimal path between start/goal
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Why do we need BTS?

If the nodes in each iteration
do not grow exponentially
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IDA* Refresher
• IDA* does iterative deepening search on f-costs

• f(n) = g(n) + h(n)
• Next iteration f-cost:

• Smallest unexplored from previous iteration
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IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

• What if f-cost layers grew linearly?

• 1 + 2 + 3 + 4 + … + bd ≈ (bd)2

• Happens with non-unit edge costs:

• STP: Cost of moving tile t: 
t + 2
t + 1
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Getting the next bound
• Can be conservative:

• IDA* (Korf, 1985)
• Can try to build a predictor based on past:

• IDA*CR (Sarkar et al, 1990)
• IDA*IM (Burns & Ruml, 2013)

• Can model the state space growth:
• EDA* (Sharon et al, 2014)

• Want to guarantee exponential growth in expansions
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Nodes and f-costs
• Exponential Search:

• Find value in unbounded sorted array
• Tree Search:

• Find (node expansions) in (f-costs)

• Nodes expansions non-decreasing with f-cost
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Conclusions
• BTS reduces worst case of IDA*

• Same performance as IDA* if tree grows 
exponentially

• IBEX solves similar problems in different contexts

• Demos & videos online:
• https://www.movingai.com/SAS/
• https://www.movingai.com/SAS/BTS/
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