
A Guide to
Budgeted Tree Search

Nathan R. Sturtevant
University of Alberta

Amii Fellow, CIFAR Chair

Malte Helmert
Universität Basel

Iterative Budgeted Exponential Search

Malte Helmert1, Tor Lattimore2, Levi H.S. Lelis3,
Laurent Orseau2, Nathan Sturtevant4

1University of Basel, Switzerland
2DeepMind, UK

3Federal de Viçosa, Brazil
4University of Alberta, Canada

IJCAI 2019 - Macau, China

A Guide to Budgeted Tree Search

Talk Overview
• Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

2

A Guide to Budgeted Tree Search

Talk Overview
• Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

• Companion work to original paper on IBEX
(Helmert, Lattimore, Lelis, Orseau, Sturtevant,
IJCAI 2019)

2

A Guide to Budgeted Tree Search

Talk Overview
• Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

• Companion work to original paper on IBEX
(Helmert, Lattimore, Lelis, Orseau, Sturtevant,
IJCAI 2019)

• Why do we need BTS?

2

A Guide to Budgeted Tree Search

Talk Overview
• Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

• Companion work to original paper on IBEX
(Helmert, Lattimore, Lelis, Orseau, Sturtevant,
IJCAI 2019)

• Why do we need BTS?
• How does BTS work?

2

5 4 3

2 1

5 4 3

2 1

Start

5 4 3

2 1

1 2

3 4 5

Start

Goal

5 4 3

2 1

1 2

3 4 5

Start

Goal

h = 11

5 4 3

2 1

1 2

3 4 5

Start

Goal

h = 11

A Guide to Budgeted Tree Search

Search Problem
• Given:

4

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state

4

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state
• Goal state

4

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state
• Goal state
• Successor function

4

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state
• Goal state
• Successor function
• Cost function

4

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state
• Goal state
• Successor function
• Cost function

4

← Defines implicit graph

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state
• Goal state
• Successor function
• Cost function
• Heuristic function

4

← Defines implicit graph

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state
• Goal state
• Successor function
• Cost function
• Heuristic function

• Find:

4

← Defines implicit graph

A Guide to Budgeted Tree Search

Search Problem
• Given:

• Start state
• Goal state
• Successor function
• Cost function
• Heuristic function

• Find:
• Optimal path between start/goal

4

← Defines implicit graph

Why do we need BTS?

If the nodes in each iteration
do not grow exponentially

A Guide to Budgeted Tree Search

IDA* Refresher
• IDA* does iterative deepening search on f-costs

• f(n) = g(n) + h(n)

6

A Guide to Budgeted Tree Search

IDA* Refresher
• IDA* does iterative deepening search on f-costs

• f(n) = g(n) + h(n)
• Next iteration f-cost:

• Smallest unexplored from previous iteration

6

IDA* - Unit Costs

IDA* - Unit Costs

2 States f-cost 11

2 States

16 States

x8

f-cost 11

f-cost 13

2 States

16 States

79 States

x8

x5

f-cost 11

f-cost 13

f-cost 15

A Guide to Budgeted Tree Search

IDA* Worst Case

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

• What if f-cost layers grew linearly?

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

• What if f-cost layers grew linearly?

• 1 + 2 + 3 + 4 + … + bd ≈ (bd)2

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

• What if f-cost layers grew linearly?

• 1 + 2 + 3 + 4 + … + bd ≈ (bd)2

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

• What if f-cost layers grew linearly?

• 1 + 2 + 3 + 4 + … + bd ≈ (bd)2

• Happens with non-unit edge costs:

• STP: Cost of moving tile t:
t + 2
t + 1

9

A Guide to Budgeted Tree Search

IDA* Worst Case
• f-cost layers grow exponentially

• 1 + b + b2 + b3 + … + bd ≈ bd

• What if f-cost layers grew linearly?

• 1 + 2 + 3 + 4 + … + bd ≈ (bd)2

• Happens with non-unit edge costs:

• STP: Cost of moving tile t:
t + 2
t + 1

9

Tile Cost

1

3

7

9

1 + 2
1 + 1

= 1.5

9 + 2
9 + 1

= 1.1

3 + 2
3 + 1

= 1.25

7 + 2
7 + 1

= 1.125

f-cost 11

11.25
f-cost 11

11.25

13.45

f-cost 11

13.5
11.25

13.45

f-cost 11

13.62

13.5
11.25

13.45

f-cost 11

13.7

13.62

13.5
11.25

13.45

f-cost 11

13.8313.7

13.62

13.5
11.25

13.45

f-cost 11

13.8313.87
13.7

13.62

13.5
11.25

13.45

f-cost 11

Why do we need BTS?

If the nodes in each iteration
do not grow exponentially

A Guide to Budgeted Tree Search

Getting the next bound

13

A Guide to Budgeted Tree Search

Getting the next bound
• Can be conservative:

• IDA* (Korf, 1985)

13

A Guide to Budgeted Tree Search

Getting the next bound
• Can be conservative:

• IDA* (Korf, 1985)
• Can try to build a predictor based on past:

• IDA*CR (Sarkar et al, 1990)
• IDA*IM (Burns & Ruml, 2013)

13

A Guide to Budgeted Tree Search

Getting the next bound
• Can be conservative:

• IDA* (Korf, 1985)
• Can try to build a predictor based on past:

• IDA*CR (Sarkar et al, 1990)
• IDA*IM (Burns & Ruml, 2013)

• Can model the state space growth:
• EDA* (Sharon et al, 2014)

13

A Guide to Budgeted Tree Search

Getting the next bound
• Can be conservative:

• IDA* (Korf, 1985)
• Can try to build a predictor based on past:

• IDA*CR (Sarkar et al, 1990)
• IDA*IM (Burns & Ruml, 2013)

• Can model the state space growth:
• EDA* (Sharon et al, 2014)

• Want to guarantee exponential growth in expansions

13

1 node
f = 11

1 node
f = 11

[2, 8]

2 nodes
f = 11.25

2 nodes
f = 11.25

[4, 16]

11 nodes
f = 13.97

11 nodes
f = 13.97

[22, 88]

47 nodes
f = 17.17

47 nodes
f = 17.17

[94, 376]

99 nodes
f = 18.32

99 nodes
f = 18.32

[198, 495]

117 nodes
f = 19.35

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<<

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<< <

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<< < <

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<< < < <

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<< < < < <

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<< < < < < >

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

<< < < < < >

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

Binary Search<< < < < < >

A Guide to Budgeted Tree Search

Exponential Search
• Bentley and Yao, 1976
• Algorithm for searching sorted/unbounded array

20

…

Binary Search

• Running time: log(i)

<< < < < < >

A Guide to Budgeted Tree Search

Nodes and f-costs
• Exponential Search:

• Find value in unbounded sorted array
• Tree Search:

• Find (node expansions) in (f-costs)

• Nodes expansions non-decreasing with f-cost

21

How does BTS work?

If the nodes in each iteration
do not grow exponentially

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

ni = 100

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

ni = 100 200

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

ni = 100 200 800

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

ni = 100
< 200

200 800

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

ni = 100
< 200

200 800
≥ 800

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

ni = 100
< 200

200 800
≥ 800

Budget:
Stop when exceeded

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

23

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

ni = 100
< 200

200 800
≥ 800

Budget:
Stop when exceeded

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

26
<

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

26
<

42
>

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

26
<

42
>

34
>

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

26
<

42
>

34
>

30
=

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

26
<

42
>

34
>

30
=

nilog(fi)

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

26
<

42
>

34
>

30
=

i

∑
0

nilog(fi)

A Guide to Budgeted Tree Search

Budgeted search
• Like exponential search on f-costs

24

f = 10 f = ∞
f = 27.2 (2×) f = 30.7 (8×)

11
<

12
<

14
<

18
<

26
<

42
>

34
>

30
=

i

∑
0

nilog(fi) < (
i

∑
0

ni)log(C*) ≈ N log(C*)

A Guide to Budgeted Tree Search

BTS Phases
Find next f-cost bound:

25

A Guide to Budgeted Tree Search

BTS Phases
Find next f-cost bound:
1. Search with conservative f, ∞ budget (IDA*)

25

A Guide to Budgeted Tree Search

BTS Phases
Find next f-cost bound:
1. Search with conservative f, ∞ budget (IDA*)
2. Grow f exponentially, constant budget

25

A Guide to Budgeted Tree Search

BTS Phases
Find next f-cost bound:
1. Search with conservative f, ∞ budget (IDA*)
2. Grow f exponentially, constant budget
3. Do binary search on f, constant budget

25

A Guide to Budgeted Tree Search

BTS Phases
Find next f-cost bound:
1. Search with conservative f, ∞ budget (IDA*)
2. Grow f exponentially, constant budget
3. Do binary search on f, constant budget

25

f-limit: (13.50+14.45)/2=13.97
nodes: [4,16]
expand: 11

Previous Iteration

f-limit: (13.50+14.45)/2=13.97
nodes: [4,16]
expand: 11

Previous Iteration

f-limit: (13.50+14.45)/2=13.97
nodes: [4,16]
expand: 11

Previous Iteration

IDA*

IDA*

IDA*

IDA*

IDA*

EXP

EXP

EXP

EXP

EXP

EXP

EXP

BIN

BIN

BIN

With budget {
c
b
a

How does BTS work?

IDA*
Exponential Search

Binary Search

IDA* BTS*

IDA* BTS*

A Guide to Budgeted Tree Search

Conclusions
• BTS reduces worst case of IDA*

• Same performance as IDA* if tree grows
exponentially

• IBEX solves similar problems in different contexts

33

A Guide to Budgeted Tree Search

Conclusions
• BTS reduces worst case of IDA*

• Same performance as IDA* if tree grows
exponentially

• IBEX solves similar problems in different contexts

• Demos & videos online:
• https://www.movingai.com/SAS/
• https://www.movingai.com/SAS/BTS/

33

