
A Guide to Budgeted Tree Search

Nathan R. Sturtevant
Department of Computing Science

University of Alberta, Canada
nathanst@ualberta.ca

Malte Helmert
Department of Mathematics and Computer Science

University of Basel, Switzerland
malte.helmert@unibas.ch

Abstract
Budgeted Tree Search (BTS), a variant of Iterative Budgeted
Exponential Search, is a new algorithm that has the same per-
formance as IDA* on problems where the search layers grow
exponentially, but has far better performance than IDA* in
other cases where IDA* fails. The goal of this paper is to
provide a detailed guide to BTS with worked examples to
make the algorithm more accessible to practitioners in heuris-
tic search.

Introduction
Iterative Deepening A* (IDA*) (Korf 1985) is the classical
algorithm for heuristic tree search as it is able to find opti-
mal solutions while using memory linear in the search depth.
Thus, IDA* has typically been used for searches in expo-
nential domains, such as Rubik’s Cube, that would not fit
in memory. However, IDA* only runs in linear time rela-
tive to the size of the tree when the size of the iterative lay-
ers in the search grows exponentially. If the number of new
nodes in each iteration only grows linearly, IDA* will incur
a quadratic overhead, performing Θ(N2) re-expansions of
N nodes in the search tree.

Budgeted Tree Search (BTS), a depth-first version of It-
erative Budgeted Exponential Search (IBEX), can be used
as a replacement for IDA*. In the best case, where the
search tree grows exponentially, BTS has no additional over-
head over IDA*; they both perform O(N) expansions. But,
in the worst case problems for IDA*, BTS only requires
O(N log(C∗/ε)) expansions, where C∗ is the optimal solu-
tion cost and ε is the granularity of action costs (e.g., ε = 1
for integer-cost problems and ε = 0.01 for action costs with
two decimal digits).

Our previously published work on BTS provides precise
theoretical descriptions of the algorithm but lacks some de-
tails that would be helpful for anyone implementing the al-
gorithm the first time. As a position paper, the purpose of
this work is to provide a technical discussion of an imple-
mentation of the BTS algorithm, with detailed examples and
pseudo-code. It is meant to be a companion to our origi-
nal work (Helmert et al. 2019) and thus omits experimental

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

results, a broad discussion of the literature and related algo-
rithms, and detailed proofs of complexity and correctness.
This paper focuses on what has not been published else-
where: the full details needed for a correct implementation
of BTS, along with a description of many of the low-level
implementation details and examples of the algorithm run-
ning in practice.

Background
We consider state-space search problems solved by heuris-
tic tree search with an admissible heuristic (Pearl 1984;
Russell and Norvig 2003). Our tree search algorithms as-
sume a black-box interface to the state space supporting the
following operations on states and actions:
• obtaining the initial state of the state space
• testing if a given state is a goal state
• determining the (finite) set of actions that are applicable

in a given state
• applying an applicable action to modify a state
• determining the cost of an action (a non-negative number)

For additional efficiency, our pseudo-code also assumes
that we can undo the application of an action to a state s to
get back the state s. This allows our implementation to main-
tain a single copy of the state that is progressively modified
during search. When such an operation is not available, suc-
cessor states can be less efficiently generated as copies.

A path in the state space is defined by a sequence of ac-
tions that can be applied consecutively to the initial state.
The cost of that path is the sum of costs of the actions in the
path. In the tree search algorithms considered in this paper,
there is a 1:1 correspondence between the search nodes gen-
erated by the algorithm and the paths it explores. A solution
is a path that ends in a goal state. The objective of the tree
search algorithm is to find an optimal solution, i.e., one with
minimal cost. We do not discuss how algorithms determine
unsolvability in this paper, but the considerations that apply
are the same ones as for other tree search algorithms in the
literature.

A heuristic tree search algorithm additionally requires an
admissible heuristic function h that maps states s to non-
negative numbers or infinity such that h(s) ≤ h∗(s), where



h∗(s) is the optimal solution cost starting from state s (∞
if no solution from s exists). On a search node n that has
reached state s, we define f(n) = g(n) + h(s), where g(n)
is the path cost with node n (i.e., the cost occurred by the
expansions that led to n).

A key ingredient of IDA* (and in modified form, also of
IBEX) is the use of f -bounded depth-first searches. Given
a numerical bound B, we conduct a depth-first search in the
state space that prunes (ignores) all nodes n with f(n) > B.
IDA* consists of a sequence of such f -bounded searches,
where the initial bound is the heuristic value of the initial
state, and every subsequent bound is the lowest f value of
all nodes pruned in the previous search. The first solution
encountered by IDA* is guaranteed to be optimal.

If h is not just admissible but also consistent (Dechter and
Pearl 1985), the nodes expanded by IDA* (at least once)
can be almost completely characterized by their f values. A
node n will be expanded if f(n) < C∗, and it will not be ex-
panded if f(n) > C∗. The behavior with f(n) = C∗ in gen-
eral depends on tie-breaking in the last search layer of IDA*.
In the following, we write N for the number of relevant
nodes in the search tree, i.e., those with f(n) ≤ C∗. If the
search trees grow sufficiently rapidly between f -bounded
searches, IDA* performs O(N) expansions, but in the worst
case it can perform 1+· · ·+N = N(N+1)/2 = Θ(N2) ex-
pansions. Note that our definition of relevant nodes includes
those with f(n) = C∗, because in the worst case they will
all be expanded.

The same analysis also applies to admissible but inconsis-
tent heuristics, except that f(n) must be replaced with the
maximum f value of a node n and its ancestors in the search
tree.

As mentioned previously, the BTS algorithm discussed in
this paper is a specific implementation of the more general
IBEX framework. The IBEX framework refers broadly to al-
gorithms that use a specific combination of exponential and
binary searches with an expansion budget to find optimal so-
lutions. In addition to BTS, Budgeted Graph Search (BGS)
is another instance of the IBEX framework that improves on
the worst-case performance of A* (Helmert et al. 2019).

Iterative Deepening with an Oracle
To begin, we look at the expected behavior of IDA*, how
it breaks down, and what information an oracle might pro-
vide to remedy the situation. In the following section we will
show how the functionality of the oracle can be built in prac-
tice.

Consider the tree in Figure 1(a). This tree is built from
the 3x2 5-tile sliding tile puzzle with the start state (5 4 3
2 1 0) and the goal state (0 1 2 3 4 5). Using a Manhattan
Distance heuristic, IDA* can solve this problem with only
39 node expansions if all actions have the same cost of 1 –
it performs iterations with f -limits of 11, 13 and 15, finding
the solution cost 15 on the third iteration.

But, if the cost of moving a tile depends on the tile being
moved the results are significantly different. Let the cost of
an action moving tile t be t+2

t+1 . So, moving the 1 tile costs
1.5, while moving the 5 tile costs 1.1667. (In our implemen-

Iteration Nodes f -cost

0 1 11.00
1 2 11.25
2 11 13.97
3 47 17.17
4 99 18.32
5 117 19.35

Table 1: The f -costs and node expansions when using an
oracle for search.

tation all floating point comparisons are made with a toler-
ance of 1e-6.) With these costs, the full tree contains 100 rel-
evant nodes (with f -cost no greater than the solution cost). If
we solve the problem with IDA* and the (unit-cost) Manhat-
tan distance heuristic, the total number of node expansions
will be 3,793, which is close to the theoretical maximum of
100·101/2= 5,050 node expansions. IDA* requires 65 itera-
tions to solve the problem, with an average of just 1.78 new
expansions in each iteration.

Consider, however, that we had an oracle that provided
the next bound. That is, given any f -cost and the number
of nodes, N1, expanded for this f -cost, the oracle is able
to provide a new f -cost for which an f -bounded DFS will
perform at least c1 · N1 and fewer than c2 · N1 expansions,
where c2 ≥ c1 > 1 are parameters of the algorithm. That
is, the oracle can provide a new f -cost that will ensure that
the tree is growing exponentially from iteration to iteration.
Using c1 and c2 makes it easier for the oracle to select the
new f -cost, as there may be no f -cost that results in exactly
constant growth of the tree.

The use of this oracle is shown in Figure 1 with bounds in
Table 1. We use the parameters c1 = 2 and c2 = 8. In the
trees in Figure 1 the states and branches within the f -bound
have a thick line drawn behind them. The figure displays the
state space, not the search tree, so there are transpositions
in the tree indicated by light gray horizontal lines between
different branches of the tree.

With the oracle, the first iteration uses an f -bound of 11
and performs a single node expansion. The second iteration
uses a bound of 11.25 and performs 2 node expansions (in
the allowed range of 1 · [2, 8) = [2, 8)). The third iteration
jumps to a bound of 13.97 and performs 11 node expansions
(again in the allowed range of 2 · [2, 8) = [4, 16)). This
continues until the goal is found with cost of 19.35.

If such an oracle was available, each iteration would be
guaranteed to grow by at least a factor of c1 and no more
than a factor of c2. This would result in overall exponential
growth and would guarantee that there would be no asymp-
totic overhead to the iterative search, as in IDA* in many
unit-cost domains.

There are, however, two exceptional scenarios in which
we must allow the oracle to deviate from the required growth
rate in the range [c1, c2). Firstly, if a solution is found in the
next iteration, it is of course acceptable to grow the number
of expansions by a smaller factor than c1. This can be seen
in the final iteration in Table 1, where the number of expan-



(a) One node (root) (b) Two nodes (2x growth) (c) 11 nodes (5.5x growth)

(d) 47 nodes (4.27x growth) (e) 99 nodes (2.10x growth) (f) 117 nodes (goal found)

Figure 1: Iterative deepening search with an oracle providing f -cost bounds.

sions only grows from 99 to 117. Secondly, it may be the
case that there exists no f -bound with a growth rate in the
desired range. In this case, and if the solution has not been
found, the oracle is permitted to return the smallest possible
f -bound that leads to a growth rate of at least c1, even if this
leads to a growth rate larger than c2.

The key insight of BTS is that we can build an oracle
that, given f1 and N1, can find the next bound f2 with
O(c2 · N1 · log((f2 − f1)/ε)) node expansions. Thus, by
applying the oracle repeatedly we can increase the f -bound
in a controlled manner until the optimal solution is found.
The running time is dominated by the last iteration, where
the goal is found, or by the penultimate iteration (the last
unsuccessful one), resulting in an overall running time of
O(N log(C∗/ε)) expansions.

In order to prepare the description of BTS, we first ex-
plain exponential search (Bentley and Yao 1976) in detail.
We then show why exponential search cannot directly be
used for the oracle, but how we can modify it to be suitable
for the task. Finally, we show how we can take advantage
of the specifics of heuristic and tree search to build an even
more efficient version of BTS.

Exponential Search
Exponential search is an algorithm designed to find an en-
try with value e in a sorted array of unbounded length – or
alternatively, if the element is not in the array, find the posi-
tion at which the element would need to be inserted to main-

tain sorted order. There are no assumptions made about the
distribution of values found in the array, only that they are
sorted. Exponential search requires O(log i) accesses to the
array if the entry is found (or could be inserted) at position
i in the array. In particular, exponential search takes advan-
tage of the sorted nature of the array. For each position that
it queries in the array, it only tests whether the given entry
is greater than or less than e. Exponential search checks ex-
ponentially growing indices until a value is found which is
greater than or equal to e. It then uses a binary search, if
needed, to find e once upper and lower bounds are explored
in the exponential phase of the search. Although exponential
search refers to the entire process, we often use the term “ex-
ponential search” to refer to the portion of the search where
the indices are growing exponentially, which is distinct from
the binary search once the upper and lower bounds are es-
tablished.

We illustrate this in Figure 2. This example shows an array
in which the search is looking for the marked element. The
assumption is that each entry in the array contains a value,
but we do not need to know the values – only the result of the
comparison operators. Exponential search begins by testing
the values at index 0, 1, 2, 4, etc., which all return a value of
<. (Due to space limitations the arrows for 1 and 2 are not
labeled.) When the 64th entry is reached and returns a value
of>, it is then possible to do a binary search between 32 and
64, indicated by arrows below the array, until the comparison
operator returns = when the value at entry 44 matches the



…

< 
0

< 
4

< 
8

< 
16

< 
32

> 
64

48 
>

40 
<

44 
=

Figure 2: Exponential Search

value that was sought during the search.
Exponential search can be used on any data that is or-

dered over a set of indices. In particular, we can imagine
that the indices of an array are all IEEE 754 32-bit floating
point numbers in sorted order, and that the value of an in-
dex is the number of nodes that would be expanded by an
f -bounded DFS using that f limit. (The number of expan-
sions is not known a priori but can be computed by running
an f -bounded DFS.) The key property is that an f -bounded
DFS will never perform fewer node expansions with a larger
f limit – the number of nodes expanded is monotonically
non-decreasing with increasing f limits. Thus, node expan-
sions are in sorted order relative to the indices of the array.
Thus, exponential search can be used as an oracle for finding
the next f -cost limit.

There is one limitation that prevents exponential search
from being used efficiently. Exponential search will almost
certainly sample indices in the array with f > C∗. An
f -bounded DFS with f > C∗ may result in performing
many more node expansions than are required to solve the
problem, which would be inefficient. However, as we have
noted, exponential search does not need to know how much
greater a value is than the target value, only that it is greater.
So, instead of running an f -bounded DFS, we can run an
f -bounded budgeted DFS, where an upper bound (budget)
is imposed on the number of node expansions. This search
should terminate and return “>” once the node budget is ex-
hausted. Using a budget ensures that the node expansions in
any iteration will never exceed the number required to solve
the problem by more than a constant factor.

Budgeted Tree Search
Exponential search has been adapted to the more generic
IBEX algorithm, of which Budgeted Tree Search (BTS) is a
specific example. BTS uses an exponential search on top of
a depth-first search with f -limits and a node expansion bud-
get. BTS is designed as a replacement for IDA* when the
search layers are not guaranteed to grow exponentially. Spe-
cific design choices have been made to cause the algorithm
to default to the same performance as IDA* if the tree does
grow exponentially, and to only incur additional overhead if
the growth of the search tree is not exponential. Note that our
description of BTS here has minor differences from other
descriptions (Helmert et al. 2019). These changes are pri-
marily for pedagogical reasons in presenting examples and
pseudo-code, but do not impact asymptotic performance.

Algorithm 1: BTS(c1, c2)

1 solutionPath← ∅
2 solutionCost←∞
3 budget← 0 // budget in node expansions
4 i← [h(InitialState()),∞] // initial f interval
5 while solutionCost > i.lower do
6 solutionLowerBound← i.lower
7 i.upper←∞
8 // 1. Regular IDA* Iteration
9 i← i ∩ Search(i.lower,∞)

10 if nodes ≥ c1 · budget then
11 budget← nodes
12 continue
13 // 2. Exponential Search
14 ∆← 0
15 while ((i.upper 6= i.lower) ∧
16 (nodes < c1 · budget)) do
17 nextCost← i.lower + 2∆

18 ∆← ∆ + 1
19 solutionLowerBound← i.lower
20 i← i ∩ Search(nextCost, c2 · budget)
21 // 3. Binary Search
22 while (i.upper 6= i.lower ∧
23 ¬(c1 · budget ≤ nodes < c2 · budget)) do
24 nextCost← i.lower+i.upper

2
25 solutionLowerBound← i.lower
26 i← i ∩ Search(nextCost, c2 · budget)
27 budget← max(nodes, c1 · budget)
28 if solutionCost = i.lower then
29 return

IDA* works by searching iterations where the f -limit of
each successive iteration is determined by the minimum f -
cost unexplored in the previous iteration. IDA* is made up
of a top-level procedure that processes the results of each it-
eration and determines how a low-level DFS will search the
next iteration. The low-level DFS is limited only by the max-
imum f -cost that can be expanded. The DFS also returns the
minimum unexplored f -cost.

BTS initially does the same work of IDA*, but has three
stages overall. The first stage is the IDA* search using an f -
bounded DFS. If in this stage the tree fails to grow by a con-
stant factor over the previous iteration, the second stage be-
gins an exponential search. In this stage the f -bound grows
exponentially until the cost of the DFS hits or exhausts the
budget. If the budget is exhausted, then the third stage, a
binary search, is used to find an f -limit that is within the
budget.

Implementation
We provide detailed pseudo-code of BTS in Algorithms 1, 2
and 3. In this subsection we give an overview of the pseudo-
code, describing many details of the algorithm.

BTS uses a budget for how many node expansions are



Algorithm 2: Search(costLimit, nodeLimit)

1 fbelow ← 0 // max f expanded below costLimit
2 fabove ←∞ // next largest f
3 nodes← 0 // nodes expanded
4 LimitedDFS(InitialState(), 0, costLimit, nodeLimit)
5 if nodes ≥ nodeLimit then
6 return [0, fbelow]
7 else if fbelow ≥ solutionCost then
8 return [solutionCost, solutionCost]
9 else

10 return [fabove,∞]

allowed in each iteration. This budget is initialized in Algo-
rithm 1 line 3 and stores the total node expansions in the pre-
vious DFS. The budget for the next iteration is then between
c1 and c2 times the previous budget. The goal is to find a tar-
get f -cost that results in expansions within this budget. The
number of expansions in the last search is stored in a global
variable named nodes. BTS also stores an interval (Algo-
rithm 1 line 4) which contains the range of f -costs that may
lead to exponential growth. At the beginning of each itera-
tion the lower bound of the interval is the minimum f -cost
not yet fully explored and the upper bound is infinity.

BTS uses a search procedure (Algorithm 2) which calls
the low-level f -bounded budgeted DFS (Algorithm 3) and
returns the range of possible values for the target f value.
This search procedure is passed the f -bound and the budget,
while the range of f -costs seen (fbelow and fabove) are used
as global variables. The interval that is returned indicates
whether the budget was reached (meaning that the f -bound
was too high), whether the solution was proven to be opti-
mal, or whether the f -bound was too low and the minimum
budget was not met.

The first stage of BTS (Algorithm 1 lines 8–12) just runs
an f -limited search as in IDA*, calling the low-level search
with an infinite budget. At this point the previous f -cost
layer has been searched to completion, so C∗ is not being
overestimated and the next possible f -cost can be searched
exhaustively. If the minimum budget is exceeded (line 10),
the tree is growing exponentially, and thus we can move to
the next iteration directly, as would IDA*.

If the initial search fails to hit the expansion budget, the
exponential search (lines 13–20) begins to increase the f -
cost bound in the low-level search exponentially (line 17)
until the lower bound of the budget is exceeded. Unlike in
the IDA* search, the exponential search uses a node budget
to limit the maximum number of expansions by the low-level
search. There are two points to note here. First, starting the
exponential growth with 20 = 1 assumes that the solution
cost is at least 1; asymptotic guarantees would not hold for
very small solution costs. (If this is a concern, one possible
fix is to replace 2∆ with i.lower · 2∆ in line 17. More gener-
ally, any multiplier between ε and C∗ can be used instead of
i.lower to restore the guarantee.) Second, initializing ∆ to 1
instead of 0 (line 14) may improve performance as it avoids
the sequential steps seen in the beginning of the exponential

Algorithm 3: LimitedDFS(currState, pathCost, costLimit,
nodeLimit)

1 currF← pathCost + h(currState)
2 if solutionCost = solutionLowerBound then
3 return
4 else if currF > costLimit then
5 fabove ← min(fabove, currF)
6 return
7 else if currF ≥ solutionCost then
8 fbelow ← solutionCost
9 return

10 else
11 fbelow ← max(currF, fbelow)

12 if nodes ≥ nodeLimit then
13 return
14 if IsGoalState(currState) then
15 solutionPath← ExtractPath(currState)
16 solutionCost← currF
17 return
18 acts← GetActions(currState)
19 nodes← nodes + 1
20 for a ∈ acts do
21 ApplyAction(currState, a)
22 LimitedDFS(currState, pathCost + Cost(a),

costLimit, nodeLimit)
23 UndoAction(currState, a)

search in Figure 2. But, more interestingly, it is possible to
use more sophisticated methods (Burns and Ruml 2013) to
try to guess the next f -value without breaking the theoretical
guarantees.

When the exponential search completes, if the target f -
value (within the budget) is found, the binary search will be
skipped. Otherwise the binary search (lines 21–26) begins.
While a binary search may seem straightforward, there are
several notable cases to consider. In particular, assume that
there is no target f -value within the budget. If the numerical
resolution is significant, the binary search could iterate many
steps on f -costs that do not correspond to actual f -costs in
the tree. This is because the f -costs in the binary search are
not derived from actual f -costs in the tree, as elsewhere in
the search, but by taking the average of the upper and lower
f -cost in the interval. To prevent this, the search returns both
the smallest f -cost not expanded (fabove) and the largest f -
cost expanded below the bound (fbelow). When a search does
not complete within the budget, fbelow would have been suf-
ficient to use up the budget, and thus this is returned instead
of the f -cost limit that was used for the search (Algorithm 2
line 6). Thus, the binary search will not perform iterations at
a higher resolution than the unique f -values in the tree. Be-
cause each step of the binary search decreases the size of the
f -cost interval, eventually the interval will collapse to a sin-
gle value – the minimum f -value that is above the budget. In
this case BTS will begin its next iteration by searching that
f -cost exhaustively.



BTS terminates when a solution is both found and proven
optimal. It does this by completing a search with the f -cost
bound greater than or equal to the optimal solution cost. In
this case it returns a collapsed interval at the solution cost
(Algorithm 2 line 8), which will cause both the exponential
and binary searches to terminate.

Because BTS skips some f -costs in the exponential and
binary searches, it is possible that BTS will discover the goal
with suboptimal solution cost or discover the goal before
being able to prove that the solution cost is optimal. If BTS
has found a solution but has not yet proven the optimality of
the solution, BTS does not need to search states with f -costs
greater than the current best solution (Algorithm 3 line 7).

This differs from IDA*, which is able to terminate as soon
as it finds a solution. This is because it always searches with
the lowest possible f -cost that has yet to be explored. To re-
tain the behavior of IDA*, BTS must explicitly record the
lowest possible f -cost so BTS can terminate if a solution is
found with this cost. BTS records this prior to each search
(Algorithm 1 lines 6, 19 and 25) and uses the value to termi-
nate the low-level search in Algorithm 3 line 2 if a provably
optimal solution is found.

Tree Example
We now turn to an example in Figure 3 to illustrate the be-
havior of BTS over a single iteration. This example shows
how each of the steps of BTS work in practice. The problem
is the same as before running on the 3x2 5-tile sliding tile
puzzle.

This example starts in Figure 3(a) where the previous it-
eration required 11 node expansions to complete with an f -
limit of 13.97. The next f -bound (fabove) was 14.00, and so
in the regular IDA* iteration an f -bounded DFS is run with
infinite budget and a target of expanding at least 11 · 2 = 22
nodes. There are, however, only 12 nodes in the f -bounded
sub-tree (the highlighted portion), so the minimum expan-
sion target is not reached.

BTS then moves to the exponential search. The inter-
val returned by the IDA* iteration was [14.20,∞] (fabove
is 14.20), so the lower bound in the interval in Algorithm
1 is raised to 14.20. Because the expansion target was not
reached, BTS now increases the cost bound exponentially.
In this case, it will use 14.20 + 20 = 15.20 as the next f -
cost limit. The search tree with this limit is shown in Figure
3(b) and requires 18 node expansions, which is still under
the node budget, which is targeting between 22 and 88 node
expansions. Thus, BTS continues the exponential search.

The previous exponential search returned an interval of
[16.20,∞], so the third iteration uses an f -bound of 16.20+
21 = 18.20. In Figure 3(c) the black line shows how far
the search can proceed (from left to right) before it reaches
the expansion budget. At this point the search is terminated,
because the search budget has been reached. Although an
f -bound of 18.20 was used, the maximum f -cost expanded
was actually 18.15 (fbelow), and thus the returned interval is
[0, 18.15]. After taking the intersection with the previous in-
terval, BTS now knows that it is looking for an f -cost in the
interval [16.20, 18.15]. Note that because the search space
shown in Figure 3(c) is a graph, not a tree, some states are

expanded via multiple paths, including the state that was be-
ing expanded when the budget was exhausted.

Because the search budget was exceeded, BTS now
moves to a binary search on f -costs. Given the search inter-
val [16.20, 18.15] an f -limit of (16.20 + 18.15)/2 = 17.17
is used for the next iteration shown in Figure 3(d). This itera-
tion is completed using 47 node expansions, which is within
the target budget, so 17.17 can be returned as the final f -
cost for this iteration (see Table 1), and the budget will be
updated to 47. fabove is 17.28, so the next iteration of BTS
will start with an IDA* iteration of this cost.

In solving the entire problem, BTS requires just 564 node
expansions, in contrast to IDA*, which requires 3,793.

Discussion
For completeness, it is worth pointing out that BTS can have
worse performance than IDA* on some problem instances,
particularly if an adversary is constructing the tree. For in-
stance, suppose that BTS uses c1 = 2.0 but in practice each
layer grows by a factor of 1.99. In this case BTS will use the
exponential and/or binary searches while IDA* will not. The
overhead of these searches can result in BTS doing more
work than IDA* in such cases. But, this overhead is still
bounded by the worst-case of BTS, O(N log(C∗/ε)), and
thus is far less than the overhead of IDA* when the search
layers do not grow exponentially.

Conclusion
This paper has provided an in-depth look at Bud-
geted Tree Search, with detailed pseudo-code, exam-
ples, and algorithmic details that are useful for imple-
menting BTS in practice. The intent of this paper is
to make the algorithm easier to both teach and imple-
ment. The examples used in the paper are available from
https://www.movingai.com/SAS/BTS/, including an inter-
active demo, movies, and image sequences. The pseudo-
code used here is based on the implementations available
from https://github.com/nathansttt/hog2/, with only small
changes designed to increase the simplicity and readability.

References
Bentley, J. L., and Yao, A. C.-C. 1976. An almost opti-
mal algorithm for unbounded search. Information Process-
ing Letters 5(3):82–87.
Burns, E., and Ruml, W. 2013. Iterative-deepening search
with on-line tree size prediction. Annals of Mathematics and
Artificial Intelligence 69(2):183–205.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A∗. Journal of the ACM
32(3):505–536.
Helmert, M.; Lattimore, T.; Lelis, L. H. S.; Orseau, L.; and
Sturtevant, N. R. 2019. Iterative budgeted exponential
search. In Kraus, S., ed., Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2019), 1249–1257. IJCAI.



f-limit: 14.00
nodes: [22,∞)
expand: 12

f-limit: 14.20+2^0=15.20
nodes: [22,88)
expand: 18

(a) IDA* Step (under budget) (b) Exponential Step (under budget)

f-limit: 16.20+2^1=18.20
nodes: [22,88)
expand: 88

f-limit: (16.20+18.15)/2=17.17
nodes: [22,88)
expand: 47

(c) Exponential Step (over budget) (d) Binary Step (within budget)

Figure 3: Iterative deepening search with an oracle providing f -cost bounds.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Russell, S., and Norvig, P. 2003. Artificial Intelligence — A
Modern Approach. Prentice Hall.


