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Abstract

Human designers may find it difficult to anticipate the im-
pact of small changes to some games, particularly in puzzle
games. However, it is not difficult for computers to simulate
all mechanical impacts of such small changes. This suggests
that computers might be able to aid humans designers as they
build and analyze game levels. This paper takes one step to-
wards this larger goal by studying how Exhaustive Procedural
Content Generation (EPCG) can be used for analysis of incre-
mental changes of existing game levels. Using an incremental
EPCG approach, we analyze all of the levels in the popular
puzzle game Snakebird, showing that incremental variations
in the level designs can significantly increase the length of the
shortest possible solution. A user study on a subset of these
modified levels shows that the modified levels are both inter-
esting and challenging for humans to play. Thus, through the
analysis of Snakebird, we demonstrate the broader potential
for incremental applications of EPCG.

1 Introduction
It is an expensive and time-consuming process for humans
to generate and tune the large amount of novel content avail-
able in games. This is partly because it is difficult to under-
stand the impact that small changes in design will have on
gameplay (Korhonen 2010; Griesemer 2010).

One proposed solution to reduce this cost is procedu-
ral content generation (PCG). PCG is the practice of pro-
ducing game content via algorithmic processes. There has
been a great deal of research investigating potential appli-
cations of PCG (Shaker, Togelius, and Nelson 2016; Liapis
2020). However, the majority of this work has focused on
a relatively small set of methods and games, with the vast
majority of academic PCG work focused on search-based
PCG (SBPCG) (Togelius et al. 2010) and platformer level
generation, specifically Super Mario Bros. levels (Shaker et
al. 2011; Liapis 2020). Comparatively, the vast majority of
indie and industry PCG practitioners draw on constructive
PCG (CPCG) approaches, such as constructive grammars
(Short and Adams 2017).
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It is still challenging for non-experts to create high-quality
PCG systems from scratch. This is due to the authoring ef-
fort involved in creating a PCG algorithm. This has lead to
increased interest in user-friendly PCG tools and so called
mixed-initiative or co-creative systems. In these systems a
human designer interacts with an existing PCG algorithm
(Liapis, Smith, and Shaker 2016) to produce novel content.
However, most academic mixed initiative systems also rely
on SBPCG (Charity, Khalifa, and Togelius 2020).

SBPCG approaches such as genetic algorithms typically
make large changes to the input population in each step be-
cause the core operators in a genetic algorithm (crossover
and mutation) are stochastic. Thus, these approaches are bet-
ter suited for applications where broad sampling is more
important than methodical exploration of a problem space.
Comparatively, CPCG approaches typically build a piece of
content in one shot, which makes adding user control during
the generation process nontrivial.

With a larger goal of broadening the number of techniques
that can be used for assisting in game development, this pa-
per studies techniques for the methodical exploration of puz-
zle game level designs. We focus on the impact of incre-
mental design changes to an existing design, something that
SBPCG and CPCG methods are not well-suited to model.

This project began with the hypothesis that small design
changes could have a significant impact, particularly in puz-
zle games. Investigating this hypothesis, the paper makes the
following contributions. First, it provides the first study of
the game Snakebird, demonstrating how Exhaustive PCG
(EPCG) (Sturtevant and Ota 2018) can be applied to the
game. Second, it demonstrates that small design changes
can significantly impact the solution length of puzzles in the
game. Finally, a user study is then used to demonstrate that
the suggested design changes result in levels that are more
interesting to human players. Overall, this work provides
the foundation for future applications of EPCG in mixed-
initiative and co-creative research and broadens our under-
standing of the utility of this underexplored type of PCG.

2 Related Work
Procedural content generation represents a class of ap-
proaches for the automated creation of game content (To-



gelius et al. 2011). The majority of existing academic PCG
work focuses on platformer games (Shaker et al. 2011;
Liapis 2020), however some work exists in applying PCG
to puzzle games. Khalifa and Fayek (2015) compared con-
structive and search-based PCG for Sokoban level genera-
tion, finding that both approaches performed roughly equiv-
alently. Bento, Pereira, and Lelis (2019) showed how to cre-
ate Sokoban levels that were both hard and guaranteed to be
solvable. Smith, Butler, and Popovic (2013) employed an-
swer set programming, an example of constraint-based PCG,
to generate Refraction puzzles that were guaranteed to fit
specific design constraints. One common domain for PCG in
puzzle games is Angry Birds, which has had a wide variety
of PCG approaches applied to it (Ferreira and Toledo 2014;
Stephenson and Renz 2016; Jiang, Harada, and Thawonmas
2017). Because the game is a physics-based game, small
changes to the level design are less likely to greatly impact
the puzzle solution.

Outside of full level generation, there are mixed-initiative
approaches in which a human works with an existing
PCG approach to produce content (Karavolos, Bouwer, and
Bidarra 2015). There has been very little research into
the ways puzzle games might benefit from mixed-initiative
PCG. However, Angry Birds has seen an example of SBPCG
mixed-initiative level design (Campos et al. 2017). Recently,
Charity et al. (Charity, Khalifa, and Togelius 2020) em-
ployed a SBPCG approach for mixed-initiative design of
Baba is You levels. Other mixed-initiative approaches for
non puzzle games exist, which produce variations on a
designer’s current level (Liapis, Smith, and Shaker 2016;
Powley et al. 2016; Campos et al. 2017). This work paral-
lels our own with Snakebird, focused on modifying levels
rather than producing entirely new content or content based
on user input. However, as we demonstrate below, EPCG al-
lows us to make specific, minimum changes that would not
be possible with other SBPCG approaches.

This paper builds on Exhaustive Procedural Content Gen-
eration (EPCG) (Sturtevant and Ota 2018), an approach that
uses a generator to exhaustively build content from which an
evaluator selects the best content, but one that has also been
used in other fields (Gil-Gala et al. 2020). In this work we
use EPCG incrementally to create modifications of full lev-
els in Snakebird, laying the framework for future work build-
ing mixed-initiative and co-creative systems using EPCG.

3 Snakebird Domain
Snakebird is a 2015 game by Noumenon Games, with a 2019
follow-up called Snakebird Primer. The goal of each level is
to have one or more snakebirds eat all of the fruit in the level
and then for all snakebirds to leave via the exit.

An example level before and after an action is taken is
shown in Figure 1. This level requires the use of many of
the mechanics in the game, including multiple snakebirds
(red and blue), spikes (6-sided gray stars), the exit (the yel-
low and orange hexagon), movable blocks (the hollow red
square), and portals (the colored circles), although it does
not contain fruit. At a surface level the game is similar to
many other snake games, where eating fruit (seen at the top
of Figure 3) makes a snake longer. However, in Snakebird

(a) (b)

Figure 1: Example Snakebird Level

there is also gravity, which causes snakebirds to fall back
to the ground if they are not supported by any objects. In
a player action a single snakebird can move a single step
in any unblocked direction, after which gravity is applied.
Figure 1(b) shows what happens when the red snakebird in
Figure 1(a) moves up. After moving up one step, gravity is
applied, and the red bird falls back down onto the platform.

Snakebirds can push objects or other snakebirds, assum-
ing there is no solid object blocking the way. Falling onto a
spike will kill a snakebird. Both snakebirds and objects can
teleport between portals, as long as they will not be inside
another object after teleporting. The level in Figure 1 is dif-
ficult because when the snakebirds try to directly reach the
goal, they are teleported to the upper platform by the portal.
One possible solution to the level requires placing the block
on the upper portal, as this will prevent the snakebirds from
being teleported to the upper platform, after which they can
move past the portal to the goal.

Snakebird has 46 regular levels, 6 difficult (star) levels,
and 1 very difficult (black hole) level. Snakebird Primer has
69 regular levels, 6 star levels and 1 black hole level. All
together there are 129 levels, of which 108 can be solved
easily (see Section 5). Of these, the Snakebird levels have an
average optimal solution length of 37, while the Snakebird
Primer levels have an average optimal length of 24.

4 EPCG For Incremental Design
EPCG describes approaches for generating procedural con-
tent where “all possible content is methodically generated
and evaluated” (Sturtevant and Ota 2018). The basic ap-
proach requires a generator G and an evaluator E. The eval-
uator is applied to all generated content, and the content with
the highest evaluation is selected.

EPCG was originally evaluated with generators that built
complete levels from scratch. But, for a game like Snakebird
there are too many possible levels to generate all of them.
Even a 20×20 level with three terrain types (sky, ground,
and spikes) results in 3400 = 7× 10190 possible levels. But,
this significantly underestimates the total number of possible
levels when other gameplay elements are considered. In the
game The Witness, there are similarly large numbers of lev-
els if all puzzle sizes and types of constraints from the game
are taken into account. In that context, previous work ap-
plied EPCG to exhaustively generate subsets of content for
the game (Sturtevant 2019), generating all levels of a partic-
ular size that use a particular mix of constraints.

Because our ultimate goal beyond this paper is to build



(a) (b)

Figure 2: Solver insights

a mixed-initiative co-creative system that can assist human
designers, our approach is to exhaustively consider small
changes to an existing level. This is both because the com-
putational costs are smaller and because small changes are
more easily understood. In the context of this paper we an-
alyze levels from the original games, but these could very
easily be changes to a level being co-authored with a human
user in a mixed-initiative co-creative system.

We believe that it is difficult to understand the implica-
tions of complex dynamics, especially early in the design
stages of a game. Thus, it is possible that level designers
may not be aware of the implications that small changes to
their designs might have. Because computers are well-suited
for rote exploration tasks, our hypothesis at the beginning of
this project was that only small changes would be required
to significantly change the solution to a puzzle, and that such
changes would be both non-obvious and useful to designers.
If our hypothesis is true, we should be able to use EPCG to
find interesting changes to existing levels.

Formally, our generator G, works as follows. It goes
through every tile in the level that is not occupied by the
snakebirds, the exit, a portal, fruit, or a movable object.
These tiles are either sky, ground, or spikes. It then generates
every 1-step change to a level, where a single tile is changed
to one of the two differing tile types. Thus, the generator in
an m × n level will make exactly 2(m × n − |S| − |P | −
|F | − |O| − 1) calls to the evaluator, where S is the set of
cells occupied by snakebirds, P is the set of cells occupied
by portals, F is the set of cells occupied by fruit, and O is
the set of cells occupied by other objects. The exit occupies
a single cell.

Our evaluator E uses a breadth-first search (BFS) to ex-
plore a level and return the optimal solution length.1 We use
this as a proxy for how interesting a player might find a
modified level. Other research has developed better metrics
for Sokoban (Jarušek and Pelánek 2010; Bento, Pereira, and
Lelis 2019), but our results will confirm that players found
levels with longer solutions more interesting in Snakebird.

In the final step, the EPCG procedure can either select the
generated content which minimizes or maximizes the solu-
tion length, which in our case makes the puzzle respectively
easier or harder.

1An A* search could be more efficient, but the BFS was suffi-
cient for most levels in the game.
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Figure 3: Largest incremental change

There are two possible ways this approach could fail.
First, we could analyze levels from the game and discover
that there are no modifications that significantly increase or
decrease the lengths of the solutions to the levels. Second,
we could find possible modifications, but they might not be
interesting to human players. The success and failure of the
incremental approach used in this paper will be a feature
of both the game evaluated and the incremental approach to
design. Our results will show that both of these failures are
avoided in Snakebird. Experimental results will show that
the incremental design changes proposed to Snakebird lev-
els have a significant impact on the solution length and are
interesting to humans.

After using EPCG to generate incremental changes to lev-
els, we then looked at the resulting levels. While there are
many interesting results, we highlight two levels here.

Solution Analysis We begin by looking at level 39 from
Snakebird in Figure 2(a). The design of this level, and our
own solution, suggests that the two blocks should be put
in the two notches in the structure on the right-hand-side
of the level so the snakebird can support itself on them
and reach the exit. Looking at a walkthrough provided on
YouTube,2 this is the suggested solution to the level. How-
ever, the EPCG analysis suggested putting another block at
the top of this structure. Directly running the solver on the
level revealed to our surprise, as shown in Figure 2(b), that it
is possible to exit the level without placing the second block
into the second notch.

We have not spoken to the designers of the game, so we
can only speculate about this level. But, evidence suggests
that most people do not notice that the top of the level can
be reached after placing just the first block. This suggests
that it is easy to overlook design consequences, especially
because adding another row of blocks on the top of the struc-
ture would easily remove this shorter solution.

Maximal Change In Figure 3 we show the level that had
the largest absolute increase in solution length. The original
level is shown in Figure 3(a), with the modified level in Fig-
ure 3(b). By changing the ground under the object to be a
spike instead of ground, the minimal solution length is in-
creased from 27 to 58, an increase of 31 moves. In the orig-
inal level the challenge is to get the first snakebird to lift the

2https://www.youtube.com/watch?v=PITJZnLW2ug
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Figure 4: Comparison of the three distributions of solution
lengths.

object from underneath while the second snakebird is raised
on top to reach the fruit.

The EPCG change to the level preserves the original chal-
lenge of the puzzle while adding an additional challenge.
Now, the object must be moved from the left to the right side
of the platform before the original solution can be used. The
spike makes this particularly difficult. The enhanced level
could be either used as is, or could be broken into two sepa-
rate levels, each with a different challenge.

This level, along with several other interesting levels, are
playable online from http://movingai.com/snakebird.html,
and a demo of the EPCG system is also available (Sturte-
vant et al. 2020). The full source code for the entire
project is available as part of the HOG2 code environment
(https://github.com/nathansttt/hog2/).

5 Quantitative Analysis
To begin, we evaluate our hypothesis that there exist small
design changes that significantly impact Snakebird levels,
measured according to the minimum solution length. In this
section, we present a quantitative analysis of the EPCG level
modifications to evaluate this hypothesis. We produced two
modifications for each Snakebird level, employing EPCG to
find the one change that most increased solution length and
the one change that most decreased the solution length. We
ran this process on all 129 levels of the game, but terminated
the evaluator when the BFS required more than 1 million
state expansions, giving us results for 108 levels.3 The final
result is three sets of levels: the originals, the variations of
each level by maximizing the solution length, and the varia-
tions of by minimizing the solution length. We refer to these
sets of levels as originals, max, and min respectively.

A visual comparison of the optimal solution length for
the three distributions of levels is found in Figure 4. The x-
axis is the solution length and the y-axis is what percentage
of the distribution has that particular solution length, while
the vertical lines indicate the medians of each distribution.
Visually, we can already identify a clear divide between the

3A higher limit, a better heuristic, and/or symmetry detection
should solve 19 of the remaining levels, while two levels have more
objects than our engine supports.
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Snake Bird
SnakeBird is a game developed by Noumenon Games available for mobile and PC devices. This study is based on our
variant of the game called Anhinga, a type of bird also known as the snake bird.

Before you get started, three notes on the rules of the game:

1. The goal of the game is to get
your anhinga into the exit.

2. Before you can exit, you must
eat all the fruit in the level. Eating
fruit makes your anhinga longer.
(Note that your anhinga can
stand on top of fruit!)

3. Be careful not to fall on spikes,
as this will kill your anhinga. But,
if you do, the game will undo
your move so you can try again.

The study starts with three training levels where you can practice. If you get stuck, there is a button that will show you
the solution.

Next, try these four levels.

Finally, let us know about your experience.

Training Level 1 Training Level 2 Training Level 3

Evaluation Level 1 Evaluation Level 2 Evaluation Level 3 Evaluation Level 4

Figure 5: Study landing page.

three distributions.
However, a visual analysis does not offer sufficient sup-

port for our hypothesis. To do this, we ran a statistical anal-
ysis to see if these distributions differed significantly from
one another. First, we confirmed that the distributions of so-
lution lengths differed significantly from the normal distri-
bution via the Shapiro test (p < 0.01). Given this, we then
used a two-sample Wilcoxon test to show that the distribu-
tion of original and the min, and the original and the max
levels differed significantly (p < 0.001). This indicates that
the modified levels are substantially different than the origi-
nal levels.

As a point of reference, suppose that the max approach
was only able to increase the solution length of each level
by 1, perhaps by placing a trivial obstacle in front of the
snakebird. Our analysis shows that the resulting distribution
would not pass the Wilcoxon test (p = 0.5). Thus, at least
quantitatively, incremental changes can lead to significant
differences in the length of the optimal solution for a level.

6 User Study
In Section 5 we quantitatively validated that incremental
EPCG changes can lead to significantly different solution
lengths. But, this does not guarantee that players will find
these levels to differ significantly when playing them. To
investigate this further, we ran a user study in which par-
ticipants play pairs of original and modified levels. This
was used to gather evidence as to whether the incremental
changes impact a user’s experience of a level.

6.1 Study Methodology
We advertised the study on social media, including Twitter,
Slack, Facebook, and Discord. After clicking through a con-
sent form participants were directed to a landing page for the
study that had instructions and animated .gif images show-
ing the dynamics of the game, as shown in Figure 5. We
called our version of the game Anhinga, after a bird also
known as the snakebird. Participants were required to play
three training levels, and then were assigned two pairs of
test levels, with the modified and original levels given to the
user in random order. If an individual participant could not
solve a particular level they could use an animated solver
to see a solution. After playing both pairs of levels, partic-
ipants were asked to complete a brief survey that asked the
participant to rank the pairs of levels in terms of which was



SBP19 [26 moves] SBP19+ [32 moves] SBP26 [25 moves] SBP26+ [35 moves]

SBP7 [44 moves] SBP7+ [57 moves] SBP28 [22 moves] SBP28+ [31 moves]

Figure 6: Levels from Snakebird Primer used in our user study. The + indicates a level from incremental EPCG analysis.

more fun, frustrating, surprising, interesting, enjoyable, and
challenging. We chose to employ rankings instead of ratings
as we were specifically interested in comparing the original
and modified levels. We also asked each participant to pick
the “best” level overall. Finally, we asked for demographic
information in terms of gender, age, how often the partic-
ipants played and designed games, and whether or not the
participants had played Snakebird before the study.

6.2 Level Selection
We selected two sets of levels for the study. Training levels
were selected to bring players up to speed with the game and
teach the core mechanics. Testing levels were selected for
study purposes. For brevity we refer to levels from Snake-
bird as SBx, and levels from Snakebird Primer as SBPx.

We used introductory levels from the game as training lev-
els. These included SB0 and SPB4. We then modified SBP5
to illustrate to players that they could stand on fruit and how
spikes worked.

To select levels for the study, we looked at the results of
the analysis in Section 5. After looking at the changes and
considering the mechanics of the games, we chose four pairs
of levels for the study: SBP7, SBP19, SBP26, and SBP28,
as shown in Figure 6, along with their EPCG modified coun-
terparts. We chose these levels because they all had simple
mechanics: a single snakebird and no portals or objects. Ad-
ditionally, the single change suggested for each of these lev-
els was to add a spike. Overall, we expected the levels would
be simple enough for users who had not played the game be-
fore to solve.

6.3 Results
In our study, 127 individuals loaded the main study page,
with 89 participants completing at least one level, and 67
participants completing the final survey. However, due to

variations within the playtests, such as recording multiple
plays of a single level, we only collected usable results from
58 participants. 44 of these subjects self-reported as male,
12 as female, and the remaining listed their gender as other
or declined to report. Our participants trended toward the
younger end of the spectrum, with twenty-five of our par-
ticipants falling within 18-25, twelve within 25-30, and fif-
teen within 31-40. In terms of level design experience, 27 of
our participants reported having never designed a level, 14
reported having done so once, 16 reported having done so
“many” times, and one self-reported as being a level design
expert. Since over half of our participants had level design
experience, we can expect that this population should have
been well-suited to evaluating levels.

Perhaps unsurprisingly, our participants had a major bias
toward regularly playing games, with 37 reporting that they
played games daily and 11 reporting playing at least once a
week. However, our participants had less experience with
puzzle games, with only seven reporting playing puzzle
games daily, 20 reporting at least weekly, and 15 reporting
at least monthly. Similarly, only seven participants reported
having played Snakebird before this study.

The first step for our results was to determine the im-
pact of the various conditions and demographic informa-
tion. Using a multi-way ANOVA or MANOVA (Huberty and
Olejnik 2006), we determined there was no significant im-
pact on any of the ranking results from any of our demo-
graphic information. Further, there was no significant im-
pact on the results based on the order that the participants
encountered the pairs of levels (original and modification).
However, there was a significant impact (p � 0.05), on the
ranking results based on the order in which users encoun-
tered the parts of each pair. In other words, whether a user
would rank either the original or modification higher accord-
ing to the different subjective features (fun, frustrating, etc.)



Fun Frustrating Surprising Interesting Enjoyable Challenging

EPCG Variation % 48.3%† 61.7% 48.3%† 61.7% 55.0%† 63.3%

Table 1: The percentage of time the incremental EPCG variation was ranked first in terms of the given features. †Not significant.

depended on what order they encountered the levels. This is
unsurprising given the recency bias (Summerfield and Tset-
sos 2015). Whether or not the level being ranked was an
EPCG modification or original also had a significant impact
(p � 0.05). This indicates that our changes had a percep-
tual impact on user experience, which we delve into in more
detail below. However, we found that particular individual
levels had no significant impact on the ranking results. In
other words, each level was individually roughly as likely
to be ranked first or second for each feature. This indicates
that it is more fruitful to consider the levels in the aggregated
groups of originals and modifications instead of examining
the specific changes made to particular levels.

We next needed to determine the impact of whether a
level was an original or modification on the different subjec-
tive experience features: which level was more fun, frustrat-
ing, surprising, interesting, enjoyable, and challenging. This
would tell us what general impacts, if any, came from the
EPCG modifications. Given that the ordering within pairs
of original and modified levels had a significant impact on
these rankings, we randomly sampled a subset of our results
where there was an equal number of instances of both kinds
of levels occurring first and second. This new dataset had 60
pairs of original and variation levels, for 120 total compar-
isons. We note that this removed a bias in the original data
where more users saw the modified level before the origi-
nal level. One possible reason for this bias was participants
quitting when they saw the easier level (original) before the
more difficult variant. The percentage of time that the varia-
tion was ranked first, according to each experiential feature,
is found in Table 1.

We ran the paired Wilcoxon signed-rank test, which is ap-
propriate given that our data is in pairs and is ordinal but
non-numeric (ranking information). We found no significant
difference in the results for the features of fun, surprising,
or most enjoyable. In other words, when the effect of order-
ing was neutralized, there was no significant difference in
how players ranked the original and modifications in terms
of these features. However, we found that users were sig-
nificantly more likely to rank the variation as being more
frustrating, more interesting, and more challenging than the
original (p < 0.05). We also found that users were much
more likely to rate a variation level as the best level overall,
as 65% of the best levels in the final dataset were variations
(p � 0.05). This gives support to the supposition that even
outside of human guidance that EPCG can be successfully
applied to Snakebird levels to produce variations that are
more challenging and interesting to human players. How-
ever, we anticipate that human expertise is needed to help
mitigate frustration with difficult puzzles, whether by level
sequencing or by other design clues. Many Snakebird Primer

levels, for instance, have the solution visually encoded in the
level.

7 Discussion and Limitations
It is important to qualify that we are not claiming that any
of the levels used in our study are better than the original
levels when placed in the context of the full game. Game de-
signers carefully design progressions of levels to teach users
about mechanics and to challenge them in new ways. Thus,
any single level in a game typically serves a design purpose
within the larger progression of the game. The changes sug-
gested by the incremental EPCG may help a designer ex-
plore new ideas during design, that will then be placed in
the larger framework of the game.

Similarly, our evaluator works to maximize solution
length, but solution length may not always be the most im-
portant thing to maximize. In Snakebird level 37, shown
in Figure 7(a) we typically use a straightforward solution
which requires 19 moves. The key state in this solution is in
Figure 7(b). Looking at an online walkthrough for the game
on YouTube, the same solution is provided. There is, how-
ever, a less straightforward solution, involving non-intuitive
use of the portals, which only requires 17 moves. There is
a trivial modification to the original level which will disal-
low the 19 move solution and only permit the 17 move so-
lution, making the level more challenging. This change is
not selected by the EPCG evaluator because it does not in-
crease the minimum solution length. Thus, EPCG could still
be missing interesting level changes based on human diffi-
culty. That being said, our own understand in this example
is a direct consequence of using the EPCG analysis.

8 Conclusions
This paper began with the hypothesis that there exists some
games where incremental design changes can have signifi-
cant impacts on the experience of playing a level, and that

(a) (b)

Figure 7: Solution length is not always indicative of solution
complexity.



EPCG can be applied to find these changes. We demon-
strated strong support for this hypothesis in the game of
Snakebird through both a quantitative analysis of these
changes and a user study. Thus, we anticipate that these re-
sults can be generalized to puzzle games outside of Snake-
bird. There is clear application to puzzle games where EPCG
has been previously applied, such as in The Witness. But, we
expect that incremental analysis may be insightful in many
other grid-based puzzlers such as Cosmic Express, Causal-
ity, or Dissembler.

More broadly, this work has laid the framework for using
EPCG with mixed-initiative co-creative design, in which a
user can work creatively the EPCG system to design levels.
Future work will further develop this possibility.
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