
An Efficient Chinese Checkers Implementation:
Ranking, Bitboards, and BMI2 pext and pdep

Instructions

Nathan R. Sturtevant1,2[0000−0003−4318−2791]

1 Department Computing Science, University of Alberta, Canada
2 Canada CIFAR Chair, Alberta Machine Intelligence Institute

nathanst@ualberta.ca

Abstract. The game of Chinese Checkers has a computationally expen-
sive move generation function. Finding legal moves dominates the perfor-
mance of a Chinese Checkers program. This paper describes a bitboard
representation of the Chinese Checkers board, how to efficiently gener-
ate and apply moves to the board, and how to rank and unrank states.
When available, the BMI2 PDEP (parallel bits deposit) and PEXT (par-
allel bit extract) instructions offer significant efficiency gains, especially
over a non-bitboard based implementation.

Keywords: First keyword · Second keyword · Another keyword.

1 Introduction

One important feature of top-performance game playing programs is the ability
to search the game tree efficiently. In many games this has meant using efficient
bitwise operations on bitboards for the game state [1–3, 5–7].

Thus, while bitboard representations are common, there is, to our knowl-
edge, no bitboard description for Chinese Checkers found in the literature. Chi-
nese Checkers has received research for many years [9, 10], but has received less
attention than other games.

This paper describes how bitboards can be implemented for Chinese Check-
ers. In particular, beyond the more routine bitwise operations that have com-
monly been used in other games, this paper describes how the BMI2 pext and
pdep operations can be used to extract and deposit bits to allow for efficient
move generation in Chinese Checkers.

In addition to describing our efficient implementation, we provide experi-
mental results showing the performance of the approach. For most operations it
is 2-3x faster than our baseline implementation. But, for generating and apply-
ing/undoing legal moves, it is approximately 9 times faster than the baseline.
When used as part of a program that strongly solves Chinese Checkers, a 2x
improvement is seen on a small game with 63 billion states. Further experiments
show that using the bitboard implementation without native pext and pdep

support degrades performance to be slower than the original implementation for
operations that rely heavily on these instructions.

2 Nathan R. Sturtevant

Next

Fig. 1. 7x7 Chinese Checkers board

Next Next Next 0

1 2

3 4 5

6 7 8 9

10 11 12 13 14

15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33

34 35 36 37 38

39 40 41 42

43 44 45

46 47

48

(a) (b) (c) (d)

Fig. 2. Legal moves for the piece marked with an arrow in (a). Step moves are marked
in yellow with a dashed circle in part (b), and jump moves are marked similarly in part
(c).Numbering used for board locations is found in part (d).

2 Chinese Checkers Rules

Chinese Checkers is a game for 2-6 players that can be played on odd-sized
boards, where we indicate the board size by the main playing area in a 2-player
game. The most typical board is 9x9 with 10 pieces per player, but a 7x7 board
with 6 pieces per player, as shown in Figure 1, is also common. The goal of the
game is for players to move their pieces to the opposite side of the board from
where they started. The winner is the first player to reach a goal state. Although
pieces may jump over other pieces, but there are no captures.
Legal Actions: The four ‘corners’ on the sides the board are reserved as start
and end locations for players in a game with more than two players. The rules
do not allow players to place their pieces in these locations, although they are
allowed to move through the corners as part of a longer action. There are two
possible actions: moves that step to an adjacent empty location, and moves that
hop or jump over an adjacent piece into a free location. Jumps can be chained
together to move a piece far across the board in a single action.
Step Moves: Step moves are illustrated in Figure 2(a) and (b). Figure 2(a)
shows the initial state where the blue player is to move; moves for the bottom
blue piece, marked with an arrow, are considered. This piece is allowed to move

An Efficient Chinese Checkers Implementation 3

to five of its neighboring locations, because the sixth location is blocked by a red
piece, as shown in Figure 2(b) by the yellow locations with a dashed border.
Jump moves: Jumping moves are allowed when a piece can move in a single
direction, jumping over a neighboring piece, and landing in a free location on
the board. From the state in Figure 2(a) the bottom blue piece is able to chain
together up to four jumps. The locations the piece can move to are found in
Figure 2(c) marked in yellow with a dashed border.

The choice of jumping moves requires a recursive search, and thus can be
expensive. Bookkeeping is required to ensure that move generation doesn’t con-
tinue to loop in circles generating the same moves repeatedly. The choice of
stopping anywhere significantly increases the branching factor of the game.3

Win Conditions. The standard win condition of Chinese Checkers is for a
player to fill their goal area with their own pieces. However, it has often been
observed that in the two-player game a player can leave a single piece behind
in their start area in order to prevent the opponent from filling their goal area.
(While simultaneously insuring they do not win themselves.) To prevent this, we
expand the win condition, only requiring that a player have at least one piece
in the goal when it is filled with pieces. Thus if a single piece is left in the goal,
it can just be surrounded to achieve a victory. Along with this rule, we do not
allow a player to move backwards into their own goal to lose the game. This
means that, for a player to win the game, they must make the last move. We
have described further win conditions, illegal moves, and draws elsewhere [10],
but these do not play a significant role in the implementation details described
here.

3 Chinese Checkers Bitboard Representation

This paper describes a 7x7 bitboard implementation here that uses 64-bits to
represent the board. In particular, the set bits in one 64-bit integer are used to
represent the locations of a single player’s pieces on the board. When allowing
players to temporarily jump into unused corners, 61 bits are required: 49 bits
for the main 7x7 diamond, and 3 bits for each of the four unused corners. Our
9x9 implementation uses two 64-bit states to represent the board, but is fun-
damentally the same as the 7x7 representation. For simplicity we only describe
operations in terms of the central 7x7 board.

Operations on the board require a numbering system that map locations on
the board to bits. There are many possible numberings that can be used on a
board; our implementation just numbers states starting from 0 at the top of
the board, as shown in Figure 2(d). While other mappings can be used, there
are certain properties needed by the numbering to ensure that it can be used
efficiently for some bit operations.

Our implementation has a separate board representation for the first and
second player. Applying an or to these boards would result in a map of all

3 At least 50 actions in 3-player Chinese Checkers [9], and 99 in single-player Chinese
Checkers on the 9x9 board [12].

4 Nathan R. Sturtevant

occupied locations. In the pseudo-code below we refer to the occupancy rep-
resentation of all pieces in a state as s.board. When referring to a particular
player we use s.p1Board and s.p2Board. In practice s.board is not stored, but
is generated when needed. The state contains an additional variable s.p1Move

which indicates whether player 1 is to move in the current state.
There are five basic operations we want to support in our implementation.

These are: GetMoves, which returns the legal moves, Apply/Undo Moves which
applies a single move to the game board, GetWinner which returns the winner
of the game, if any, and Rank and Unrank, which compute a perfect hash from a
state, and a state from a hash. We cover these operations in order from simplest
to most complex.

3.1 Get Winner

The game is won when a player fills their goal area with pieces. We precompute
a mask containing the goal area for each player. We use this mask to test (1) if
the goal area is filled and (2) if a player has at least one piece in the goal. The
code for testing if player 1 wins is as follows:

// p1 goa l a r ea f i l l e d
i f ((((s . board)&p1Goal) == p1Goal) &&

// p1 has at l e a s t 1 p i e c e i n goa l
(s . p1Board&p1Goal) != 0 &&
// p2 to move
s . p1Move == f a l s e)
r e t u r n 0 ; // p1 wins

The code for player 2 is analogous. The bitboard representation means that
we can test all pieces in one operation instead of using a for loop to iterate
through all of the locations in the goal.

3.2 Get, Apply, and Undo Moves

Because the number of legal moves in a state can be variable and large, but
the number of pieces which can be moved is small, we describe an initial move
representation that is more compact.

In particular, we have an array of 6 64-bit integers that represent the legal
moves for each of the six pieces on the board for a player. The bits set in each
64-bit integer represent the locations that piece can legally move. For instance,
looking at Figure 2(b) we can see that the piece in location 29 has five step
moves and in Figure 2(c) we can see that it has four jump moves. Thus, the 6th
integer (because this is the piece in the largest location) would have bits 22, 23,
28, 34, and 35 set for the step actions, and bits 6, 8, 19, and 31 set for each
of the jump actions. Given this representation, we can discuss how we set these
bits.
Step Moves: Getting legal step moves is straightforward using standard bit
operations. For each location on the board we create a mask which contains

An Efficient Chinese Checkers Implementation 5

the neighboring states. A piece can only move to a neighboring state if it is
unoccupied. Thus we can get the legal moves for a piece in location pieceLoc

with the following operation:

l e ga lMove s |= (˜ s . board)&neighborMask [p i e c eLoc]

In one operation this provides all steps that can be performed by a single
piece, and these can be added to the legal moves for that piece using a bitwise
or. This is significantly more efficient than a sequential implementation that
loops over each possible action, checking to see if a location is free.

Jump Moves Unfortunately, using standard bitwise operations it isn’t possible
to simultaneously compute all jump actions. As a start, consider that we have
two arrays representing the location jumped over, and the location jumped to,
for a given start position. That is, for a piece in location 29 on the board, we
would have a first array with values 22, 23, 30, and 35 indicating the locations to
be jumped over, and a second array with values 15, 17, 31, and 40 indicating the
locations where a piece would land after jumping. Note that the relative orderings
of the state jumped over and the final location of the jump are maintained in
the two arrays; these also happen to be sorted.

Assuming that these arrays are called jumpOver and jumpTo, the ith move
can be tested with the following pseudo-code:

l e ga lMove s |=(((s . board>>jumpOver [p i e c eLoc] [i]) &((˜ s . board)>>
jumpTo [p i e c eLoc] [i])&0x1)<<jumpTo [p i e c eLoc] [i]

With this approach we could store an array of jumpOver and jumpTo loca-
tions for each location on the board. Each location has a maximum of six jump
actions, but because some jump actions near the edge of the board are not legal,
there will not always be six actions to consider.

Note that the array used for this version can get large, and thus it might be
better to store the jumpOver and jumpTo locations more efficiently. In particu-
lar, we can have one 64-bit integer from all jumpOver locations and one 64-bit
integer for all jumpTo locations. This works because the board numbering pre-
serves the relative sorting of jumpOver and jumpTo locations. Thus, the ith bit
in the jumpOver integer and the ith bit in the jumpTo location will both corre-
spond to the same jumping action. Then the question becomes one of extracting
out each of the bits and testing their values to see if the jump actions are legal.
While this can be done by repeatedly counting trailing zeros and then clearing
the low bit, the Intel BMI2 instruction set offers more efficient instructions.

Instead, we can use the pdep (parallel deposit) and pext (parallel extract)
operations. pext uses a mask to extract bits from the input into the low-order
bits of the output. pdep deposits these bits back into the locations indicated by
the mask. These can be used to extract the locations that are jumped over and
to to simultaneously test for legal jumps.

With this approach, just three lines of code are required:

jumpOver = pext (s . board , jumpOverMasks [p i e c eLoc]) ;

6 Nathan R. Sturtevant

0 5 10 15 20 25 30 35 40 45 48
board

jumpOverMask[29]

jumpOver

jumpToMask[29]

jumpTo

~board

jumpTo&jumpOver

moves

Fig. 3. Operations for computing jump moves

jumpTo = pext (˜ s . board , jumpToMasks [p i e c eLoc]) ;
moves = pdep (jumpTo&jumpOver , jumpToMasks [p i e c eLoc]) ;

The first line extracts the bits for the locations that are jumped over. These
will be 1 if they are occupied. The second line extracts the locations that are
being jumped to. Because the board is inverted, these will be 1 if they are
unoccupied. By computing the bitwise and of these locations, we simultaneously
test all directions to see if a jump move is possible. The last line deposits any
legal moves back into the location that the piece is jumping to.

After jumps for a single pieces at a single location have been computed,
they must be recursively computed for all new locations that a piece has arrived
at in the previous calculation. This process continues until no new moves are
discovered. The whole process is then repeated for all pieces.

To make this more concrete, we fully illustrate this process for the piece in
location 29 in Figure 2 using Figure 3. There are four possible locations that
this piece can jump over while remaining on the board. These bits are set in
jumpOverMask[29]. The pext extracts the corresponding bits from the board
and places them in the low bits of jumpOver. In order to perform a jump, there
must be a piece in one of these locations to jump over. Corresponding to these
locations are the locations that the piece would land after jumping, shown in
jumpToMask[29]. These bits are extracted from the inverted board bits into the
low bits of jumpTo. Doing a bitwise and on jumpTo and jumpOver results in one
set bit for every possible jump. Using pdep, these bits are then deposited back
into the original locations. The final result indicates that a piece in location 29
can jump to location 31.

This computes all jumps for a single piece in one step, instead of requiring a
for loop over the 6 possible directions that a piece can move.

Apply and Undo Moves The results of finding all moves is a set of bits, one
per location that a single piece can move. Each piece has its own set of legal
move locations. This cannot be used directly to apply and undo moves. However,
it is simple to extract the bits from this set and combine them with the bit for

An Efficient Chinese Checkers Implementation 7

the piece that is moving. Thus, a move action is represented by a 64-bit integer
with two bits set, one for the initial piece location and one for the final location.
The initial and final locations do not need to be distinguished.

Applying a xor to a player’s board representation can be used to toggle both
the bit for the current location of the piece as well as the location to which the
piece is moving in one step. This process works regardless of whether a move
results from a step or a jump. Undoing a move as part of a depth-first search is
identical to applying a move.

3.3 Ranking and Unranking States

A key operation when solving a game, is ranking a state, or computing a perfect
hash of a state. This allows data about state to be stored implicitly without
explicitly describing the state – the location in memory implicitly identifies the
state.

Although this calculation is not complex, efficient implementations are not
widely documented in the literature. Thus, we provide a description of our ap-
proach here for reference. Our code has three ranking variants. These include
ranking/unranking the pieces of the first player, ranking/unranking the pieces
of the second player, and incrementing the location/rank of the second player’s
pieces relative to the first player’s pieces. We focus on the ranking of the first
player here, as this is the most common operation. The first player ranking does
not rely on BMI2 instructions; the improvement found in experimental results
comes from the improved ranking algorithm. The second player ranking is nearly
identical to the first player ranking, except that the pext operation is used to
get the board without the first player’s pieces. The use of this instruction is
important for overall efficiency.

Because the pieces on the board are not distinguished from each other, the
ranking problem is related to the combinatorial ways the pieces can be placed
on the board. Consider a board with 49 locations and 6 pieces, where the pieces
are in locations ℓ1 · · · ℓ6. There are

(
49
6

)
total ways to place these pieces on the

board. To compute the rank of an arbitrary state, we need to look at the gap
between each pair of pieces to see how many possible ranks are skipped. That is,
if the first piece is in location 0 on the board, we can decided to place the second
piece anywhere from location 1 to location 44. If the second piece is placed in
location 2, we can ask how many possible ranks of all pieces were skipped by
that decision. Given the first piece is in location 0, and the second is in location
1, there are

(
47
4

)
ways that the remaining pieces could be placed on the board.

Thus, putting the second piece in location 2 increments the rank of the state by
exactly

(
47
4

)
.

Generalizing this logic and starting with the first piece, when the first piece
is put in location ℓ1 there are

49∑
i=ℓ1

(
i

5

)
=

49∑
i=5

(
i

5

)
−

ℓ1−1∑
i=5

(
i

5

)
=

(
49

6

)
−
(
ℓ1 − 1

6

)

8 Nathan R. Sturtevant

possible rankings that have been skipped. Note that
∑j

i=k

(
i
k

)
is equivalent to

computing the sum of the jth diagonal in Pascal’s triangle, which is also equiv-
alent to

(
j

k+1

)
. This justifies the last simplification of the formula.

In this case a state has a rank of 0 if no ranks are skipped; that is, all pieces
are compactly placed at the top of the board in locations 0-5. Generalizing and
counting all skips across all pieces we derive:

[(
49

6

)
−
(
ℓ1
6

)]
+

[(
ℓ1 − 1

5

)
−
(
ℓ2
5

)]
+

[(
ℓ2 − 1

4

)
−
(
ℓ3
4

)]
· · ·

[(
ℓ5 − 1

1

)
−
(
ℓ6
1

)]
By re-arranging terms, this can be re-written as:

[(
49

6

)]
+

[
−
(
ℓ1
6

)
+

(
ℓ1 − 1

5

)]
+

[
−
(
ℓ2
5

)
+

(
ℓ2 − 1

4

)]
+ · · ·

]
−
(
ℓ6
1

)
Since −

(
n−1
k

)
= −

(
n
k

)
+
(
n−1
k−1

)
, we can further simplify this to:

(
49

6

)
−
(
ℓ1 − 1

5

)
−
(
ℓ2 − 1

4

)
−
(
ℓ3 − 1

3

)
−
(
ℓ4 − 1

2

)
−
(
ℓ5 − 1

1

)
−
(
ℓ6
1

)
This provides a simple formula that can directly compute the rank of a state.

When generalizing for a board with n locations and k pieces, the time required
to compute the rank is O(k), which contrasts with a similar ranking function
described in previous work [4], which runs in time O(n), and is the basis of the
ranking we used for our previous work on solving single-agent Chinese Checkers
variants [12, 8].

Note that our implementation pre-computes and caches the result of
(
n
k

)
for

all n and k that will be encountered in a given run. This cached result is returned
from the binom function, which looks up the binomial coefficient for the given
n and k. Other functions used in our code include blsr, which clears the lowest
bit and tzcnt, which counts the trailing zeros.

i n t RankPlayer1 (S ta t e s)
{

i n t v a l u e = s . p1Board ;
r e s u l t = kMaxRank ;
f o r (i n t x = 0 ; x < numPieces −1; x++)
{

r e s u l t −= binom (boardS i ze−t z c n t (v a l u e)−1, numPieces−x+1)
v a l u e = b l s r (v a l u e) ; // c l e a r low b i t

}
r e s u l t −= (boardS i ze−t z c n t (v a l u e)) ;
r e t u r n r e s u l t ;

}

Unranking is the opposite process of ranking, but our code uses a simple O(n)
time algorithm, instead of O(k) required for ranking. This could be made more

An Efficient Chinese Checkers Implementation 9

efficient, but unranking is used far less often than ranking, so it is less important
to perform these optimizations in the code. The unranking algorithm loops over
each possible location, testing whether the next piece should be placed in that
location. When a valid location is found, a piece is placed, and the remaining
pieces are iteratively placed in the same manner.

Sta t e UnrankPlaye r1 (i n t rank)
{

Sta t e s ;
s . p1Board = 0 ;
i n t nextLoc = boa rdS i z e ;
f o r (i n t x = numPieces ; x > 1 ; x−−)
{

do {
nextLoc−−;

} wh i l e (binom (nextLoc , x) >= rank) ;

s . p1Board |= 1<<(boa rdS i ze−1−nextLoc) ;
rank −= binom (nextLoc , x) ;

}
s . p1Board |= 1<<(boa rdS i ze −1−(rank −1)) ;

}

Note that a few details have been omitted from the code for simplicity of
presentation; we are able to provide complete code upon request.

4 Experimental Results

We now evaluate our bitboard representations in comparison to the representa-
tion that was used for all of our previous published results on Chinese Checkers.
The previous implementation is reasonably well optimized after 20 years of use.
The original board is represented using three arrays: one containing the con-
tents of the board, and two containing the pieces for each player. A DFS is
used to find legal jump moves, with a bitboard used as a hash table for finding
duplicates during the DFS. The move data structure contains which pieces is
moving, as well as where it moves, which allows for efficient updating of the
board. Ranking and unranking are performed using a variant of a previously
published implementation [4]. Functions like Get Winner are implemented with
for loops.

Experiments are run on a laptop with an 8-Core 2.3 GHz Intel Core i9, 32
GB of 2667 MHz DDR4 RAM, and MacOS Monterey. The code is in C++ and
compiled with -O3. The Intel intrinsic headers are used for efficient bit opera-
tions. For comparison purposes a custom implementation of the pext and pdep

functions was written using general bitwise operators. We call this implemen-
tation non-BMI2. We test each of the major game operations as follows, with
timing results reported in microseconds.

For testing the GetWinner function, we make 1,000,000 GetWinner calls and
report the total time averaged over 100 runs. For testing GetMoves, we get the

10 Nathan R. Sturtevant

Table 1. Board with 49 locations and 3 pieces

Call Original BitBoard non-BMI2

GetWinner 3,611 2,127 2,123
Get+Apply/Undo Succ 235,388 25,555 345,085
RankP1 5,455 3,095 3,097
RankP2 20,744 3,508 77,082
Unrank1 1,052 450 460
Unrank2 1,035 383 1,245
Increment 241 78 2,016

legal moves of a given state 1,000,000 times and then apply and undo all actions
that were returned, reporting the total time. For the ranking test we rank the
first 1,000,000 states for each player, reporting total time. For unranking and
incremental ranking functions we fix one player and then unrank all possible
states for the other player. The incremental unranking is only implemented for
the second player.

The results in Table 1 show the results on the board with 49 locations and 3
pieces. For the GetWinner function the bitboard implementation is 1.7x faster
than the old implementation. The non-BMI implementation does not have any
significant overhead. For getting, applying, and undoing actions, the bitboard
implementation is 9.2x faster than the old implementation with BMI2. Without
the BMI2 instructions the new implementation is 1.5x slower. This is because of
the extensive use of BMI2 functions. These trends continue across the ranking
operations. There is little overhead for ranking player 1 without BMI2, but the
same operations for player 2 are significantly more expensive.

The results on the board with 49 locations and 6 pieces, found in Table 2
follow the same trends as the smaller board, with the most significant gain being
an 8.9x improvement in getting, applying, and undoing actions.

Table 2. Board with 49 locations and 6 pieces

Call Original BitBoard non-BMI2

GetWinner 5,825 2,125 2,132
Get+Apply/Undo Succ 677,089 76,144 760,751
RankP1 7,957 5,171 5,868
RankP2 30,798 6,174 74,781
Unrank1 1,264,854 510,715 525,706
Unrank2 457,833 221,845 545,526
Increment 69,968 31,032 759,960

An Efficient Chinese Checkers Implementation 11

Table 3. Time in seconds to strongly solve games on board with 49 locations.

Pieces Total States Symmetric States Original BitBoard Speedup

3 559,352,640 141,219,540 204.51 74.12 2.8
4 63,136,929,240 15,822,357,347 43,187.58 21,597.82 2.0

4.1 Solving Time

Finally, we take a sequential in-memory solver and use it to strongly solve boards
with 49 locations and both 3 and 4 pieces. The solver uses both left/right symme-
try on the board and symmetry between the players to reduce the total number
of states that must be solved. The search uses retrograde analysis backwards
from terminal states along with optimizations from previous work [11, 10]. In
Table 3 we report the total solving time in seconds. The only difference in the
code is the representation used for the game. Overall, the BitBoard representa-
tion leads to a 2x speedup in total solving time on the 7x7 board with 4 pieces,
and a 2.8x speedup on the 7x7 board with 3 pieces. The reduction in speedup
is likely due to memory overheads in the solver, as the entire game is stored in
memory at the same time in this solver.

5 Conclusions

This paper has described an efficient bitboard representation for Chinese Check-
ers. This implementation provides a 9x speedup in the common operations of
getting and applying successors, and a 2x speedup in strongly solving small
Chinese Checkers boards. Future work will investigate faster bitboard methods
for when BMI2 operations are not available, such as is the case on Apple’s M1
processors.

References

1. Adel'son-Vel'skii, G.M., Arlazarov, V.L., Bitman, A.R., Zhivotovskii, A.A., Uskov,
A.V.: Programming a computer to play chess. Russian Mathematical Surveys
25(2), 221–262 (apr 1970)

2. Browne, C.: Bitboard methods for games. ICGA journal 37(2), 67–84 (2014)
3. Carlini, S., Bergamaschi, S.: Arimaa: From rules to bitboard analysis. Knowledge

Representation Thesis. University of Modena and Reggio Emilia (2008)
4. Edelkamp, S., Sulewski, D., Yücel, C.: Gpu exploration of two-player games with

perfect hash functions. In: International Symposium on Combinatorial Search.
vol. 1 (2010)

5. Frey, P.W.: An introduction to computer chess, pp. 54–81. Springer New York,
New York, NY (1983)

6. Grimbergen, R.: Using bitboards for move generation in shogi. ICGA Journal
30(1), 25–34 (2007)

12 Nathan R. Sturtevant

7. Heinz, E.A.: How darkthought plays chess. ICGA Journal 20(3), 166–176 (1997)
8. Hu, S., Sturtevant, N.R.: Direction-optimizing breadth-first search with exter-

nal memory storage. International Joint Conference on Artificial Intelligence
(IJCAI) pp. 1258–1264 (2019), https://webdocs.cs.ualberta.ca/ nathanst/paper-
s/DEBFS.pdf

9. Sturtevant, N.R.: A comparison of algorithms for multi-player games. In: Comput-
ers and Games. pp. 108–122 (2002)

10. Sturtevant, N.R.: On strongly solving chinese checkers. In: Advances in Computer
Games (ACG) (2019)

11. Sturtevant, N.R., Saffidine, A.: A study of forward versus backwards endgame
solvers with results in chinese checkers. In: Computer Game Workshop at IJ-
CAI. pp. 121–136 (2017), http://www.cs.ualberta.ca/ nathanst/papers/sturte-
vant2017ccsolve.pdf

12. Sturtevant, N., Rutherford, M.: Minimizing writes in parallel external memory
search. International Joint Conference on Artificial Intelligence (IJCAI) pp. 666–
673 (2013)

