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Abstract
Multi-agent pathfinding (MAPF) has applications
in navigation, robotics, games and planning. Most
work on search-based optimal algorithms for
MAPF has focused on simple domains with unit
cost actions and unit time steps. Although these
constraints keep many aspects of the algorithms
simple, they also severely limit the domains that
can be used. In this paper we introduce a new def-
inition of the MAPF problem for non-unit cost and
non-unit time step domains along with new multi-
agent state successor generation schemes for these
domains. Finally, we define an extended version
of the increasing cost tree search algorithm (ICTS)
for non-unit costs, with two new sub-optimal vari-
ants of ICTS: ε-ICTS and w-ICTS. Our experi-
ments show that higher quality sub-optimal solu-
tions are achievable in domains with finely dis-
cretized movement models in no more time than
lower-quality, optimal solutions in domains with
coarsely discretized movement models.

1 Introduction
Multi-agent pathfinding (MAPF) has applications in naviga-
tion, robotics, games, and planning. Consider the task of co-
ordinating a fleet of robots. When planning is restricted to
a 4-connected grid with unit edge costs, under the assump-
tion of deterministic action times, all agents move and arrive
at subsequent grid vertices in lock-step, that is, all agents’
moves start at the same time and end at the same time. How-
ever, in order to save time and fuel, it would be prudent to in-
crease the connectedness of the grid, allowing movement that
is more direct toward the goal. With this change however, not
all edges are of equal length, incurring non-unit costs and an
agent may arrive at a vertex at a time which is not in sync with
the other agents. There are many situations in which unit-time
step assumptions are violated: variable speeds, graphs with
variable length edges and variable wait times.

Although some centralized MAPF algorithms have been
described for non-unit time step domains [Sturtevant and
Buro, 2006; Thomas, Deodhare, and Murty, 2015; Walker,
Chan, and Sturtevant, 2017], the effect of such domains for
MAPF has not been deeply studied. Introducing non-unit time

steps into a MAPF domain brings forth situations where indi-
vidual agent actions have partial time overlap, that is, agents’
actions may start and/or end at differing times, causing only
a portion of the action durations to have time overlap. This
paper formally defines the MAPF problem for such domains
and addresses two challenges: (1) partial time overlap (PTO)
conflict detection and (2) PTO successor generation for multi-
agent states in Section 2.

The original increasing cost tree search (ICTS) algorithm
[Sharon et al., 2013] is not well-formulated for non-unit costs
and non-unit time steps and some reformulation is necessary.
In Section 5 we introduce our new extension of the ICTS
algorithm and two new bounded sub-optimal algorithms: ε-
ICTS and w-ICTS. Finally, in Sections 6 and 7 we provide
theoretical analysis and show: (1) our extended version of
ICTS outperforms the current version of CBS [Sharon et
al., 2015] in the domains studied, (2) empirical analysis of
two PTO successor generation styles and (3) a particularly
interesting result that higher quality sub-optimal solutions
are achievable in domains with finely discretized movement
models in no more time than lower-quality, optimal solutions
in domains with coarsely discretized movement models.

2 Problem Definition
MAPF optimization is NP-hard [Yu and LaValle, 2013]. For
a domain with N vertices, the k-agent state space contains

N !
(N−k)! states. With a single-agent branching factor of bbase,
the multi-agent branching factor b is (bbase)

k. Searching to
a depth of d yields a total search space of O(bd) nodes, al-
though many of them may be duplicates.

The unit cost MAPF problem is defined by a graph G =
(V,E) with uniform edge costs, a set of k agents, and a set
of start and goal locations for each agent i: starti ∈ V and
goali ∈ V where starti 6= startj , goali 6= goalj for all
i 6= j. A solution to a MAPF problem is a set of k single-
agent paths composed of states. A state is a pair containing
a vertex v ∈ V and time t: s = (v, t). A path for agent i is
a sequence of states {s0

i , ..., s
d
i } where s0

i = (starti, 0) and
sdi = (goali, d) where each (sni , s

n+1
i ) ∈ E. Agents transi-

tion between states along their individual paths by means of
actions. There are two types of actions: movement and wait
actions. Movement actions transition the agent via an edge
from one vertex to another vni → vn+1

i and strictly increase



the time component tni → tn+1
i , tni < tn+1

i . Wait actions
do not alter the vertex of a state but increase time. Note that
because all actions have the same duration, actions occur in
lock-step, that is, all agents’ actions start at the same time and
end at the same time.

A feasible solution contains only paths where no agents
come into conflict during the entire duration of all actions in
their respective paths. In pathfinding domains, a conflict is the
event in which one or more agents attempt to occupy overlap-
ping locations at the same time. Under the stated assumptions,
we seek feasible solutions which minimize flowspan (the sum
of individual path costs), however the proposed algorithms in
this work are easily adapted for minimizing makespan (the
maximum individual cost).

Adaptation for Non-Unit Costs
In the case of non-unit cost domains, we use a weighted graph
G= (V,E) with non-uniform, positive edge weights w(v) ∈
R>0 for each v∈V . Where each v is associated with unique
coordinates in metric space. As in unit-cost domains, action
durations are determined by edge weights. Thus, the former
assumption of lock-step movement is invalidated. We call this
version of the MAPF problem MAPFR. The subscript R (for
R) denotes real-valued non-uniform edge weights.

For MAPFR we assume situated agents which occupy a
nonzero area or volume. There are many ways to define this
such as circles, spheres, polygons, and polygonal meshes. In
this work we use circular agents with a center point and ra-
dius. When performing a wait action, agents are centered at a
vertex and when in motion their center follows a straight, con-
stant velocity motion vector in metric space between vertices
vn and vn+1. We define a collision as the condition when
one or more agents overlap at the same instant in time. Two
agents may collide when traversing an edge in opposite direc-
tions, where edges intersect or when two agents are on sepa-
rate edges near the same vertex.

PTO Collision Detection: Continuous-time collision de-
tection on moving objects has been extensively studied in
the fields of computational geometry, robotics, and computer
graphics [Kockara et al., 2007; Jiménez, Thomas, and Torras,
2001; Ericson, 2004]. To detect a collision between agents
whose actions have partial time overlap, we translate the
agent with the earliest action start time forward along its mo-
tion vector to match the action start time of the second agent.
Then we use an algorithm for continuous-time conflict de-
tection between moving objects [Ericson, 2004] to obtain the
projected future time of collision (if any) and check whether
it will occur before the earliest ending action time.

PTO Successor Generation: We define two new methods
of successor generation for a joint-state of k agents, S =
{s1, ..., sk}, when using partial time overlap (PTO) actions.
Let tmin be the minimal time over all si.time. Joint-state suc-
cessors can be created via the two following methods: (1) The
Cartesian product of the sets of successors succ(si) for all si
where si.time= tmin, and singleton sets {si} for all si where
si.time 6= tmin:

succ(S) =

k∏
i=0

{
succ(si) if si.time = tmin

{si} otherwise

and (2) the Cartesian product of succ(si) of only one si with
si.time = tmin, and all other {si}. In other words: method
(1) performs single-state expansions for all si that have min-
imal time and method (2) performs single-state expansion
for only one si with minimal time. We will refer to the first
method as full branching and the second method as OD-style
branching because of its similarity to operator decomposition
(OD) [Standley, 2010].

OD-style branching will yield a branching factor of bbase,
however, full branching may yield a branching factor of up
to (bbase)

k. Although OD-style branching has a smaller joint
branching factor, it will extend the depth of a search to the
goal by a factor of k. Unless otherwise noted, the analysis
in this paper is with reference to OD-style branching. Note
that collision checks must be performed when computing the
Cartesian product.

3 Background
We categorize MAPF algorithms into two types: centralized
and decentralized. Decentralized algorithms [Chouhan and
Niyogi, 2017; 2015; Wang and Botea, 2011; Silver, 2005]
find solutions without complete knowledge of the state of
other agents in the state space and hence cannot be optimal.
Coupled algorithms [Sharon et al., 2015; 2013; Wagner and
Choset, 2011; Standley, 2010; Sajid, Luna, and Bekris, 2012]
solve for agents jointly with full knowledge of the state of all
agents, hence, it is possible for centralized algorithms to have
optimality guarantees. In this work we focus on centralized
algorithms.

A* [Hart, Nilsson, and Raphael, 1968] and other A*-based
algorithms search the joint state space, treating a configura-
tion of all k agents as a state. Some A*-based algorithms for
multiple agents include M* [Wagner and Choset, 2011] and
Enhanced Partial-Expansion A* (EPEA*) [Goldenberg et al.,
2014]. Some extensions to A* which are also relevant to ICTS
include Independence Detection (ID) [Standley, 2010] and
Operator Decomposition (OD) [Standley, 2010]. ID initially
finds paths for individual agents and systematically merges
the state spaces of conflicting agents until a feasible solution
is found, often allowing a solution to be found without merg-
ing all of the agents together. OD reduces the branching factor
by introducing intermediate states during successor genera-
tion. Although OD reduces the branching factor, it increases
the depth of the search by a factor of k.

Conflict-Based Search (CBS) [Sharon et al., 2015] is a state
of the art algorithm for MAPF. Meta-Agent CBS (MA-CBS)
[Sharon et al., 2015] and other enhancements such as bypass
and conflict prioritization for CBS (ICBS) [Boyarski et al.,
2015] have been formulated. Though CBS has been applied to
MAPFR [Thomas, Deodhare, and Murty, 2015; Walker, Chan,
and Sturtevant, 2017], the ICBS enhancements have not been
deeply studied in the context of non-unit costs.

CBS, M*, ICTS, MDD-SAT [Surynek et al., 2016] and
EPEA* have been well-studied in unit-cost domains and
are shown to have similar performance overall with various
strengths and weaknesses depending on the characteristics of
the search domain [Felner et al., 2017]. In this work, we fo-
cus on ICTS, but note that for MAPFR, PTO conflict detec-



tion must be used for all of the algorithms. Additionally, PTO
branching must be used for all of the algorithms except CBS.

4 ICTS Algorithm
ICTS [Sharon et al., 2013] is a two-level search algorithm.

High Level: At its high level, ICTS searches the increasing
cost tree (ICT). Every node in the ICT consists of a k-ary vec-
tor 〈C1, ..., Ck〉 which represents the question: Is there a fea-
sible solution where the path cost of each agent ai is exactly
Ci? The total cost of an ICT node I is C=C1 + ...+Ck. The
objective is to find an ICT goal node of minimal C. The ICT
root contains the k-ary vector of the shortest path cost from
starti to goali in G for each agent, ignoring other agents. A
child in the ICT is generated by increasing the cost for one of
the agents by an increment value δ=1. Figure 1(a) depicts an
ICT with 3 agents. The root node contains the optimal path
costs for each agent: 〈10, 10, 10〉. The leftmost child is cre-
ated by incrementing the first element to yield 〈11, 10, 10〉.
Dashed lines indicate duplicate children which are pruned.

An ICT node containing 〈C1, ..., Ck〉 is a goal if there is a
complete feasible solution such that the individual path cost
for each agent ai is exactly Ci. We use ∆ to denote the depth
of the lowest cost ICT goal node. Since all nodes at the same
height have the same total cost, a breadth-first search of the
ICT will find the optimal solution.

Low Level: The low-level acts as a goal test oracle for the
high-level. For each ICT node generated by the high-level, the
low-level is invoked. Its task is to find a feasible solution such
that the cost of the individual path of agent ai is exactly Ci.
For each agent ai, ICTS stores all single-agent paths of cost
Ci as a directed acyclic graph with no duplicated edges or ver-
tices. This compact representation is also known as a multi-
value decision diagram (MDD) [Srinivasan et al., 1990]. The
low-level searches the cross product of the MDDs in order to
find a set of k feasible paths. If a feasible set of paths exists,
the low-level returns true and the high-level halts. Otherwise,
false is returned and the high-level resumes its search. In Fig-
ure 1(a) The low-level returned false for 〈10, 10, 10〉 (the root
of the ICT) so 3 successors are generated. The next node vis-
ited by the high-level is 〈11, 10, 10〉. Assuming the low-level
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Figure 1: (a) ICT with cost vectors and (b) reformulated ICT with
cost interval vectors

returns true at this node the high-level would then halt.
Pruning Enhancements: Several pruning enhancements

have been introduced for ICTS [Sharon et al., 2013]. These
techniques search for a solution for m < k agents. If there
exists a subset of m agents for which no valid solution exists,
there cannot exist a valid solution for k agents. Thus, the low-
level can immediately terminate with false.

5 Extended ICTS For Non-Unit Costs
Several changes to the original ICTS algorithm are necessary
for MAPFR. The formulation of the new high level algorithm
is dependent on the structure of the MDDs built by the low-
level. Figure 2(a) depicts a single-agent pathfinding problem
on a grid where the agent must move from the start coordi-
nates B1 to the goal coordinates A3. Figures 2(b) and 2(c) de-
pict the MDD for optimal paths when the grid is 4-connected,
and fully connected – where every grid square is directly con-
nected to all other grid squares. The x-axis shows cost which
increases as the agent moves from the start toward the goal
with Euclidean costs. Because the 4-connected MDD has unit
costs, it results in a single sink node at the goal. However,
when fully-connected, the resulting MDD has multiple sink
nodes in the highlighted interval (

√
5,
√

5 + 1]. This leads to
the simple observation that with non-unit costs, for each ICT
node multiple goals may be found in the interval (C,C + δ].

Setting δ = ε, the smallest possible increment, will en-
sure optimal results, but may cause the ICT depth ∆ to be
extremely large. On the other hand, if we set δ to a large
value and change the low-level search to solve an optimiza-
tion problem (instead of a satisfaction problem), the result
will be optimal. While this would incur a smaller ICT, our
new choice of δ might push the value of C significantly past
the optimal solution cost C∗, causing a large computational
cost at the low-level. Since the value of C∗ is usually un-
known, we recommend setting δ to be a moderate value in
order to mitigate the size of ∆ and reduce the risk of drasti-
cally overshooting C∗.

Reformulated High Level Search
Algorithm 1 shows pseudo code for the reformulated high
level search. In order to find a solution with cost C∗ in the in-
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Figure 2: Problem instance (a) and associated MDD for all paths of
cost between 2 and 3 for 4-connected grid (b) and fully connected
grid (c)



terval (C,C+δ], we generalize ICT nodes to have a vector of
cost intervals: 〈(lb1, ub1], ..., (lbk, ubk]〉. The root node now
consists of the vector 〈(opt1, opt1], ..., (optk, optk]〉, where
opti is the cost of the optimal path for agent i, ignoring other
agents (line 4). A child ICT node I′ is generated from its par-
ent I by setting I′.lbi to I.ubi and incrementing I′.ubi by
δ (lines 20, 21). Figure 1(b) shows an example of an ICT
with δ= 1. The root node of the tree contains vectors where
both lbi and ubi contain optimal costs of 10 (with the abuse
of notation (10, 10]) for each agent. Now, instead of report-
ing the existence of a solution in the ICT, the low-level will
detect and report the best cost C, in the summed-interval
(lb, ub] = (lb1 + ... + lbk, ub1 + ... + ubk] if a feasible so-
lution exists, ∞ otherwise (line 10). With cost-interval ICT
nodes, it is now most efficient to search the ICT in a best-
first manner. We define the minimum-cost single agent so-
lution in the interval (lbi, ubi] from each MDDi as besti
and use this for a lower-bound heuristic for an ICT node:
h(I) = best1 + ...+ bestk (line 22).

Sufficient conditions for optimality: In unit-cost do-
mains, the first feasible solution found in the high-level is
guaranteed optimal. This is not necessarily the case in non-
unit cost domains. If the low-level reports that I in level ` of
the ICT has a feasible solution of cost C, there are two possi-
bilities:

1. C = h(I): I is a goal (line 11). Because OPEN is or-
dered by h(I), there can be no other node in the OPEN
list that contains a better solution. Therefore, in this case
optimality is guaranteed.

Algorithm 1 Reformulated ICTS High Level Search
ICTS

1: Input: A MAPF instance, δ: Increment value
2: incumbent←∞: Best solution cost so far
3: best← ∅: Best solution so far
4: Build and push the root ICT node onto OPEN
5: while OPEN not empty do
6: I← OPEN.pop()
7: if h(I) ≥ incumbent then
8: return best
9: end if

10: C ←LOW-LEVEL(I,incumbent)
11: if C = h(I) then . Was goal found?
12: best← I
13: return best . This is the optimal solution
14: else if C < incumbent then . New incumbent?
15: incumbent← C
16: best← I
17: else
18: for i in 1 to k do . Generate successors
19: I′ ← I
20: I′.lbi ← I.ubi
21: I′.ubi ← I.ubi + δ
22: Compute h(I′) by building ubi-limited MDDi

23: OPEN.push(I′)
24: end for
25: end if
26: end while

2. C > h(I): I may not contain an optimal solution. We
set incumbent ← C (line 15), and then continue the
search until a new ICT node with a lower cost is found,
in which case incumbent is updated again, or h(I) ≥
incumbent (line 7), at which point we are guaranteed
that incumbent is the best cost.

Continuing the high level search until C=h(I), or h(I)≥
incumbent, may cause up to k-1 additional levels past ` to
be searched to ensure optimality in the worst case. This is due
to the fact that the cost difference between C∗ and C could
be divided between all k agents.

Reformulated Low Level Search
The low-level determines the best cost of a feasible solution
for I if one exists. First, the low-level builds MDDi for each
agent from starti to goali respectively. This can be done us-
ing a depth-first or breadth-first search. In this process, the
best path cost in the interval (lbi, ubi] is saved as besti for
use in the heuristic function h(I).

In order to find the best cost solution, a search of the joint
k-MDD space (Algorithm 2) is performed. The root node of
the low-level, Iroot ={MDDroot

1 , ..., MDDroot
k }, is a joint-

state containing the root nodes from MDD1,...,MDDk. S,
the set of joint-state successors of S (line 10) are generated
using PTO branching as defined in Section 2. A feasible
solution is found when a joint-state is visited such that all
si ∈ S=goali (line 6).

The low-level continues until one of the following occurs:
(1) the search is exhausted or (2) a solution that is optimal
in the joint-MDD space is found based on h(I) (line 17).
If no solution was found, ∞ is returned. If a feasible solu-
tion was found with C > h(I) (line 6) it is saved as the new
incumbent, but it is not necessarily optimal and the low-level
must continue. If the low-level reaches exhaustion after find-
ing a feasible solution with C > h(I), more ICT nodes may
need to be explored at the high-level to ensure optimality.

Sub-Optimal Variants
ε-ICTS: Instead of searching the k-MDD space for an opti-
mal solution, one can treat the low-level as a satisficing search
and exit upon finding the first feasible solution (See algorithm
2 line 14). Assuming a solution with C≥h(I) is found at the
low-level, an immediate exit may result in a significant time
savings in the low-level as well as a significant pruning of
ICT nodes in the high-level.

Consider the following example of near worst-case: Let
δ = 1 and an optimal solution exists in an ICT node at
∆ = 12: Iopt = 〈(13, 14] , (13, 14] , (13, 14]〉, C∗ = 13.3 +
13.3+13.2=39.8. Also let there be a sub-optimal solution in
Isub =〈(19, 20] , (10, 10] , (10, 10]〉,C=19.9+10+10=39.9
at depth `sub =10. If we accept Isub as a sub-optimal solution,
up to k lowest levels of the ICT may be pruned.

For flowspan, the cost of each single-agent path is at most δ
greater than optimal, thus the overall bound on sub-optimality
is guaranteed to be no greater than ε=kδ. Therefore a specific
ε can be achieved by setting δ, though very large or small val-
ues may negatively impact performance. Additionally, a more
precise bound on sub-optimality is returnable asC−h(I); the
difference between the actual cost and the lower bound.



Algorithm 2 reformulated ICTS Low Level Search
JOINTDFS

1: Input: S: A joint-state, incumbent: Best cost so far
2: C ←

∑k
i=1 COST(si ∈ S)

3: if incumbent < C then . Not a better solution
4: return incumbent
5: end if
6: if All agents are at their goal then
7: incumbent← C . Mark as best so far
8: return incumbent
9: end if

10: S← JOINTEXPANSION(S) . Expand S
11: for S′ ∈ S do
12: C = JOINTDFS(S′, incumbent)
13: if C < incumbent then
14: if satisficing then . Return first solution...
15: return C
16: end if
17: if C = h(I) then . Return optimal solution
18: return C
19: end if
20: incumbent← C
21: end if
22: end for
23: return incumbent

w-ICTS: In order to obtain a weighted bound on sub-
optimality, as the sub-optimality bound for ε-ICTS is kδ, δ
can be adjusted on the fly for each ICT node to guarantee a
weighted bound w>1. We initialize the root in the same way
as in the optimal algorithm, then for the generation of each
ICT node I′ thereafter, set δ=(w − 1)h(I)/k.

Pairwise Pruning Enhancement
Simple Pairwise Pruning (SPP) and Enhanced Pairwise Prun-
ing (EPP) were proposed and outlined in the original ICTS
paper [Sharon et al., 2013]. These enhancements are still valid
for MAPFR with no significant changes. Our empirical results
include the SPP enhancement.

6 Theoretical Analysis
The time complexity of the high level search is a combination
of three factors: (1) The size of the MDDs used at the low-
level and the search space required to build the MDDs; (2)
The computational complexity of the low level search; (3)
The computational complexity of the high level search.

MDD Size: When building an MDD for agent i at the
low-level, a cost-limit parameter ubi is supplied, yielding
MDDi = (Vi, Ei), a time-extended directed acyclic graph
for all paths from starti to goali with cost ≤ ubi. ubi is in-
cremented by δ as the high level search proceeds, causing
the size of MDDi to increase. Eventually, Vi will span ev-
ery vertex in V and after that point, |Vi| will only increase by
|V |with each increase of ubi. Hence in unit-cost domains, the
change in |Vi| between ubi and ubi+δ is bounded by |V |. For
example, on a 5x5 grid, the change in |Vi| as ubi increases by
1 will never be greater than 25.

In non-unit time step domains, assuming that there are at

least two discrete action durations allowed (e.g. 1 and
√

2
as in 8-connected grids), and at least one of the action dura-
tions shares no common denominator with the others, the in-
crease in |Vi| is upper-bounded by |V |/r where r is the reso-
lution of cost. Continuing our example with the 5x5 grid, with
r=10−3, the change in |Vi| can be no greater than 25,000. Al-
though the rate of MDD growth is still linearly bounded, there
is a much steeper growth. The number of operations required
to build the MDD is, in the worst case, linear in |V |, d and r.
If a very fine resolution is supplied for r, e.g. IEEE floating-
point precision, optimal ICTS may spend a lot of time to save
a very small amount of cost. Fortunately, a coarse setting of r
may be feasible for many applications.

Low Level Search Complexity: Because MDDs contain
only ubi-bounded paths the average branching factor for
MDDs, bmdd, is typically much smaller than bbase. Our ex-
periments showed an average OD-style branching factor of
only 1.54 at the low-level on 8x8, 8-connected grids with 10
agents. With OD-style branching, the depth of the low level
search is dk where d is the max depth of all MDDs, resulting
in a complexity of O((bmdd)dk).

High Level Search Complexity: The number of nodes at
level ` of the ICT (with duplicates removed) is the same as the
number of terms in a multinomial coefficient [Mazur, 2010],
the number of ways of adding k positive integers that add up
to `. Hence the size of the ICT is:

∑∆
`=0

(
`+k−1
k−1

)
= (k+∆)!

k!∆! =

O(MIN(∆k, k∆)). Assuming the number of agents is fixed,
this is ∆k. When a candidate solution is found at depth ∆, an
additional k − 1 levels of the ICT may need to be explored
in the worst case to prove optimality. Therefore the overall
complexity of ICTS is: O((bmdd)dk(∆+k−1)k).

Sub-Optimal Variants: Let ` ≤ ∆ be the shallowest level
of a feasible solution in the ICT. In the best case, the k deepest
levels in the ICT tree may be pruned, including all remaining
nodes in level ` plus k−1 levels past `. Let the average MDD
depth at `−1 be d−1 and at `+k−1 be dk−1. With OD-style
branching, the amount of savings could be up to (` + k−
1)k(bmdd)kdk−1 − (`−1)k(bmdd)kd−1 .

7 Experimental Results and Analysis
All empirical tests were conducted on a machine with 64 Intel
Xeon (r) cores at 2.2GHz with 128 GB of RAM. Test sets con-
sist of 100 random instances of the MAPF problem with vary-
ing numbers of agents on 4, 8, 16, and 32-connected grid do-
mains also known as 2k neighborhoods [Rivera, Hernández,
and Baier, 2017] with wait actions allowed. Any instances
taking longer than 300 seconds to complete were terminated
and marked as a failure.

OD-Style Versus Full Branching: In order to quantify the
differences between OD-style and full branching, we con-
figured the planner in two ways: 1) Worst-case simulation,
where ID is turned off and the low-level is set not to exit
immediately when finding a solution, but to search the en-
tire joint-MDD space; and 2) average case simulation, where
ID is turned on and the low level is allowed to exit as soon
as an optimal solution is found. We ran 100, 10-agent tests
in 8x8 grids with both branching styles. Table 1 displays the
mean statistics for various grid connectivity settings. In the



Worst-Case Simulation
Search Nodes (in thousands) Collision Checks (in millions)

Conn. 4 8 16 32 4 8 16 32
OD 21.6 3.7 166.3 311.4 1.18 .50 80.27 198.30
Full 22.7 1.6 102.3 183.5 1.25 .51 115.68 666.31

Average-Case Simulation
Search Nodes (in thousands) Collision Checks (in thousands)

OD .16 .91 9.00 17.16 4.33 81.05 231.15 371.47
Full .24 .96 7.45 17.53 4.49 91.31 223.07 384.90

Table 1: Comparison of average and worst-case scenario for OD-
style versus full branching for 10 agents on 8x8 grids

worst-case simulation, we see a tradeoff between the number
of node generations and collision checks. OD-style branch-
ing generates more nodes in non-unit time step domains,
but incurs fewer overall collision checks, especially with
higher branching factors. This tradeoff suggests that in gen-
eral, when collision checks are expensive, OD-style branch-
ing is preferred and when node generations are expensive, full
branching is preferred.

Let O and F be the sets of vertices of the search trees cre-
ated at the low-level by OD-style branching and full branch-
ing respectively in the worst-case scenario. OD-style branch-
ing only uses succ(si) for one si ∈ S with si.time = tmin

in the Cartesian product. Hence tmin ≤ t′min for all S and
S′ in O. Because full branching incorporates succ(si) for all
si having minimum time, tmin < t′min for all S and S′ in
F . Hence F ⊆ O, therefore |F| ≤ |O|. This explains the
difference in the number of search nodes in the worst-case
as shown in Table 1. However, as evidenced by the statistics
for the average-case simulation, the choice of branching style
may not make much of a difference because the entire joint-
MDD space may not be searched in all cases.

ICTS Versus A* and CBS: As an initial test, we compared
A* and CBS against the reformulated ICTS algorithm. Both
A* and ICTS use OD-style branching and the ID framework,
solving only conflicting agents jointly. The CBS algorithm
is using continuous-time collision detection and the conflict
prioritization (PC) enhancement from ICBS [Boyarski et al.,
2015]. Our initial analysis shows that other CBS enhance-
ments are less effective for MAPFR, hence are not used. All
algorithms use a time resolution of r=10−3. The ICTS algo-
rithm is using an increment of δ= 1 and the simple pairwise
pruning enhancement.

Figure 3 shows the mean time to solution (with failure
times of 300 sec averaged in) of 100 trials (y-axis) and the
number of agents (x-axis). ICTS and CBS clearly domi-

(a) (b)
Figure 3: Performance of ICTS versus A* and CBS on 4, 8 and 16-
connected grids

(a) (b)
Figure 4: Performance of sub-optimal variants versus ICTS on 4, 8
and 16-connected grids
nate A* and have nearly identical run-times in 8x8 grids,
but in 64x64 grids ICTS clearly dominates CBS for 8 and
16-connected domains (non-unit costs), but not in the 4-
connected domain (unit costs). These results may indicate a
strength in ICTS for non-unit cost domains, however, this is
an area that needs further research.

Sub-Optimal Variants: We ran both ICTS and the sub-
optimal variants on 64x64 grids with δ = 1.0, w = 1.5, and
both r= 10−3 and r= 10−6. The results for the latter setting
of r are shown in Figure 4. The results for the former set-
ting are not as dramatic, but show the same trend. Figure 4(a)
displays the mean time to solution with failure times of 300
seconds averaged in (y-axis) and number of agents (x-axis)
and Figure 4(b) shows the percentage of problems solved in
under 300 seconds. Run times for both ε-ICTS and w-ICTS
are better for higher branching factor domains compared to
run times in 4-connected domains.

Table 2 displays partial results from Figure 4 for 30 agents.
Note that not only is the time to solution in the sub-optimal
algorithms lower than for 4-connected grids, but the solution
quality is better. For example ε-ICTS on 16-connected grids
yields a mean 21% improvement on solution quality and a 3×
improvement on solution time versus ε-ICTS on 4-connected
grids. This surprising result suggests that higher quality paths
can be achieved in less time by using finer discretization in
agent actions and using a sub-optimal solver.

8 Conclusions And Future Work
This paper contributes a new definition of MAPF called
MAPFR for non-unit cost domains, definitions for PTO suc-
cessor generation, a formulation of ICTS for MAPFR and
new bounded sub-optimal variants for ICTS. In future work
we will explore the effect of non-unit cost domains on other
MAPF algorithms.

Performance on 2k Neighborhoods
Cost Time (sec)

Conn. 4 8 16 32 4 8 16 32
ICTS 1283 1013 1012 1005 73 170 132 181

ε-ICTS 1283 1041 1013 1010 73 72 24 54
w-ICTS 1284 1051 1051 1020 40 20 22 71

Ratio Versus Optimal ICTS, 4-Connected
Cost ratio Time ratio

ε-ICTS 1.0 .81 .79 .79 1.0 .99 .33 .74
w-ICTS 1.0 .82 .82 .80 .55 .27 .30 .97

Table 2: ICTS and sub-optimal variant performance for various
branching factors planning for 30 agents on a 64x64 grid
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