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Abstract
We study novel approaches for solving of hard combina-
torial problems by translation to Boolean Satisfiability
(SAT). Our focus is on combinatorial problems that can
be represented as a permutation of n objects, subject to
additional constraints. In the case of the Hamiltonian
Cycle Problem (HCP), these constraints are that two adja-
cent nodes in a permutation should also be neighbors in
the graph for which we search for a Hamiltonian cycle.
We use the absolute SAT encoding of permutations,
where for each of the n objects and each of its possible
positions in a permutation, a predicate is defined to indi-
cate whether the object is placed in that position. For
implementation of this predicate, we compare the direct
and logarithmic encodings that have been used previ-
ously, against 16 hierarchical parameterizable encodings
of which we explore 416 instantiations. We propose the
use of enumerative adjacency constraints—that enumer-
ate the possible neighbors of a node in a permutation—
instead of, or in addition to the exclusivity adjacency con-
straints—that exclude impossible neighbors, and that
have been applied previously. We study 11 heuristics for
efficiently choosing the first node in the Hamiltonian
cycle, as well as 8 heuristics for static CNF variable
ordering. We achieve at least 4 orders of magnitude aver-
age speedup on HCP benchmarks from the phase transi-
tion region, relative to the previously used encodings for
solving of HCPs via SAT, such that the speedup is
increasing with the size of the graphs.

Introduction
In the last decade, dramatic improvements were achieved in
both the speed and capacity of SAT solvers, which are now
up to 5 orders of magnitude faster and can handle problems
that are up to 4 – 5 orders of magnitude bigger, e.g., (Eén
and Sörensson 2005; Pipatsrisawat and Darwiche 2007;
Huang 2007b). The new efficient SAT solvers open new
possibilities for applying this technology. By translating
hard Computer Science problems to equivalent SAT prob-
lems, we can directly benefit from the recent tremendous
advances in SAT, and the constant stream of innovations in
this extremely active research field, without having to reim-
plement the same optimizations in specialized tools for
solving of specific problems. That approaches based on
efficient translation to SAT can outperform other methods
was demonstrated in the recent International Planning
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Competitions (http://zeus.ing.unibs.it/ipc-5),
where first places in the optimal planning category were
won by SAT-based planners (Kautz et al. 2006; Xing et al.
2006).

In this paper, we investigate efficient SAT techniques
for solving of problems that can be reformulated as permu-
tations, subject to additional constraints. Particularly, we do
an in-depth study of Hamiltonian Cycle Problems
(HCPs)—where the goal is to find a route in a graph by vis-
iting each node exactly once and returning to the starting
node—a known class of hard combinatorial problems, clas-
sified as NP-complete—see Prob. GT37 on p. 199 of
(Garey and Johnson 1979). Another hard combinatorial
problem, quasigroup completion (Kautz et al. 2001; Gomes
and Shmoys 2002; Ansótegui et al. 2004; Velev and Gao
2009), can be reformulated as multiple permutations, sub-
ject to additional constraints; it has applications to design of
experiments, and wavelength routing in switches on optical
networks. Other combinatorial problems that can be viewed
as permutations with constraints are discussed in (Hnich et
al. 2004; Cadoli and Schaerf 2005). At NASA, problems
that can be reformulated as permutations of tasks, subject to
additional constraints, arise in preparing sites for human
habitation (Frank 2009). The efficient encoding of real-
world problems as equivalent SAT formulas is a challenge
identified by Kautz and Selman (2007).

Previous methods for HCP solving by translation to
SAT (Iwama and Miyazaki 1994; Hoos 1999; Prestwich
2003; Cadoli and Schaerf 2005) exploited only 2 simple
SAT encodings for solving Constraint Satisfaction Prob-
lems (CSPs) via SAT—the log encoding (Iwama and
Miyazaki 1994), and the direct encoding (de Kleer 1989).
However, those authors present results for graphs with at
most 24 nodes. Indeed, our experiments indicate that the
previous encodings do not scale for graphs with 30 nodes—
both the log and direct encoding do not complete the solv-
ing of a suite of 100 graphs, each with 30 nodes and in the
phase-transition region (Cheeseman et al. 1991), in 300,000
seconds—while many of our strategies solve all instances
in that suite in 30 seconds or less, resulting in an average
speedup of at least 4 orders of magnitude, such that the
speedup is increasing with the size of the graphs.

This paper makes five contributions: 1) the first study of
the benefits from 16 hierarchical parameterizable SAT
encodings for CSPs (Velev 2007)—where a hierarchy of



Encoding
Required Clauses Predicate

index(v, i)at-least-one at-most-one excluded-illegal-values

log ——— ——— ¬lv2 ∨ ¬lv1 index(v, 0) = ¬lv2 ∧ ¬lv1
index(v, 1) = ¬lv2 ∧ lv1
index(v, 2) = lv2 ∧ ¬lv1

direct xv0 ∨ xv1 ∨ xv2 ¬xv0 ∨ ¬xv1    
¬xv0 ∨ ¬xv2    
¬xv1 ∨ ¬xv2

——— index(v, 0) = xv0
index(v, 1) = xv1
index(v, 2) = xv2

muldirect xv0 ∨ xv1 ∨ xv2 ——— ——— index(v, 0) = xv0
index(v, 1) = xv1
index(v, 2) = xv2

Table 1. The simple SAT encodings log, direct, and muldirect for indexing the values of a CSP variable v that has a domain of 3 values {0, 1,
2}. A dash indicates the absence of clauses of the corresponding type. The predicate index(v, i) is true when the domain value i is selected as
the value of the CSP variable v.
simple SAT encodings is used to index the domain of a CSP
variable, while benefiting from the characteristics of the
different simple encodings—of which we explore 416
instantiations, when applied to solving of HCPs; 2) the use
of enumerative adjacency constraints when representing an
HCP as an equivalent SAT problem—using a SAT encoding
for CSPs to enumerate the possible successors and/or pre-
decessors of a node in the Hamiltonian cycle—instead of,
or in addition to the exclusivity adjacency constraints that
have been used previously to prevent two nodes that are not
neighbors in the graph from appearing in consecutive posi-
tions on the Hamiltonian cycle; 3) 11 heuristics for choos-
ing the first node in the Hamiltonian cycle, resulting in
fewer constraints, and simpler formulas; 4) 8 heuristics for
static CNF variable ordering based on the structure of the
graph; and 5) experimental results, indicating at least 4
orders of magnitude average speedup—for both satisfiable
and unsatisfiable benchmarks—relative to the previously
used encodings, such that the speedup is increasing with the
size of the graphs.

Background

Simple SAT Encodings for CSPs
Previous work on HCP solving by translation to SAT has
used only two encodings—the log encoding in (Iwama and
Miyazaki 1994; Hoos 1999), and the direct encoding in
(Hoos 1999; Prestwich 2003; Cadoli and Schaerf 2005).
Hnich et al. (2004) also used the direct encoding when
translating to SAT other types of permutation problems. We
will illustrate these encodings with the clauses that they
require for a CSP variable v with a domain of 3 values, {0,
1, 2}—see Table 1:
Log. Uses a logarithmic number of Boolean variables in the
size of the domain of each CSP variable, by employing all
of the Boolean variables in order to select a value from the
domain of that CSP variable. Requires clauses to exclude
illegal values that are not in the domain of a CSP variable.
This encoding was proposed by Iwama and Miyazaki
(1994).
Direct. A new Boolean variable xvi is introduced to encode
whether a CSP variable v is assigned value i from its
domain. For each CSP variable, the introduced Boolean
variables are constrained with an at-least-one clause that
ensures that the CSP variable is assigned at least one value,
and at-most-one clauses that guarantee that only one value
is assigned. This encoding was proposed by de Kleer
(1989).

A variation of the direct encoding is:
Muldirect. The multivalued direct encoding is a variant of
the direct encoding, where the at-most-one clauses are
omitted (Selman et al. 1992). Therefore, a SAT solution
could assign several domain values to a CSP variable, so
that there is no longer a 1-to-1 correspondence between
SAT and CSP solutions. From a multivalued SAT solution
we extract a CSP solution by taking any one of the allowed
values for a CSP variable.

Given a CSP variable v, its domain, and the indexing
Boolean variables introduced for SAT encoding that
domain, we will refer to an assignment to those indexing
Boolean variables that selects the ith domain value as an
indexing Boolean pattern for that domain value for the
given CSP variable, and will denote it with the predicate
index(v, i). For a summary of other simple SAT encodings
for CSPs, the reader is referred to (Velev 2007). In the cur-
rent work, every indexing Boolean pattern is either a single
literal (a variable or its negation), or a conjunction of liter-
als, but in general can be an arbitrary Boolean function.



Figure 1. Two structural SAT encodings based on ITE trees for
CSP variable v with domain of 12 values, {v0, v1, ..., v11}:
(a) ITE-linear; and (b) ITE-log. ITEs are shown as multiplexors.
In general, the ITE tree for a CSP variable can have any structure.

1
0

iv0 iv1

1
0

v0 v1

iv2

1
0

v2

iv3

1
0

v3

iv4

1
0

v4

iv5

1
0

v5

iv6

1
0

v6

iv7

1
0

v7

iv8

1
0

v8

iv9

1
0

v9

iv10

1
0

v10

v11
(a)

(b)

1
0

iv0

iv1

1
0

iv2

1
0

v1
iv3

1
0

v0

v3
iv3

1
0

v2

iv2

1
0

v5
iv3

1
0

v4

v7
iv3

1
0

v6

iv1

1
0

iv2

1
0

v8

v9

iv2

1
0

v10

v11
Figure 2. Example of a hierarchical, recursive, hybrid encoding. A
domain of 12 values, {v0, v1, ..., v11}, is divided into three subdo-
mains by Simple Encoding 1 at level 1. Each  subdomain is further
divided into four parts by Simple Encoding 2 at level 2, where
each part is a different domain value.
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Structural SAT Encodings for CSPs
We can represent each CSP variable with a tree of ITE (for
“if-then-else”) operators that selects a value from this CSP
variable’s set of k domain values (Velev 2007). In this rep-
resentation, an ITE operator ITE(i, t, e) takes three argu-
ments: a Boolean variable i, such that if i is true then the
ITE selects the then-argument t and otherwise the else-
argument e, where the then- and else-arguments are either
ITE subtrees or domain values that appear as leaves of the
tree. Depending on the structure of the ITE tree introduced
for a CSP variable, we can obtain various encodings. One
extreme case is a chain of ITE operators—see Fig. 1.a. We
call this SAT encoding ITE-linear, due to the linear struc-
ture of the ITE tree. Another extreme case is when the ITE
tree is balanced, with every path in the tree going through
either ⎡log2(k)⎤ or ⎡log2(k)⎤  – 1 ITE operators—see Fig. 1.b.
We call the resulting SAT encoding ITE-log. It can be
viewed as a variant of the log encoding (see Table 1), where
some of the indexing Boolean patterns do not contain the
last indexing Boolean variable, so that no constraints are
needed to exclude illegal indexing Boolean patterns, as in
the log encoding. In general, the ITE tree for a CSP variable
can have any structure.

Hierarchical SAT Encodings for CSPs
We can use a hierarchy of different simple SAT encodings
(Velev 2007) in order to select the domain values of a CSP
variable. Namely, we can first use one simple SAT encod-
ing to partition the domain of that CSP variable into subdo-
mains, and then a different simple SAT encoding to either
select the values in each subdomain, or to further partition it
into smaller subdomains, and so on. For a given domain or
a subdomain, we restrict its subdomains to not overlap.
Then, we can use the same SAT encoding (with the same
set of indexing Boolean variables) to select the values in
each subdomain at the same new level in the hierarchy, and/
or to further divide the subdomains at that level into smaller
subdomains—see Fig. 2. A domain value is selected if it
gets selected in its corresponding subdomain at the lowest
level in the hierarchy, and for each of the higher levels in
the hierarchy, the corresponding larger subdomain that con-
tains this value also gets selected by the SAT encoding for
that level of the hierarchy. The global predicate index(v, i) is
defined as the conjunction of the corresponding predicates
for all levels of the hierarchy. If the total number of index-
ing Boolean patterns in a hierarchical encoding is greater
than the number of domain values, the unused indexing
Boolean patterns are prevented from occurring by clauses
that require the negation of those indexing Boolean patterns
to be true.

Kwon and Klieber (2007) proposed SAT encodings for
CSP variables that can be viewed as hierarchical encodings
with the direct encoding used at each level. In contrast, we
consider hierarchical encodings that can have any simple
encoding at each level of the hierarchy.



SAT Representation of HCPs
In this work, we apply the absolute SAT encoding of per-
mutations in order to translate HCPs to equivalent SAT
problems, as proposed by Iwama and Miyazaki (1994), and
used by Hoos (1999), Prestwich (2003), and Cadoli and
Schaerf (2005). The HCP instances are encoded as CSPs by
enumerating vertex permutations of the given graph as
solution candidates. For every vertex v, we introduce a CSP
variable, whose value represents v’s position in the permu-
tation. Three types of constraints are introduced: 1) com-
plete occupancy constraints, enforcing that each position in
the permutation is occupied by a vertex; 2) exclusivity posi-
tional constraints, ensuring that only one vertex can appear
at a given position in the permutation; and 3) exclusivity
adjacency constraints, guaranteeing that if two vertices are
not adjacent in the graph, then they cannot appear in con-
secutive positions in the permutation. Note that if the graph
has n vertices, and so the domain of the CSP variable for
each vertex is of size n, then the exclusivity positional con-
straints also ensure that the complete occupancy constraints
will be satisfied, and so we do not need to impose them
explicitly.

When searching for Hamiltonian paths that visit each
vertex exactly once, the exclusivity adjacency constraints
are imposed only for consecutive positions in the permuta-
tion. However, when searching for Hamiltonian cycles that
must return to the first node, exclusivity adjacency con-
straints are also imposed between the last and first positions
in the permutation. For another SAT encoding of permuta-
tions that was used for solving of HCPs, see (Prestwich
2003).

Using Hierarchical SAT Encodings to        
Represent Permutations

We can use any SAT encoding for CSP variables, including
hierarchical encodings, in order to index the possible posi-
tions of an object in a permutation. While hierarchical
encodings were shown to produce up to 3 orders of magni-
tude speedup on the DIMACS graph-coloring problems
(Velev 2007), and up to 4 orders of magnitude speedup on
detailed routings of complex FPGAs (Velev and Gao 2008),
they did not accelerate the solving of quasigroup comple-
tion problems in our experiments for (Velev and Gao 2009),
and have not been applied to SAT-based solving of HCPs,
to the best of our knowledge. Thus, the question whether
they would result in a speedup, given the structure of HCPs.
Furthermore, we implemented new hierarchical parameter-
izable encodings than the ones studied in (Velev 2007;
Velev and Gao 2008).

Enumerative Adjacency Constraints
Instead of the exclusivity adjacency constraints—which
prevent two nodes that are not neighbors in the graph from
appearing in consecutive positions in the permutation that
represents the ordering of nodes in the Hamiltonian cycle—
we can use enumerative adjacency constraints that, given a
node at position i in the cycle, enumerate all of its neigh-
bors from the graph and ensure that one of them will appear
at position i + 1. The set of m neighbors of the node at posi-
tion i is indexed with a new indexing scheme (either simple
or hierarchical) that uses fresh indexing Boolean variables
and selects one out of m elements.

Because of the indexing scheme for the position of each
node in the permutation and the exclusivity positional con-
straints, which map a given node to exactly one position in
the permutation for each assignment to all indexing Bool-
ean variables, the new indexing scheme for choosing a
neighbor can be reused for every position in the permuta-
tion.

Let index_fwd_neighbor(vp, vq) be the indexing predi-
cate introduced for selecting the neighbor of vp to appear in
the next consecutive position of the permutation, i.e.,
index_fwd_neighbor(vp, vq) is true if neighbor vq is selected
to follow node vp in the Hamiltonian cycle. Then, for each
position i and each neighbor vq, we add the corresponding
enumerative adjacency constraint:

index(vp, i)  ∧  index_fwd_neighbor(vp, vq) ⇒ index(vq, i + 1),

where index(vp, i) is the indexing Boolean pattern that maps
node vp to position i, and index(vq, i + 1) is the indexing
Boolean pattern that maps node vq to position  i + 1. In the
case where the indexing Boolean pattern index(vq, i + 1) is a
conjunction of k literals, l1 ∧ l2 ∧ ... ∧ lk, then the above
constraint will result in k clauses in the CNF formula, one
for each of the literals:

index(vp, i)  ∧  index_fwd_neighbor(vp, vq) ⇒ lj,   j = 1, ..., k,

thus ensuring that if node vp is at position i, and node vq is
chosen as its successor in the Hamiltonian cycle, then each
literal in the indexing Boolean pattern index(vq, i + 1) will
be assigned a value so that index(vq, i + 1) will be true, i.e.,
vq will be in position i + 1. Since the above constraints are
between a node and its successor in the permutation, we
call them forward enumerative adjacency constraints. 

We can define similar constraints between a node and its
predecessor in the permutation, but based on a different
indexing predicate with fresh indexing Boolean variables,
index_bck_neighbor(vp, vq):

 index(vp, i)  ∧  index_bck_neighbor(vp, vq) ⇒ index(vq, i – 1).

We call the resulting constraints backward enumerative
adjacency constraints. Again, if the indexing Boolean pat-
tern index(vq, i – 1) is a conjunction of k literals, the above
constraint will result in k clauses in the CNF formula, one
for each of the literals.

Note that the same neighbor vq of node vp cannot be
selected simultaneously to appear as both a successor and a
predecessor of vp, because the indexing scheme for node vq
and the exclusivity positional constraints ensure that vq can
be in only one place in the permutation for each assignment
to all indexing Boolean variables. Then, if both forward and
backward enumerative adjacency constraints are used, we
can optionally add the redundant constraints:

¬index_fwd_neighbor(vp, vq) ∨  ¬index_bck_neighbor(vp, vq),

for each neighbor vq of each node vp. We call these exclu-



sivity constraints between the forward and backward enu-
merative adjacency constraints.

The new indexing schemes for forward and backward
enumerative adjacency constraints can be multivalued, i.e.,
can select several neighbors to appear at the forward or
backward adjacent position at the same time, since the
exclusivity positional constraints will ensure that only one
of those nodes will actually appear in that position.

We can use only forward enumerative adjacency con-
straints, or both forward and backward enumerative adja-
cency constraints, or both forward and backward
enumerative adjacency constraints with exclusivity con-
straints between them. Furthermore, we can use each of
these combinations either alone or together with exclusivity
adjacency constraints.

The enumerative adjacency constraints add extra Bool-
ean variables and clauses to the CNF representation of the
HCP. If the direct or muldirect encoding is used to enumer-
ate the neighbors of each node, the number of extra vari-
ables is O(n ⋅ d), where n is the number of nodes in the
graph, and d is the maximum degree of a node. However, it
is well known that the number of Boolean variables and
clauses is not indicative of the complexity of solving a CNF
formula, and previous work has shown that overconstrain-
ing a CNF formula with redundant constraints may make it
easier to solve, e.g., see (Kautz et al. 2001; Gomes and
Shmoys 2002; Ansótegui et al. 2004).

While the exclusivity adjacency constraints (used by all
previous researchers) exclude infeasible portions of the
solution space, they leave it up to the SAT solver to deduce
the feasible portions. In contrast, the enumerative adjacency
constraints enumerate the feasible portions of the solution
space, thus ensuring that the search will stay within them,
eliminating inefficiency, and resulting in faster convergence
to a solution.

Choosing the First Node in a Permutation 
When Solving HCPs via SAT

We exploit the observation that when the search is for a
Hamiltonian cycle, as opposed to a Hamiltonian path, the
first node in the cycle can be selected in any way, since all
nodes have to be included in the cycle, and if a cycle exists
then all nodes are symmetrical in it. Thus, if a cycle does
not exist when a particular node is selected as a first node,
then a cycle would not exist when any other node is
selected as a first node. 

By selecting the first node in the cycle, we have to enu-
merate all possible permutations of the other n – 1 nodes,
where n is the number of nodes in the graph. However, we
need to impose the exclusivity and/or enumerative adja-
cency constraints between the chosen first node and the sec-
ond node (i.e., the first node in the permutation of the other
n – 1 nodes), as well as between the chosen first node and
the last node in the permutation. This eliminates the need
for indexing Boolean variables for the chosen first node to
encode its placement in a permutation of n nodes, possibly
reduces the number of indexing Boolean variables used for
each of the other n – 1 nodes since now they need to be
placed in a permutation of n – 1 elements, and eliminates an
O(n2) exclusivity positional constraints—if they are used—
between the chosen first node and each of the other nodes
for every position in a permutation of n nodes, thus result-
ing in simpler CNF formulas.

We implemented the following 11 heuristics for select-
ing the first node:

• f1—choose the first node in the graph description;
• f2—choose the first node of max. degree in the graph

description;
• f3—choose the first node of min. degree in the graph

description;
• f4—choose the first node of average degree in the

graph description;
• f5—random choice;
• f6—choose a node of max. degree, and break ties

based on a lesser sum of neighbors’ degrees;
• f7—choose a node of max. degree, and break ties

based on a greater sum of neighbors’ degrees;
• f8—choose a node of average degree, and break ties

based on a lesser sum of neighbors’ degrees;
• f9—choose a node of average degree, and break ties

based on a greater sum of neighbors’ degrees;
• f10—choose a node of min. degree, and break ties

based on a lesser sum of neighbors’ degrees;
• f11—choose a node of min. degree, and break ties

based on a greater sum of neighbors’ degrees.

Static CNF Variable Ordering
In order to explore ways to reflect the structure of a graph
when solving the HCP for it by translation to SAT, we
implemented heuristics for static CNF variable ordering
that is done in two steps. First, the nodes in the graph are
sorted according to their degrees, using one of the follow-
ing four approaches:

• o1—descending order of the node degrees, with ties
broken based on greater sum of neighbors’ degrees;

• o2—descending order of the node degrees, with ties
broken based on lesser sum of neighbors’ degrees;

• o3—ascending order of the node degrees, with ties
broken based on greater sum of neighbors’ degrees;

• o4—ascending order of the node degrees, with ties
broken based on lesser sum of neighbors’ degrees.

Second, following the node order from the first step above,
the CNF variables introduced for each node are assigned
priority levels in one of two methods:

• A—individually, first listing the indexing variables
that encode the node’s position in the permutation—
such that if a hierarchical encoding is used then prior-
ity is given to the indexing variables for higher levels
in the hierarchy where the domain is partitioned into
larger subdomains—followed by the indexing varia-



bles that encode the enumerative adjacency con-
straints, if applicable;

• B—in one or two groups, such that the CNF variables
in a group have the same priority level, where the first
group consists of the indexing variables that encode
the node’s position in the permutation, and the second
group (with a lower priority level), if applicable, con-
sists of the indexing variables that encode the enumer-
ative adjacency constraints.

Thus, the actual static CNF variable ordering is pro-
duced by applying one of the 4 node ordering approaches
o1 – o4, followed by one of the 2 methods to assign priority
levels to the CNF variables introduced for a node, resulting
in 8 static CNF variable-ordering heuristics. When using a
static variable order, a SAT solver would assign values to
the CNF variables starting from the highest and proceeding
to the lowest priority level. Hence, when method A is used
to assign priority levels, resulting in a different priority
level for each variable, the SAT solver will not use its
dynamic variable ordering heuristic, but only its dynamic
heuristic for selecting the value to assign to the next (stati-
cally determined) decision variable. In contrast, when
method B is used to assign priority levels, all the variables
in a group will have the same priority level, and the SAT
solver will apply both its dynamic variable ordering heuris-
tic—to order the variables from a group with the same pri-
ority level—and its dynamic heuristic to select the value of
each variable. We implemented method B to explore the
benefits from the corresponding capability in the SAT
solver rsat_3 (Pipatsrisawat and Darwiche 2007; Pipatsri-
sawat and Darwiche 2008).

The static CNF variable order is produced by our tool—
that given a graph, generates a CNF formula encoding the
feasibility of a Hamiltonian cycle in the graph—and is
passed to the SAT solver together with the CNF formula.
Since we use only complete SAT solvers, a static variable
ordering will not affect the result, but may help to solve the
problem faster.

In previous work on solving of CSPs by translation to
SAT, static variable ordering was used when solving of
graph-coloring problems (Velev 2007; Van Gelder 2008;
Velev and Gao 2008), and quasigroup completion problems
(Velev and Gao 2009). Hnich et al. (2004) researched static
variable orderings for non-SAT-based CSP solvers applied
to permutation problems.

Results
The experiments were run on a Dell Precision T7400 work-
station with two 3.2-GHz quad-core Intel Xeon processors,
32 GB of 800-MHz memory, and Red Hat Enterprise Linux
v5.3. (Only one CPU core was used for each experiment.)
We used the graph generator by Vandegriend and Culber-
son1 to produce random graphs. 

We started with satisfiable benchmarks (guaranteed to
have Hamiltonian cycles) by generating suites of 100
graphs from the phase-transition region (Cheeseman et al.
1.http://web.cs.ualberta.ca/~joe/Theses/HCarchive/main.html
1991) that satisfy the ratio e / (n log n) = 1, where e is the
number of edges and n the number of nodes in the graph,
since that ratio was shown to result in the hardest instances
(Frank and Martel 1995).

We compared 16 hierarchical parameterizable SAT
encodings—of which we explored 416 instantiations—
when used to represent the permutation of the vertices: ITE-
linear-k+direct and ITE-linear-k+muldirect for k = 2, ..., 12;
ITE-log-k+direct and ITE-log-k+muldirect for k = 2, ..., 12;
direct-k+direct, direct-k+muldirect, muldirect-k+direct, and
muldirect-k+muldirect for k = 2, ..., 12, such that the num-
ber of indexing Boolean variables used in the second level
was computed based on the number of variables in the first
level and the domain size; direct-k+(direct-n)*, direct-k+
(muldirect-n)*, muldirect-k+(direct-n)*, muldirect-k+
(muldirect-n)*, ITE-linear-k+(direct-n)*, ITE-linear-
k+(muldirect-n)*, ITE-log-k+(direct-n)*, and ITE-log-k+
(muldirect-n)* for k = 2, ..., 8 and n = 3, ..., 8, where the *
means that the corresponding encoding is repeated starting
from level 2, with a fresh set of indexing Boolean variables
for each level, such that the number of levels introduced is
determined by the domain size. We also ran experiments
with 5 simple encodings: direct, muldirect, log, ITE-linear,
and ITE-log.

We compared four SAT solvers: satz215.2 (Li and
Anbulagan 1997; Li 1999); tinisat (Huang 2007a;
Huang 2007b); minisat_1.14 (Eén and Sörensson 2005);
and rsat_3 (Pipatsrisawat and Darwiche 2007; Pipatsri-
sawat and Darwiche 2008). We found rsat_3 to have the
best performance on graphs of 30 or more vertices, and so
used it for the experiments that we present.

We started with experiments for graphs with 20 vertices.
Unlike Hoos (1999), who identified the direct encoding to
outperform the log encoding when using SAT solvers that
are no longer competitive, we found the log encoding to
outperform the direct encoding. In particular, the log encod-
ing resulted in 319 sec to solve all 100 CNF formulas from
graphs with 20 vertices, while the direct encoding took
approximately 1,500 sec. Of the hierarchical encodings, the
best performance was due to the ITE-linear-2+direct encod-
ing, which required 85 sec, closely followed by the ITE-
log-2+direct encoding with 89 sec, and then the ITE-linear-
2+muldirect with 113 sec. We repeated these experiments
for the 100 graphs with 25 vertices: the log encoding
required approximately 40,000 sec, in contrast to the ITE-
linear-2+direct encoding that resulted in approximately
4,000 sec, i.e., an average speedup of an order of magni-
tude, with the speedups on individual benchmarks reaching
3 orders of magnitude. However, the hierarchical SAT
encodings did not scale well for larger graphs.

We implemented the enforcement of enumerative adja-
cency constraints, using either the direct or muldirect
encoding to index the neighbors. The enumerative adja-
cency constraints could be used instead of, or in addition to
the exclusivity adjacency constraints that have been used
previously. We found that the direct encoding, when used to
encode the permutation of the vertices, produced the great-
est speedup with enumerative adjacency constraints, rela-



tive to the log encoding or any of the hierarchical
encodings.

For satisfiable benchmarks, the greatest speedup and
scalability were obtained when we used direct encoding for
indexing the position of each node in the permutation, both
forward and backward enumerative adjacency constraints
and exclusivity constraints for them with the direct encod-
ing used to index the neighbors, keeping the exclusivity
adjacency constraints from the previous methods, choosing
the first node in the cycle based on heuristic f11, and using
static CNF variable ordering heuristic o4.B. This strategy
took 11 seconds for the suite with 20-node graphs; 12 sec-
onds for the suite with 25-node graphs; 20 seconds for the
suite with 30-node graphs; 31 seconds for the suite with 40-
node graphs; 207 seconds for the suite with 50-node graphs;
291 seconds for the suite with 60-node graphs; 2,395 sec-
onds for the suite with 70-node graphs; 5,291 seconds for
the suite with 80-node graphs; approximately 68,000 sec-
onds for the suite with 90-node graphs; and approximately
120,000 seconds for the suite with 95-node graphs, where
each of these suites had 100 graphs. (The time to generate
each CNF formula, as well as to map each satisfying
assignment to a sequence of nodes and verify that they are
indeed a Hamiltonian cycle, took less than 1% of the SAT
solving time and is included in the times reported above.) In
contrast, when we ran experiments with the previously used
encodings log and direct on the same suite of 100 graphs
with 30 nodes each, the SAT solving with either encoding
took more than 300,000 seconds, such that the log encoding
could complete only the first 10 benchmarks in that time
interval, while the direct encoding could not complete even
the first benchmark. That is, the time for solving of that
suite was reduced from more than 300,000 seconds—with
only 10 out of 100 benchmarks solved—to 20 seconds with
all of the benchmarks solved, or an average speedup of at
least 4 orders of magnitude. Furthermore, the speedup is
increasing with the size of the graphs.

Of the 11 heuristics for choosing the first node in the
cycle, the best performance had f11 and f10, which pro-
duced an average speedup of up to 3×, relative to using the
first node in the graph description. Of the 8 heuristics for
static CNF variable ordering, o4.B had the best perfor-
mance for satisfiable instances, resulting in an average
speedup of up to 5× relative to using the dynamic variable
ordering heuristic in the SAT solver.

We also conducted experiments with 50 graphs of 25
nodes each that do not have Hamiltonian cycles; they were
also generated randomly, but satisfying the ratio        e / (n
log n) = 0.5. Using the best strategy from solving satisfiable
benchmarks—the direct encoding for indexing the position
of each node in the permutation, both forward and back-
ward enumerative adjacency constraints and exclusivity
constraints for them with the direct encoding used to index
the neighbors, keeping the exclusivity adjacency con-
straints from the previous methods, and choosing the first
node in the cycle based on heuristic f11, but without static
variable ordering—took a total of 8 seconds to generate all
CNF formulas and find each of them unsatisfiable. (Using
static variable ordering resulted in longer CPU time.) In
contrast, with both the log and direct encoding, the solving
of those benchmarks did not complete in 800,000 seconds.
Thus, our techniques result in at least 5 orders of magnitude
of average speedup for unsatisfiable benchmarks as well.

When we increased the ratio e / (n log n) to 1.25 and
then to 1.5, the graphs became much easier to find Hamilto-
nian cycles in, and the resulting suites of 100 graphs were
solved up to 2 orders of magnitude faster than the corre-
sponding satisfiable suites where the graphs were generated
with this ratio set to 1. 

Conclusion
We did an in-depth study of HCP solving based on the
absolute SAT encoding of permutations with constraints.
We found the hierarchical SAT encoding ITE-linear-
2+direct to result in an average speedup of an order of mag-
nitude relative to the log encoding (that significantly out-
performed the direct encoding) on a suite of 100 graphs
with 25 nodes each, generated in the phase-transition
region. However, the hierarchical SAT encodings did not
scale well for larger graphs.

The main contribution of the paper is the use of forward
and backward enumerative adjacency constraints, together
with exclusivity constraints between them, in addition to
the exclusivity adjacency constraints that have been applied
previously. We achieved at least 4 orders of magnitude
average speedup when solving the HCP for both satisfiable
and unsatisfiable benchmarks—relative to the previously
used direct and log encodings—such that the speedup is
increasing with the size of the graphs. Heuristic f11 for
selecting the first node in the cycle produced speedup of up
to 3 times. For satisfiable benchmarks, the best perfor-
mance was due to the static CNF variable ordering heuristic
o4.B that resulted in up to a factor of 5 speedup, relative to
using the SAT solver’s dynamic variable ordering heuristic,
which had the best performance for unsatisfiable bench-
marks.

We expect that the presented techniques can be adapted
to efficiently solve other classes of permutation problems.
The availability of many efficient translations to SAT will
allow us to design robust portfolios of parallel strategies for
solving of HCPs, which we will investigate in our future
research.
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