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Abstract 
In a constraint satisfaction problem, the tightness of an indi-
vidual constraint only describes the influence that the vari-
ables within its scope have on one another. Clusters provide 
a broader view; they are dense, tight subproblems within a 
problem. A set of clusters for a problem and the links be-
tween them provide an abstraction of it. That abstraction can 
be used to guide search, to curtail inference, and to provide 
explanations to the user. This work is a hybrid of global and 
local search, where local search creates an abstraction and 
then global search exploits it. Heuristics reference clusters 
to order variables and to propagate more thoughtfully with 
respect to them. Results are provided on a variety of chal-
lenging benchmark problems. 

Introduction 

The thesis of this work is that an appropriate abstraction of 
a constraint satisfaction problem (CSP) can provide guid-
ance for a solver and insight for a user. Ideally, that ab-
straction would facilitate search for a solution or be used to 
prove that no solution exists, to reduce inference during 
search, and to support concise, pertinent explanations for a 
user. The principal results of this paper demonstrate these 
ideas with clusters, particularly dense and tight subprob-
lems detected quickly prior to search. For some challeng-
ing CSPs, cluster-based abstraction proves a powerful ap-

proach to search and explanation.  
One traditional representation of a CSP is as a graph. 

Formally, a CSP is a set of variables, each with a domain 
of values, and a set of constraints that restrict how those 
variables can be bound simultaneously. In a binary CSP, 
each constraint addresses no more than two variables. A 
constraint graph for a binary CSP represents each variable 
as a vertex and each constraint as an edge between the pair 
of vertices for the variables it restricts. 

 An automated graph-drawing program, however, is 
unlikely to offer much insight into the nature of a CSP. A 
program that plotted one problem’s 200 variables along the 
circumference of a circle, for example, produced Figure 
1(a). The problem’s density (fraction of possible edges in-
cluded) obscures any meaningful information. A human-
guided rearrangement of the vertices in that graph pro-
duced Figure 1(b), which in some sense reveals the prob-
lem’s “shape.” It consists of small subgraphs connected to 
one another only through another, larger subgraph.  
 Many traditional CSP variable-ordering heuristics direct 
search for a solution to variables with high degree in the 
graph. (Two vertices with an edge between them in the 
graph are neighbors, and the number of neighbors a vertex 
has is its degree.) Such search on the problem in Figure 1 
would begin in the larger subgraph — and it would fail, 
because it ignores tightness. 
 The tightness of a constraint is the fraction of possible 

 

 (a)       (b) (c) (d) 
Figure 1. For the same CSP (a) an uninformative constraint graph plots variables on the circumference of a circle while  
(b) another constraint graph reveals some relationships. (c) Darker edges represent tighter constraints. (d) Detected from (a) 
by local search, this cluster graph is an abstraction that highlights each critical subproblems with a circle for clarity.  



assignments to its variables that it excludes. Non-uniform 
constraint tightness dictates that search cannot rely on 
shape alone. In Figure 1(c), tighter edges are drawn darker. 
Clearly the edges within the smaller subgraphs are tighter 
than the now faint edges that lead out from them and 
tighter than the edges within the larger subgraph. 

A cluster graph is an abstraction that highlights dense, 
tight subproblems in a CSP. After a discussion of related 
work, this paper describes the cluster-detection algorithm 
that produced the imperfect but incisive cluster graph in 
Figure 1(d). Subsequent sections describe how clusters are 
exploited to guide global search, to explain the nature of a 
problem to the user, and to control inference during search. 
The final sections demonstrate performance improvements 
with cluster graphs and discuss current work.  

Related Work 

A cluster graph identifies subproblems that are dense and 
tight before search for a solution. A cluster graph selects 
elements of the original graph and groups them together. 
The variables and constraints not explicit in a cluster graph 
have influenced its formation (via pressure, described in 
the next section). Thus a cluster graph captures a kind of 
fail-first (Smith and Grant, 1998) metastructure that antici-
pates and confronts difficulties. This approach differs, 
therefore, from methods that relax, remove, or soften con-
straints. As used here, “cluster,” does not refer to aggrega-
tions of data, sets of solutions in a search space, or rela-
tively isolated, dense areas in a graph (van Dongen, 2000). 

Most structure-based work in CSP has focused upon the 
identification and exploitation of tractable structures, such 
as trees (Mackworth and Freuder, 1985), acyclic graphs 
(Dechter and Pearl, 1987), tree decomposition (Dechter 
and Pearl, 1989), hinges (Gyssens, Jeavons and Cohen, 
1994), and other complex structures (Gompert and 
Choueiry, 2005). Unlike clusters, however, that work ig-
nores tightness along individual constraints. 

With respect to a given search algorithm, the backdoor 

of a CSP is a set of variables that, once assigned values, 
make the remainder of search trivial (Ruan, Horvitz and 
Kautz, 2004). A backdoor is typically less than 30% of the 
variables, but its identification before search is NP-
complete. Recent work suggested that both static and dy-
namic properties should be considered during search for a 
backdoor (Dilkina, Gomes and Sabharwal, 2007). The 
formation of a cluster graph prior to search considers both 
static (initial) shape and potential (dynamic) changes in 
domain size. A cluster graph would, ideally, contain the 
backdoor, but no claim is made here that it does so.  

An abstraction can be used to simplify a problem tempo-
rarily (e.g., (Sacerdoti, 1974)). Its solution is then gradu-
ally revised to accept additional problem detail, until the 
revision solves the original problem. Because a cluster 
graph is applied in collaboration with the traditional graph, 
not as a replacement for it, no re-solution is necessary. 

 Elsewhere we have shown that, given 30 minutes per 
problem, a heuristic that merely prioritized variables in the 
smaller subgraphs failed to solve any problem like that in 
Figure 1 (Epstein and Li, 2009). Thus, individual edge 
tightness cannot be the sole consideration. That work also 
investigated a variety of ways to use perfect knowledge, 
such as that in Figure 1(c), to solve such problems. We 
showed there that it is important to explore one subprob-
lem at a time. Individual edge tightness overlooks the syn-
ergy among a set of variables with many mutual con-
straints, a synergy that clusters are designed to anticipate. 

Cluster Detection 

Cluster detection uses VNS (Variable Neighborhood 
Search), a local search metaheuristic (Hansen, Mladenovic 
and Urosevic, 2004). (The “variable” in VNS refers to 
changing neighborhoods in the graph, not to CSP vari-
ables.) The original VNS application remains the state of 
the art for maximum clique detection within a graph. (A 
clique is graph with an edge between every pair of distinct 
vertices.)  
 Local search begins with an initial solution and then 
seeks to move it toward some goal with respect to some 
metric. Figure 2 provides pseudocode for VNS. It repeat-

1 best-yet ← initial-solution 
2 index ← 1 
3 neighborhood ← neighborhood(index) 
4 until stopping condition or index = k 
5  unless index = 1, best-yet ← shake(best-yet, index) 
6  local-optimum←local-search(best-yet, neighborhood) 
7  If score(local-optimum) > score(best-yet) 
8   then  best-yet ← local-optimum 
9      index ← 1 
10  else  index ← index + 1 
11  neighborhood ← neighborhood(index) 
 
Figure 2. A high-level description of VNS meta-heuristic 
search through k neighborhoods. The initial solution, the 
score metric, and the local search routine vary with the ap-
plication. k = 10 was adopted from (Hansen, Mladenovic 
and Urosevic, 2004). 
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Figure 3. Selected VNS steps to find a maximum clique 
in graph (a). (b) A starting vertex. (c)-(d) Greedy steps 
add vertices adjacent to every selected vertex, one at a 
time. (e) A swap replaces vertex 2 with vertices 4 and 5. 
(f) VNS for index = 1 shakes out one randomly selected 
vertex. See the text for further details.  



edly calls (in line 6) a greedy local search algorithm within 
a neighborhood in the graph, nodes adjacent to some of 
best-yet. The subgraph returned by local search is scored, 
but only the highest-scoring subgraph is retained. That top-
scored subgraph is then shaken (i.e., index randomly cho-
sen variables are deleted) to shift search to a new 
neighborhood, and the shaken graph is resubmitted as a 
starting point for local search. VNS terminates when it has 
searched the maximum number of neighborhoods or under 
some user-specified stopping condition, typically time.  

 Figure 3 is a sample of steps that might occur during 
VNS search to find a maximum clique in a simple graph. 
The initial solution is a vertex that is a neighbor of every 
vertex in the graph; the local search metric is subset size. 
VNS adds one vertex adjacent to every vertex in the grow-
ing subgraph. (This is the greedy step; ties are broken on 
maximum degree in the original graph.) When greedy steps 
are no longer possible, local search swaps out one vertex 
for a pair of adjacent vertices that are also adjacent to every 
other vertex in the subgraph, as in Figure 2(e). Eventually 
neither greedy steps nor swaps can be found. Then the 
subgraph is returned to VNS, scored, stored if it is the best 
so far, and then shaken before local search resumes.  

Our cluster detection algorithm, Foretell, adapts VNS to 
detect multiple subgraphs, and redefines routines for the 
initial solution, the score metric, and local search. The ini-
tial solution is all variables of maximum possible degree in 
the graph. Foretell relies on the notion of pressure on a 
variable V, the probability that, given all the constraints 
upon it, when one of V’s neighbors is assigned a value, at 
least one value will be excluded from V’s domain. Precise 
calculation of the series that defines pressure is computa-
tionally expensive. Instead, an algorithm was devised to 
speed an approximation for the first term in that series, cor-
rected to avoid bias in favor of variables with high degrees 
or large domains. Let Vi be a variable with domain size Di 
and neighbors Ni. Let tik denote the tightness of the con-
straint between Vi and Vk ∈ Ni. Then the approximate pres-
sure on Vi  is defined by the constraints upon it as:  

 
p Vi( )= 1

degreeVi( )
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∑
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Foretell calculates the initial pressure on every variable, 
and takes as an initial solution (in line 1 of Figure 2) a ver-
tex that is the neighbor of every vertex in the graph (often 
an empty set). Foretell’s greedy step maximizes pressure 
(instead of degree, as in Figure 3), and uses pressure to 
break ties during swaps as well. Since we seek large, tight, 
closely related subproblems, Foretell scores a cluster ac-

cording to its number of variables, its density, and the av-
erage tightness of its constraints. After each cluster is 
found, Foretell removes the variables within it from con-
sideration, and seeks a new cluster among the variables 
that remain. Ties unbroken by maximum pressure, are bro-
ken by maximum degree, and then, if need be, at random. 
The minimum acceptable cluster is a clique of size 3, but 
not every cluster is a clique. 

Cluster-guided Search 

Cluster-guided search is a hybrid of local and global 
search. As in Figure 4, global search (henceforward, 
search) iteratively selects a variable, assigns it a value, and 
then propagates, to infer the impact of that assignment on 
the domains of future variables (those not yet assigned a 
value). Inference calculates dynamic domains as it tempo-
rarily removes from future variables’ domains any values 
inconsistent with the current assignments. If any dynamic 
domain becomes empty (a wipeout), search backtracks, 
that is, retracts one or more assignments. (The work re-
ported here uses chronological backtracking, but is in no 
way limited to it.) This search is complete and correct, but 
often intractable on CSPs with many variables or large 
domains. A problem is solved when search finds either a 
solution or a proof that none exists. 
 A variable-ordering heuristic can speed search by direct-
ing it to the most troublesome variables first. A traditional 
favorite, MinDomDeg, prefers variables with a small ratio 
of dynamic domain size to forward degree (number of 
neighbors that are future variables). Given any of the chal-
lenging problems used here, however, MinDomDeg could 
rarely solve it in 30 minutes. Thus, we gauge problem dif-
ficulty with MinDomWdeg, a heuristic that learns weights 
(Boussemart et al., 2004). Initially every constraint has 
weight 1. Then, whenever an assignment propagated along 
that constraint creates a wipeout, the weight of that con-
straint is increased by one. The weighted degree of a vari-
able is the sum of the weights of the constraints that refer-
ence it. MinDomWdeg prefers variables with a small ratio 
of dynamic domain size to weighted degree. 
 Cluster-guided search first uses local search in Foretell 
to create a cluster graph like Figure 1(d), and then directs 
global search for a solution with focus, a cluster-oriented 
variable-ordering heuristic. Focus restricts search to one 
cluster at a time, and references MinDomWdeg to break 
ties within that cluster. Clusters are prioritized for focus 
according to the product of the ratios of dynamic domain 
size to original domain size for all future variables in the 
cluster. This value dynamically estimates the extent to 
which tuples have been eliminated as possible cluster solu-
tions, another application of the fail-first principle. 

Structure in Cluster Graphs 

We have applied cluster-guided search to benchmark prob-
lems taken from (Lecoutre, 2009). In each case Foretell 

Until all variables have values that satisfy all constraints or 
some variable has an empty domain 

 Assign a value to a variable 
 Infer  the impact of that assignment *propagation* 
 If a wipeout occurs, backtrack 
 

Figure 4. Pseudocode for CSP global search. 



identified clusters, and the program joined them with any 
constraints that connected their variables in the original 
CSP to form a cluster graph. Foretell is non-deterministic 
because shaking in VNS is by random selection. For that 
reason, every experiment using Foretell was repeated 10 
times and averaged. Although the 10 cluster graphs for any 
given CSP were very similar to one another, the cluster 
graphs for different kinds of CSPs were quite different. 
Figure 5 includes examples of these structures, where the 
vertices for each cluster are displayed within a circle.  

 The first category of secondary structure is seen in com-
posed problems. A composed CSP partitions its variables 
into s + 1 connected subsets: s satellites of uniform size 
and a central component. Every constraint in a composed 
problem is either a link (between a satellite variable and a 
central-component variable) or joins two variables in the 
same subset. There are no edges between satellites. Let 
<n,k,d,t> be a class of CSPs each of which has n variables, 
maximum domain size k, density d, and tightness t. Then 
<n,k,d,t> s <n′,k′,d′,t′> d′′ t′′ specifies a class of composed 
CSPs, each with a central component described by 
<n,k,d,t>, s satellites in <n′,k′,d′,t′>, and links with density 
d′′ and tightness t′′. Figure 1 is a problem in Comp:  

<100,10,0.15,0.05> 5 <20,10, 0.25, 0.50> 0.12,0.05 
Comp contains both satisfiable and unsatisfiable instances.  
 Composed problems can be designed to mislead tradi-
tional CSP search heuristics that prefer the higher-degree 
variables in the readily-solved central component. Later, 
when conflicts arise within a satellite, search backtracks to 
the central component, although the true difficulties lie in 
the satellites. Composed problems’ relatively dense, tight 
satellites are isolated from one another. Drawing the tight-
est edges would produce Figure 5(a); the cluster graph in 
Figure 5(b) is suggestive of the same structure. (Because 
satellites, with density 0.25, are far from cliques, quite of-
ten more than one cluster lies in the same satellite. Thus 
some clusters are linked.) Figure 5(c) shows a similar sec-
ondary structure for a problem from the class designated 
25-10-20 by (Lecoutre, 2009), and here by  

<25,10,0.667,0.15.>10 <8,10,0.786, 0.5> 0.01, 0.05 
Its higher satellite density (0.786) encourages the forma-
tion of somewhat larger clusters, and typically leaves be-
hind too few edges to form a second cluster in the same 
satellite. Thus these clusters are isolated from one another. 
Clusters are not always composed from the tightest edges 
in the graph, however. RLFAP here is scene 11 of the radio 

   
     (a)            (b)  (c)  (d) 

  

    (e)      (f) (g)  
 
Figure 5. Tight edges and cluster graphs for different kinds of CSPs produce different secondary structures. Each cluster is 
drawn within a circle, and tighter edges are darker. The label gives the cluster’s number of variables, the number of addi-
tional edges needed to make it a clique, and Foretell’s score for it. (a) Tight edges in a typical Comp problem and (b) its 
cluster graph. (c) The cluster graph for a 25-10-20 problem. (d) Edges in RLFAP scene 11 with tightness ≥ 0.3 and (e) the 
cluster graph for RLFAP. (f) The tightest edges in a driverlog problem and (g) its cluster graph.  



link frequency problems (Cabon et al., 1999). RLFAP’s 
many constraints vary dramatically in their tightness. Fig-
ure 5(d), with the variables on two concentric circles, 
shows that the tightest constraints form a bipartite graph. 
The cluster graph is considerably more informative. Fore-
tell finds the identical clusters of size 6 and 13 on every 
run. Figure 5(e) shows the four clusters with the highest 
priority for focus (including the two of sizes 6 and 13) 
from a typical run. Note that only two of the clusters are 
connected, and the size 13 cluster is not one of them. These 
40 variables are the crux of RLFAP, the part that makes its 
rapid solution possible. Of particular interest is the fact that 
only 18 of the tight edges in Figure 5(d) appear in Figure 
5(e) at all, and only two are in the top-priority cluster.  
 The driver problems (driverlogw-08cc-sat_ext and 
driverlogw-08c-sat_ext) have the same 408 variables and 
9321 constraints with identical tightness; they differ only 
in the values permitted by the constraints. Given their iden-
tical graphs and tightness, one would expect Foretell to 
produce the same cluster graphs, and so it does. Indeed, on 
every run on both problems Foretell found only three large 
clusters, all of which were cliques. Figure 5(f) shows the 
tightest edges in that problem; Figure 5(g) shows the clus-
ters Foretell finds. This structure is a path among three 
cliques, and behaves, as we shall see, quite differently from 
the less connected structures of the others. 

Clusters and Inference 

A cluster graph provides information that can be harnessed 
to guide inference. Inference methods can be characterized 
along a spectrum by the effort they exert. More inference 
does not always result in more domain reduction — it is 
often faster to risk and retract mistakes than to anticipate 
them. Inference after every assignment, as in Figure 4, is 
called consistency maintenance. The simplest method, for-
ward checking (FC), removes from the dynamic domains 
of the neighbors of a just-bound variable any values incon-
sistent with its newly assigned value. The MAC-3 algo-
rithm to maintain arc consistency (AC) does more work: it 
initially enqueues the edges to all the unvalued neighbors 
of the just-bound variable, and checks each element of the 

queue for domain reduction (Sabin and Freuder, 1997)). 
Whenever a variable’s domain is reduced, MAC-3 en-
queues the constraints between that variable and its unval-
ued neighbors. ACR-k takes a stance between FC and 
MAC-3 (Epstein et al., 2005). It begins with the same ini-
tial queue as MAC-3, but subsequently enqueues only con-
straints on variables whose dynamic domains lose at least 
k% of their values. (The R is for “response.”) Intuitively, 
higher values for k make ACR lazier.  

Cluster-based inference considers where other variables 
lie with respect to the clusters. As in Figure 6, each cluster 
C in problem P delineates a fringe (variables in P – C 
within width edges of some variable in C), and an outside 
(P – C – fringe(C)), as shown in Figure 6. The question 
then becomes how to select propagation methods for the 
cluster, the fringe, and the outside. 

To begin, we generated classes of small, not necessarily 
solvable CSPs similar to the clusters Foretell finds. The 
densest possible graph is a clique. Intuitively, a near clique 
is a subgraph that is a few edges short of a clique. A near 
clique is defined recursively. A clique on 3 vertices is a 
near clique and, given a near clique NC on v vertices with 
m missing edges, the addition of a new vertex to NC also 
forms a near clique if and only if ∆m, the increase in the 
number of missing edges, conforms to: 

∆m< v

2
+ m

v –1
 

For n > 3, this requires  

m≤ v −1
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Figure 7. Number of (a) checks (b) expanded nodes and (c) CPU seconds required to solve cluster-like graphs of various 
sizes under 7 different propagation methods. Lazier propagation does fewer checks, expands more nodes, and is sometimes 
faster. 

 
 
Figure 6. Propagation regions delineated with respect to a 
cluster.  



 To simulate Foretell’s clusters, we generated classes of 
CSPs that were near cliques of sizes 5 to 13 with edge 
tightness 0.5, and solved them with MinDomDeg in sepa-
rate runs that maintained consistency with FC, MAC-3, or 
a MAC-3-like version of ACR-k for k from 0.3 to 0.7. The 
results are shown in Figure 7. AC is warranted while clus-
ters are of size no more than 7, but on larger simulated 
clusters it is statistically significantly slower than ACR-
0.4. ACR-0.4 also showed low variation in performance on 
the simulated clusters. 
 The structure of a cluster graph suggests the design of 
cluster-based inference methods. Let c/w/f/o be a cluster-
based method that propagates within a cluster with method 
c, within its fringe of width w with method f, and outside 
with method o. For Comp, the clusters in Figure 5(b) are 
small; that mandates AC propagation within them. Because 
Comp clusters are often linked, even a fringe of width 1 
may reach other clusters. Thus AC is a wise approach 
within the fringe as well. Once outside the clusters, propa-
gation can afford to be lazy. Thus a reasonable cluster-
based propagation method for Comp is as AC/2/AC/FC. 
RLFAP’s cluster graph is different; the clusters are larger, 
so that propagation within clusters of ACR 0.4 is reason-
able. The relative isolation of the 4 crucial clusters there 
suggests propagation in the fringe with ACR-0.6, but FC is 
expected to be safe in the rest of the graph. This produces 
the method ACR-0.4/1/ACR-0.6/FC. Finally, the large 
clusters in the driver problems are so closely connected 
that it may only be reasonable to attempt ACR-0.4/1/ACR- 
0.5/FC. 

Experimental Design and Results  

These experiments were run with ACE (the Adaptive Con-
straint Engine), a test-bed for CSP solution (Epstein, Freu-
der and Wallace, 2005). Because ACE is a research tool 
that gathers extensive data, it is highly informative but not 

honed for speed. Performance is therefore reported here 
both as elapsed CPU time in seconds and as number of 
nodes in the search tree. To control for the vagaries of local 
search, performance for any experiment with Foretell was 
averaged across 10 trials for each problem. On each prob-
lem, Foretell was given some number of milliseconds per 
cluster, and identified as many clusters as it could until a 
call to VNS failed. All cited differences are statistically 
significant at the 95% confidence level on a one-tailed t-
test.  Table 1 lists the number, average size, and maximum 
size of the clusters detected with Foretell prior to search.  
 All but the last of the classes above the line in Table 1 
are composed problems from (Lecoutre, 2009). A problem 
described there by a-b-c denotes a central component with 
a variables and b satellites of 8 variables each. All vari-
ables have domain size 10, constraint tightness 0.150 
within the central component and tightness 0.050 on each 
link. Constraint density within a satellite is always 0.786. 
Clusters are often readily detected in non-composed CSPs 
as well. Table 1 includes RLFAP and the driver problems. 
 The difficulty of a class of problems is gauged here by 
the resources MinDomWdeg required to solve it. Both 
MinDomWdeg and cluster-guided search solved every 
problem within 30 minutes. For cluster-guided search, time 
includes the time used by Foretell to detect clusters. The 
results support the premise that a cluster graph addresses 
the hardest parts of a problem. Far fewer incorrect assign-
ments were  made under cluster-guided search. 
 In Comp, Foretell found at least one cluster in every sat-
ellite in every problem on every run. The cluster graph in 
Figure 1(d) is typical of the result. The structure of the 
composed problems in the other classes, however, is delib-
erately obscured. Nonetheless, Foretell’s output matches 
the descriptions provided for those problems.  
 Cluster-based inference was added to cluster-guided 
search and tested on all the problems in Table 1. On all the 
classes of composed problems there was little room for 

Table 1: At the 95% confidence level, focus outperforms MinDomWDeg on these problem classes. Order of magnitude im-
provements over MinDomWdeg in bold. Classes above the line are composed, with central component density d, satellite 
tightness t′, and link density d′′. Time is in CPU seconds. Data for Foretell includes number of clusters, average cluster 
size, and maximum cluster size, averaged across 10 runs. Data for focus is mean and standard deviation over 10 runs focus.  

 
    MinDomWdeg Foretell’s clusters Focus Time  Focus Nodes  

Problem d t′ d′′ Time Nodes Count Size Max µ σ µ σ 
25-10-20 0.667 0.50 0.010 2.485 670.10 10.17 5.197 5.58 0.882    0.466 192.07 149.883 
25-1-80 0.667 0.65 0.010 0.951 308.00 5.60 5.281 6.08 0.262 0.246 94.50 71.805 
75-1-80 0.216 0.65 0.133 2.317 595.20 9.09 4.864 5.90 0.365 0.167 181.40 21.687 
25-1-2 0.667 0.65 0.010 1.007 553.00 1.01 5.770 5.77 0.019 0.003 41.40 1.363 
25-1-25 0.667 0.65 0.125 0.913 465.70 2.30 5.597 5.90 0.042 0.021 41.60 1.287 
25-1-40 0.667 0.65 0.200 1.097 473.80 5.00 5.372 6.40 0.073 0.016 41.50 1.210 
75-1-2 0.216 0.65 0.003 3.330 1171.70 1.00 5.690 5.69 0.044 0.005 91.60 1.504 
75-1-25 0.216 0.65 0.042 3.289 1084.40 5.40 5.242 6.46 0.146 0.121 91.40 1.287 
75-1-40 0.216 0.65 0.067 2.972 960.90 4.60 5.292 5.80 0.153 0.142 91.30 1.275 
Comp 0.150 0.50 0.120 83.580 12519.40      11.00     4.309 5.15 4.311 2.411 497.96 324.327 
RLFAP scene 11 — — — 58.034 2777.00 38.10 7.912 16.00 51.133 1.285 1557.00 0.000 
Driverlogw 08cc — — — 134.281 4200.00   3.00 34.333 45.00 87.842 3.712 2983.70 14.100 
Driverlogw 08c — — — 149.449 4136.00   3.00 34.333 45.00 83.622 3.406 2815.30 3.900 
 



improvement over cluster-guided search, and none ap-
peared. On RLFAP, however, cluster-based inference fur-
ther improved the performance of cluster-guided search, 
reducing it to 49.294 seconds, a statistically significant im-
provement. As Figure 7 anticipated, the laziness of ACR-k 
engendered more mistakes than AC, so there was no con-
comitant reduction in nodes. The success of cluster-based 
inference on RLFAP suggests that Foretell’s clusters cover 
enough of the backdoor so that FC suffices for the “out-
side.” (This improvement is not attributable solely to FC; 
FC alone is dramatically slower on this problem.) On the 
driver problem, cluster-based inference did not improve 
cluster-guided search. We suspect that this is because the 
secondary structure is markedly different. 

Discussion  

Foretell’s key parameter is how much time to devote to the 
detection of any single cluster. It has no prior knowledge 
about how many clusters lie within a problem, nor about 
how many might be necessary to solve it. We have found 
empirically that too few clusters provide inadequate guid-
ance, but that too many clusters require focus to do too 
much computation to pick its next target.  
 Consider, for example, the experiments in Table 2, 
where Foretell was allocated some fixed amount of time to 
find each cluster in RLFAP. (At 200 ms. per cluster, clus-
ters were rarely found at all; data omitted.) At 300 ms., the 
average size of the clusters was smaller than at the other 
times, which suggests that 300 ms. was not enough time to 
build clusters substantial enough to guide search.  
 As Foretell’s time allocation increased, the number of 
clusters it found increased. By 2000 ms. the same largest 
cluster was found consistently. There was little difference 
between the cluster graphs and none in the resultant search 
tree size observed in the experiments for 1000 and 2000 
ms. Total time for search, however, increased because the 
increased allocation allowed Foretell more iterations 
through the loop in Figure 2, during which it tinkered more 
with whatever cluster it found, as indicated by the second 
column in Table 2. Observe that, if Foretell dawdles dur-
ing local search (line 6 in Figure 2), it is possible to exceed 

the allocated time on average. An allocation greater than 
time per cluster indicates that Foretell has done all it can.  
 One way to think about Table 2 is that as complete a 
cluster graph as possible may provide an important expla-
nation for the user. In that case, one should iteratively in-
crease the time allocation until the time per cluster is 
smaller than the allocation and a consistent number of clus-
ters is found. Another approach to Table 2 is computa-
tional, informed by two surprising observations. First, on 
all 10 runs for RLFAP with 400 ms., cluster-guided search 
averaged only 2 errors (retracted 2 assignments) in its first 
300 assignments, and none at all in the last 350 (i.e., out-
side the cluster graph). Second, although Foretell some-
times delivered 10 different cluster graphs from 10 runs 
under the same time allocation, focus used them the same 
way, that is, the tightest, largest clusters dominated and the 
standard deviation in the search tree size was 0. Thus the 
difference between the 400 ms. experiment and the 2000 
ms. experiment was that a few variables were treated dif-
ferently. The 2000 ms. experiment errs somewhat more 
and earlier (8 retractions about 60 deep in the tree). This 
suggests that effective search does not require the most ex-
tensive possible cluster graph, just enough of it to direct 
search to the hardest subproblems first.  
 Current work therefore addresses additional termination 
conditions for Foretell (line 4 in Figure 2). These include 
an overall VNS time limit, a Luby-like adaptive cutoff for 
allocations on successive clusters (Luby, Sinclair and 
Zuckerman, 1993) , and a limit on the percentage of vari-
ables that may be included in either an individual cluster or 
the entire cluster graph. 
  A cluster graph provides an explanation of where the 
difficulties lie in a CSP. Figure 5(b) focuses attention on 
the satellites, but the solution with focus is even more de-
scriptive: it searches only within three of those clusters and 
proves that there is no solution with only 12 variables (out 
of 200). This provides a more satisfying explanation than 
either a search tree rooted at a single node or a collection 
of edge weights. 
 RLFAP and the driverlog problems demonstrate that a 
problem need not have satellites to have clusters. On small-
world problems, for example, almost every variable is 

Table 2: Average results of 10 runs on RLFAP. Allocated and actual times per cluster are in milliseconds; search time, time 
consumed by Foretell to find all clusters, and total time are in seconds. Statistics include the average and range of the num-
ber of clusters on those runs, their average and maximum size, and their coverage (fraction of variables included in the clus-
ter graph). All cluster search time is included in the total time to solution. 
 
Time per cluster (ms.) Cluster statistics Cluster-guided search (times in sec.) 

 
Allocated 

 
Actual 

 
Count 

Average 
size 

Count 
range 

Max 
size 

 
Coverage 

 
Nodes 

Search 
time  

Foretell 
time 

Total 
time 

300 395.318 55.100 6.886 7 - 65 15.600 55.80% 1616.100 35.457 21.782 57.239 
400 479.895 38.100 7.912 36 - 41 16.000 44.33% 1557.000 32.849 18.284 51.133 
500 573.561 39.600 7.468 5 - 69 14.800 43.49% 1519.000 50.859 22.713 73.572 
600 621.343 31.005 7.548 5 - 65 15.700 34.42% 1655.000 43.691 36.031 74.696 
800 821.202 46.600 7.769 17 - 65 16.000 53.24% 1532.800 43.269 38.268 81.537 

1000 889.542 63.300 7.059 63 - 65 16.000 65.40% 1519.000 36.536 56.308 92.844 
2000 1323.429 63.000 7.100 63 - 63 16.000 65.78% 1519.000 33.541 83.376 116.917 



quickly shown to lie in some cluster. Having clusters, 
however, does not justify directing computational re-
sources to Foretell. On easy problems, it is faster to use 
MinDomWDeg or even MinDomDeg. Clusters are not de-
tected dynamically, during search, because Foretell does 
not find clusters in order of either tightness or size. To 
identify a good starting point, focus must therefore choose 
among a set of clusters. This static but predictive perspec-
tive serves search well.  

Cluster-based propagation is still in an early design 
phase. Because cluster sizes vary in real-world problems, 
ACR seems a wise choice unless the problem has uni-
formly small clusters. Cluster-based propagation should be 
further tailored to the metastructure of the cluster graph, 
including cluster size, domain size, variance in internal 
edge tightness, and the number and tightness of inter-
cluster edges. 

We see no impediment to adapting this approach for 
non-binary constraints. Real-valued domains present a dif-
ferent challenge, one we believe to be surmountable 
through the methods planned for large domains. There are 
problems in which Foretell cannot find any clusters at all. 
Other structures, such as lengthy cycles, can create search 
difficulty without local density (Markstrom, 2006). Some-
thing similar may be operative in these problems. 

No solver, human or machine, has an efficient way to 
“see” Figure 1(c) perfectly without knowledge about the 
problem generator. A cluster graph is a prediction of sig-
nificant metastructure, an abstraction of a CSP that focuses 
on the hard subproblems, the ones where global search is 
likely to fail. Those clusters can be used not only to focus 
attention during search but also to inform propagation and 
to provide insight into the nature of the problem in a user-
friendly representation.  
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