
Cluster Graphs as Abstractions for Constraint Satisfaction Problems

Susan L. Epstein1,2 and Xingjian Li 2

1Hunter College and 2The Graduate School of The City University of New York

Department of Computer Science
New York, NY 10065 USA

susan.epstein@hunter.cuny.edu, xli1@gc.cuny.edu

Abstract
In a constraint satisfaction problem, the tightness of an indi-
vidual constraint only describes the influence that the vari-
ables within its scope have on one another. Clusters provide
a broader view; they are dense, tight subproblems within a
problem. A set of clusters for a problem and the links be-
tween them provide an abstraction of it. That abstraction can
be used to guide search, to curtail inference, and to provide
explanations to the user. This work is a hybrid of global and
local search, where local search creates an abstraction and
then global search exploits it. Heuristics reference clusters
to order variables and to propagate more thoughtfully with
respect to them. Results are provided on a variety of chal-
lenging benchmark problems.

Introduction

The thesis of this work is that an appropriate abstraction of
a constraint satisfaction problem (CSP) can provide guid-
ance for a solver and insight for a user. Ideally, that ab-
straction would facilitate search for a solution or be used to
prove that no solution exists, to reduce inference during
search, and to support concise, pertinent explanations for a
user. The principal results of this paper demonstrate these
ideas with clusters, particularly dense and tight subprob-
lems detected quickly prior to search. For some challeng-
ing CSPs, cluster-based abstraction proves a powerful ap-

proach to search and explanation.
One traditional representation of a CSP is as a graph.

Formally, a CSP is a set of variables, each with a domain
of values, and a set of constraints that restrict how those
variables can be bound simultaneously. In a binary CSP,
each constraint addresses no more than two variables. A
constraint graph for a binary CSP represents each variable
as a vertex and each constraint as an edge between the pair
of vertices for the variables it restricts.

 An automated graph-drawing program, however, is
unlikely to offer much insight into the nature of a CSP. A
program that plotted one problem’s 200 variables along the
circumference of a circle, for example, produced Figure
1(a). The problem’s density (fraction of possible edges in-
cluded) obscures any meaningful information. A human-
guided rearrangement of the vertices in that graph pro-
duced Figure 1(b), which in some sense reveals the prob-
lem’s “shape.” It consists of small subgraphs connected to
one another only through another, larger subgraph.
 Many traditional CSP variable-ordering heuristics direct
search for a solution to variables with high degree in the
graph. (Two vertices with an edge between them in the
graph are neighbors, and the number of neighbors a vertex
has is its degree.) Such search on the problem in Figure 1
would begin in the larger subgraph — and it would fail,
because it ignores tightness.
 The tightness of a constraint is the fraction of possible

 (a) (b) (c) (d)
Figure 1. For the same CSP (a) an uninformative constraint graph plots variables on the circumference of a circle while
(b) another constraint graph reveals some relationships. (c) Darker edges represent tighter constraints. (d) Detected from (a)
by local search, this cluster graph is an abstraction that highlights each critical subproblems with a circle for clarity.

assignments to its variables that it excludes. Non-uniform
constraint tightness dictates that search cannot rely on
shape alone. In Figure 1(c), tighter edges are drawn darker.
Clearly the edges within the smaller subgraphs are tighter
than the now faint edges that lead out from them and
tighter than the edges within the larger subgraph.

A cluster graph is an abstraction that highlights dense,
tight subproblems in a CSP. After a discussion of related
work, this paper describes the cluster-detection algorithm
that produced the imperfect but incisive cluster graph in
Figure 1(d). Subsequent sections describe how clusters are
exploited to guide global search, to explain the nature of a
problem to the user, and to control inference during search.
The final sections demonstrate performance improvements
with cluster graphs and discuss current work.

Related Work

A cluster graph identifies subproblems that are dense and
tight before search for a solution. A cluster graph selects
elements of the original graph and groups them together.
The variables and constraints not explicit in a cluster graph
have influenced its formation (via pressure, described in
the next section). Thus a cluster graph captures a kind of
fail-first (Smith and Grant, 1998) metastructure that antici-
pates and confronts difficulties. This approach differs,
therefore, from methods that relax, remove, or soften con-
straints. As used here, “cluster,” does not refer to aggrega-
tions of data, sets of solutions in a search space, or rela-
tively isolated, dense areas in a graph (van Dongen, 2000).

Most structure-based work in CSP has focused upon the
identification and exploitation of tractable structures, such
as trees (Mackworth and Freuder, 1985), acyclic graphs
(Dechter and Pearl, 1987), tree decomposition (Dechter
and Pearl, 1989), hinges (Gyssens, Jeavons and Cohen,
1994), and other complex structures (Gompert and
Choueiry, 2005). Unlike clusters, however, that work ig-
nores tightness along individual constraints.

With respect to a given search algorithm, the backdoor

of a CSP is a set of variables that, once assigned values,
make the remainder of search trivial (Ruan, Horvitz and
Kautz, 2004). A backdoor is typically less than 30% of the
variables, but its identification before search is NP-
complete. Recent work suggested that both static and dy-
namic properties should be considered during search for a
backdoor (Dilkina, Gomes and Sabharwal, 2007). The
formation of a cluster graph prior to search considers both
static (initial) shape and potential (dynamic) changes in
domain size. A cluster graph would, ideally, contain the
backdoor, but no claim is made here that it does so.

An abstraction can be used to simplify a problem tempo-
rarily (e.g., (Sacerdoti, 1974)). Its solution is then gradu-
ally revised to accept additional problem detail, until the
revision solves the original problem. Because a cluster
graph is applied in collaboration with the traditional graph,
not as a replacement for it, no re-solution is necessary.

 Elsewhere we have shown that, given 30 minutes per
problem, a heuristic that merely prioritized variables in the
smaller subgraphs failed to solve any problem like that in
Figure 1 (Epstein and Li, 2009). Thus, individual edge
tightness cannot be the sole consideration. That work also
investigated a variety of ways to use perfect knowledge,
such as that in Figure 1(c), to solve such problems. We
showed there that it is important to explore one subprob-
lem at a time. Individual edge tightness overlooks the syn-
ergy among a set of variables with many mutual con-
straints, a synergy that clusters are designed to anticipate.

Cluster Detection

Cluster detection uses VNS (Variable Neighborhood
Search), a local search metaheuristic (Hansen, Mladenovic
and Urosevic, 2004). (The “variable” in VNS refers to
changing neighborhoods in the graph, not to CSP vari-
ables.) The original VNS application remains the state of
the art for maximum clique detection within a graph. (A
clique is graph with an edge between every pair of distinct
vertices.)
 Local search begins with an initial solution and then
seeks to move it toward some goal with respect to some
metric. Figure 2 provides pseudocode for VNS. It repeat-

1 best-yet ← initial-solution
2 index ← 1
3 neighborhood ← neighborhood(index)
4 until stopping condition or index = k
5 unless index = 1, best-yet ← shake(best-yet, index)
6 local-optimum←local-search(best-yet, neighborhood)
7 If score(local-optimum) > score(best-yet)
8 then best-yet ← local-optimum
9 index ← 1
10 else index ← index + 1
11 neighborhood ← neighborhood(index)

Figure 2. A high-level description of VNS meta-heuristic
search through k neighborhoods. The initial solution, the
score metric, and the local search routine vary with the ap-
plication. k = 10 was adopted from (Hansen, Mladenovic
and Urosevic, 2004).

1 1 2
1 2

3
1 2

3 4

5
1

3 4

5
1

3

5
(a)

(b) (c) (d)

(f)(e)

Figure 3. Selected VNS steps to find a maximum clique
in graph (a). (b) A starting vertex. (c)-(d) Greedy steps
add vertices adjacent to every selected vertex, one at a
time. (e) A swap replaces vertex 2 with vertices 4 and 5.
(f) VNS for index = 1 shakes out one randomly selected
vertex. See the text for further details.

edly calls (in line 6) a greedy local search algorithm within
a neighborhood in the graph, nodes adjacent to some of
best-yet. The subgraph returned by local search is scored,
but only the highest-scoring subgraph is retained. That top-
scored subgraph is then shaken (i.e., index randomly cho-
sen variables are deleted) to shift search to a new
neighborhood, and the shaken graph is resubmitted as a
starting point for local search. VNS terminates when it has
searched the maximum number of neighborhoods or under
some user-specified stopping condition, typically time.

 Figure 3 is a sample of steps that might occur during
VNS search to find a maximum clique in a simple graph.
The initial solution is a vertex that is a neighbor of every
vertex in the graph; the local search metric is subset size.
VNS adds one vertex adjacent to every vertex in the grow-
ing subgraph. (This is the greedy step; ties are broken on
maximum degree in the original graph.) When greedy steps
are no longer possible, local search swaps out one vertex
for a pair of adjacent vertices that are also adjacent to every
other vertex in the subgraph, as in Figure 2(e). Eventually
neither greedy steps nor swaps can be found. Then the
subgraph is returned to VNS, scored, stored if it is the best
so far, and then shaken before local search resumes.

Our cluster detection algorithm, Foretell, adapts VNS to
detect multiple subgraphs, and redefines routines for the
initial solution, the score metric, and local search. The ini-
tial solution is all variables of maximum possible degree in
the graph. Foretell relies on the notion of pressure on a
variable V, the probability that, given all the constraints
upon it, when one of V’s neighbors is assigned a value, at
least one value will be excluded from V’s domain. Precise
calculation of the series that defines pressure is computa-
tionally expensive. Instead, an algorithm was devised to
speed an approximation for the first term in that series, cor-
rected to avoid bias in favor of variables with high degrees
or large domains. Let Vi be a variable with domain size Di
and neighbors Ni. Let tik denote the tightness of the con-
straint between Vi and Vk ∈ Ni. Then the approximate pres-
sure on Vi is defined by the constraints upon it as:

p Vi()= 1

degreeVi()

Di −1()⋅ Dk

1− t ik()Di ⋅ Dk











Di ⋅ Dk

1− t ik()Di ⋅ Dk









 Vk ∈Ni

∑
 [1]

Foretell calculates the initial pressure on every variable,
and takes as an initial solution (in line 1 of Figure 2) a ver-
tex that is the neighbor of every vertex in the graph (often
an empty set). Foretell’s greedy step maximizes pressure
(instead of degree, as in Figure 3), and uses pressure to
break ties during swaps as well. Since we seek large, tight,
closely related subproblems, Foretell scores a cluster ac-

cording to its number of variables, its density, and the av-
erage tightness of its constraints. After each cluster is
found, Foretell removes the variables within it from con-
sideration, and seeks a new cluster among the variables
that remain. Ties unbroken by maximum pressure, are bro-
ken by maximum degree, and then, if need be, at random.
The minimum acceptable cluster is a clique of size 3, but
not every cluster is a clique.

Cluster-guided Search

Cluster-guided search is a hybrid of local and global
search. As in Figure 4, global search (henceforward,
search) iteratively selects a variable, assigns it a value, and
then propagates, to infer the impact of that assignment on
the domains of future variables (those not yet assigned a
value). Inference calculates dynamic domains as it tempo-
rarily removes from future variables’ domains any values
inconsistent with the current assignments. If any dynamic
domain becomes empty (a wipeout), search backtracks,
that is, retracts one or more assignments. (The work re-
ported here uses chronological backtracking, but is in no
way limited to it.) This search is complete and correct, but
often intractable on CSPs with many variables or large
domains. A problem is solved when search finds either a
solution or a proof that none exists.
 A variable-ordering heuristic can speed search by direct-
ing it to the most troublesome variables first. A traditional
favorite, MinDomDeg, prefers variables with a small ratio
of dynamic domain size to forward degree (number of
neighbors that are future variables). Given any of the chal-
lenging problems used here, however, MinDomDeg could
rarely solve it in 30 minutes. Thus, we gauge problem dif-
ficulty with MinDomWdeg, a heuristic that learns weights
(Boussemart et al., 2004). Initially every constraint has
weight 1. Then, whenever an assignment propagated along
that constraint creates a wipeout, the weight of that con-
straint is increased by one. The weighted degree of a vari-
able is the sum of the weights of the constraints that refer-
ence it. MinDomWdeg prefers variables with a small ratio
of dynamic domain size to weighted degree.
 Cluster-guided search first uses local search in Foretell
to create a cluster graph like Figure 1(d), and then directs
global search for a solution with focus, a cluster-oriented
variable-ordering heuristic. Focus restricts search to one
cluster at a time, and references MinDomWdeg to break
ties within that cluster. Clusters are prioritized for focus
according to the product of the ratios of dynamic domain
size to original domain size for all future variables in the
cluster. This value dynamically estimates the extent to
which tuples have been eliminated as possible cluster solu-
tions, another application of the fail-first principle.

Structure in Cluster Graphs

We have applied cluster-guided search to benchmark prob-
lems taken from (Lecoutre, 2009). In each case Foretell

Until all variables have values that satisfy all constraints or
some variable has an empty domain

 Assign a value to a variable
 Infer the impact of that assignment *propagation*
 If a wipeout occurs, backtrack

Figure 4. Pseudocode for CSP global search.

identified clusters, and the program joined them with any
constraints that connected their variables in the original
CSP to form a cluster graph. Foretell is non-deterministic
because shaking in VNS is by random selection. For that
reason, every experiment using Foretell was repeated 10
times and averaged. Although the 10 cluster graphs for any
given CSP were very similar to one another, the cluster
graphs for different kinds of CSPs were quite different.
Figure 5 includes examples of these structures, where the
vertices for each cluster are displayed within a circle.

 The first category of secondary structure is seen in com-
posed problems. A composed CSP partitions its variables
into s + 1 connected subsets: s satellites of uniform size
and a central component. Every constraint in a composed
problem is either a link (between a satellite variable and a
central-component variable) or joins two variables in the
same subset. There are no edges between satellites. Let
<n,k,d,t> be a class of CSPs each of which has n variables,
maximum domain size k, density d, and tightness t. Then
<n,k,d,t> s <n′,k′,d′,t′> d′′ t′′ specifies a class of composed
CSPs, each with a central component described by
<n,k,d,t>, s satellites in <n′,k′,d′,t′>, and links with density
d′′ and tightness t′′. Figure 1 is a problem in Comp:

<100,10,0.15,0.05> 5 <20,10, 0.25, 0.50> 0.12,0.05
Comp contains both satisfiable and unsatisfiable instances.
 Composed problems can be designed to mislead tradi-
tional CSP search heuristics that prefer the higher-degree
variables in the readily-solved central component. Later,
when conflicts arise within a satellite, search backtracks to
the central component, although the true difficulties lie in
the satellites. Composed problems’ relatively dense, tight
satellites are isolated from one another. Drawing the tight-
est edges would produce Figure 5(a); the cluster graph in
Figure 5(b) is suggestive of the same structure. (Because
satellites, with density 0.25, are far from cliques, quite of-
ten more than one cluster lies in the same satellite. Thus
some clusters are linked.) Figure 5(c) shows a similar sec-
ondary structure for a problem from the class designated
25-10-20 by (Lecoutre, 2009), and here by

<25,10,0.667,0.15.>10 <8,10,0.786, 0.5> 0.01, 0.05
Its higher satellite density (0.786) encourages the forma-
tion of somewhat larger clusters, and typically leaves be-
hind too few edges to form a second cluster in the same
satellite. Thus these clusters are isolated from one another.
Clusters are not always composed from the tightest edges
in the graph, however. RLFAP here is scene 11 of the radio

 (a) (b) (c) (d)

 (e) (f) (g)

Figure 5. Tight edges and cluster graphs for different kinds of CSPs produce different secondary structures. Each cluster is
drawn within a circle, and tighter edges are darker. The label gives the cluster’s number of variables, the number of addi-
tional edges needed to make it a clique, and Foretell’s score for it. (a) Tight edges in a typical Comp problem and (b) its
cluster graph. (c) The cluster graph for a 25-10-20 problem. (d) Edges in RLFAP scene 11 with tightness ≥ 0.3 and (e) the
cluster graph for RLFAP. (f) The tightest edges in a driverlog problem and (g) its cluster graph.

link frequency problems (Cabon et al., 1999). RLFAP’s
many constraints vary dramatically in their tightness. Fig-
ure 5(d), with the variables on two concentric circles,
shows that the tightest constraints form a bipartite graph.
The cluster graph is considerably more informative. Fore-
tell finds the identical clusters of size 6 and 13 on every
run. Figure 5(e) shows the four clusters with the highest
priority for focus (including the two of sizes 6 and 13)
from a typical run. Note that only two of the clusters are
connected, and the size 13 cluster is not one of them. These
40 variables are the crux of RLFAP, the part that makes its
rapid solution possible. Of particular interest is the fact that
only 18 of the tight edges in Figure 5(d) appear in Figure
5(e) at all, and only two are in the top-priority cluster.
 The driver problems (driverlogw-08cc-sat_ext and
driverlogw-08c-sat_ext) have the same 408 variables and
9321 constraints with identical tightness; they differ only
in the values permitted by the constraints. Given their iden-
tical graphs and tightness, one would expect Foretell to
produce the same cluster graphs, and so it does. Indeed, on
every run on both problems Foretell found only three large
clusters, all of which were cliques. Figure 5(f) shows the
tightest edges in that problem; Figure 5(g) shows the clus-
ters Foretell finds. This structure is a path among three
cliques, and behaves, as we shall see, quite differently from
the less connected structures of the others.

Clusters and Inference

A cluster graph provides information that can be harnessed
to guide inference. Inference methods can be characterized
along a spectrum by the effort they exert. More inference
does not always result in more domain reduction — it is
often faster to risk and retract mistakes than to anticipate
them. Inference after every assignment, as in Figure 4, is
called consistency maintenance. The simplest method, for-
ward checking (FC), removes from the dynamic domains
of the neighbors of a just-bound variable any values incon-
sistent with its newly assigned value. The MAC-3 algo-
rithm to maintain arc consistency (AC) does more work: it
initially enqueues the edges to all the unvalued neighbors
of the just-bound variable, and checks each element of the

queue for domain reduction (Sabin and Freuder, 1997)).
Whenever a variable’s domain is reduced, MAC-3 en-
queues the constraints between that variable and its unval-
ued neighbors. ACR-k takes a stance between FC and
MAC-3 (Epstein et al., 2005). It begins with the same ini-
tial queue as MAC-3, but subsequently enqueues only con-
straints on variables whose dynamic domains lose at least
k% of their values. (The R is for “response.”) Intuitively,
higher values for k make ACR lazier.

Cluster-based inference considers where other variables
lie with respect to the clusters. As in Figure 6, each cluster
C in problem P delineates a fringe (variables in P – C
within width edges of some variable in C), and an outside
(P – C – fringe(C)), as shown in Figure 6. The question
then becomes how to select propagation methods for the
cluster, the fringe, and the outside.

To begin, we generated classes of small, not necessarily
solvable CSPs similar to the clusters Foretell finds. The
densest possible graph is a clique. Intuitively, a near clique
is a subgraph that is a few edges short of a clique. A near
clique is defined recursively. A clique on 3 vertices is a
near clique and, given a near clique NC on v vertices with
m missing edges, the addition of a new vertex to NC also
forms a near clique if and only if ∆m, the increase in the
number of missing edges, conforms to:

∆m< v

2
+ m

v –1

For n > 3, this requires

m≤ v −1

2


 


 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

5 7 9 11 13
Structure size

AC
ACR 0.3
ACR 0.4
ACR 0.5
ACR 0.6
ACR 0.7
FC

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

5 7 9 11 13
Structure size

FC
ACR 0.7
ACR 0.6
ACR 0.5
ACR 0.4
ACR 0.3
AC

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 7 9 11 13
Structure size

FC
ACR 0.7
ACR 0.6
ACR 0.5
ACR 0.4
ACR 0.3
AC

 (a) (b) (c)

Figure 7. Number of (a) checks (b) expanded nodes and (c) CPU seconds required to solve cluster-like graphs of various
sizes under 7 different propagation methods. Lazier propagation does fewer checks, expands more nodes, and is sometimes
faster.

Figure 6. Propagation regions delineated with respect to a
cluster.

 To simulate Foretell’s clusters, we generated classes of
CSPs that were near cliques of sizes 5 to 13 with edge
tightness 0.5, and solved them with MinDomDeg in sepa-
rate runs that maintained consistency with FC, MAC-3, or
a MAC-3-like version of ACR-k for k from 0.3 to 0.7. The
results are shown in Figure 7. AC is warranted while clus-
ters are of size no more than 7, but on larger simulated
clusters it is statistically significantly slower than ACR-
0.4. ACR-0.4 also showed low variation in performance on
the simulated clusters.
 The structure of a cluster graph suggests the design of
cluster-based inference methods. Let c/w/f/o be a cluster-
based method that propagates within a cluster with method
c, within its fringe of width w with method f, and outside
with method o. For Comp, the clusters in Figure 5(b) are
small; that mandates AC propagation within them. Because
Comp clusters are often linked, even a fringe of width 1
may reach other clusters. Thus AC is a wise approach
within the fringe as well. Once outside the clusters, propa-
gation can afford to be lazy. Thus a reasonable cluster-
based propagation method for Comp is as AC/2/AC/FC.
RLFAP’s cluster graph is different; the clusters are larger,
so that propagation within clusters of ACR 0.4 is reason-
able. The relative isolation of the 4 crucial clusters there
suggests propagation in the fringe with ACR-0.6, but FC is
expected to be safe in the rest of the graph. This produces
the method ACR-0.4/1/ACR-0.6/FC. Finally, the large
clusters in the driver problems are so closely connected
that it may only be reasonable to attempt ACR-0.4/1/ACR-
0.5/FC.

Experimental Design and Results

These experiments were run with ACE (the Adaptive Con-
straint Engine), a test-bed for CSP solution (Epstein, Freu-
der and Wallace, 2005). Because ACE is a research tool
that gathers extensive data, it is highly informative but not

honed for speed. Performance is therefore reported here
both as elapsed CPU time in seconds and as number of
nodes in the search tree. To control for the vagaries of local
search, performance for any experiment with Foretell was
averaged across 10 trials for each problem. On each prob-
lem, Foretell was given some number of milliseconds per
cluster, and identified as many clusters as it could until a
call to VNS failed. All cited differences are statistically
significant at the 95% confidence level on a one-tailed t-
test. Table 1 lists the number, average size, and maximum
size of the clusters detected with Foretell prior to search.
 All but the last of the classes above the line in Table 1
are composed problems from (Lecoutre, 2009). A problem
described there by a-b-c denotes a central component with
a variables and b satellites of 8 variables each. All vari-
ables have domain size 10, constraint tightness 0.150
within the central component and tightness 0.050 on each
link. Constraint density within a satellite is always 0.786.
Clusters are often readily detected in non-composed CSPs
as well. Table 1 includes RLFAP and the driver problems.
 The difficulty of a class of problems is gauged here by
the resources MinDomWdeg required to solve it. Both
MinDomWdeg and cluster-guided search solved every
problem within 30 minutes. For cluster-guided search, time
includes the time used by Foretell to detect clusters. The
results support the premise that a cluster graph addresses
the hardest parts of a problem. Far fewer incorrect assign-
ments were made under cluster-guided search.
 In Comp, Foretell found at least one cluster in every sat-
ellite in every problem on every run. The cluster graph in
Figure 1(d) is typical of the result. The structure of the
composed problems in the other classes, however, is delib-
erately obscured. Nonetheless, Foretell’s output matches
the descriptions provided for those problems.
 Cluster-based inference was added to cluster-guided
search and tested on all the problems in Table 1. On all the
classes of composed problems there was little room for

Table 1: At the 95% confidence level, focus outperforms MinDomWDeg on these problem classes. Order of magnitude im-
provements over MinDomWdeg in bold. Classes above the line are composed, with central component density d, satellite
tightness t′, and link density d′′. Time is in CPU seconds. Data for Foretell includes number of clusters, average cluster
size, and maximum cluster size, averaged across 10 runs. Data for focus is mean and standard deviation over 10 runs focus.

 MinDomWdeg Foretell’s clusters Focus Time Focus Nodes

Problem d t′ d′′ Time Nodes Count Size Max µ σ µ σ
25-10-20 0.667 0.50 0.010 2.485 670.10 10.17 5.197 5.58 0.882 0.466 192.07 149.883
25-1-80 0.667 0.65 0.010 0.951 308.00 5.60 5.281 6.08 0.262 0.246 94.50 71.805
75-1-80 0.216 0.65 0.133 2.317 595.20 9.09 4.864 5.90 0.365 0.167 181.40 21.687
25-1-2 0.667 0.65 0.010 1.007 553.00 1.01 5.770 5.77 0.019 0.003 41.40 1.363
25-1-25 0.667 0.65 0.125 0.913 465.70 2.30 5.597 5.90 0.042 0.021 41.60 1.287
25-1-40 0.667 0.65 0.200 1.097 473.80 5.00 5.372 6.40 0.073 0.016 41.50 1.210
75-1-2 0.216 0.65 0.003 3.330 1171.70 1.00 5.690 5.69 0.044 0.005 91.60 1.504
75-1-25 0.216 0.65 0.042 3.289 1084.40 5.40 5.242 6.46 0.146 0.121 91.40 1.287
75-1-40 0.216 0.65 0.067 2.972 960.90 4.60 5.292 5.80 0.153 0.142 91.30 1.275
Comp 0.150 0.50 0.120 83.580 12519.40 11.00 4.309 5.15 4.311 2.411 497.96 324.327
RLFAP scene 11 — — — 58.034 2777.00 38.10 7.912 16.00 51.133 1.285 1557.00 0.000
Driverlogw 08cc — — — 134.281 4200.00 3.00 34.333 45.00 87.842 3.712 2983.70 14.100
Driverlogw 08c — — — 149.449 4136.00 3.00 34.333 45.00 83.622 3.406 2815.30 3.900

improvement over cluster-guided search, and none ap-
peared. On RLFAP, however, cluster-based inference fur-
ther improved the performance of cluster-guided search,
reducing it to 49.294 seconds, a statistically significant im-
provement. As Figure 7 anticipated, the laziness of ACR-k
engendered more mistakes than AC, so there was no con-
comitant reduction in nodes. The success of cluster-based
inference on RLFAP suggests that Foretell’s clusters cover
enough of the backdoor so that FC suffices for the “out-
side.” (This improvement is not attributable solely to FC;
FC alone is dramatically slower on this problem.) On the
driver problem, cluster-based inference did not improve
cluster-guided search. We suspect that this is because the
secondary structure is markedly different.

Discussion

Foretell’s key parameter is how much time to devote to the
detection of any single cluster. It has no prior knowledge
about how many clusters lie within a problem, nor about
how many might be necessary to solve it. We have found
empirically that too few clusters provide inadequate guid-
ance, but that too many clusters require focus to do too
much computation to pick its next target.
 Consider, for example, the experiments in Table 2,
where Foretell was allocated some fixed amount of time to
find each cluster in RLFAP. (At 200 ms. per cluster, clus-
ters were rarely found at all; data omitted.) At 300 ms., the
average size of the clusters was smaller than at the other
times, which suggests that 300 ms. was not enough time to
build clusters substantial enough to guide search.
 As Foretell’s time allocation increased, the number of
clusters it found increased. By 2000 ms. the same largest
cluster was found consistently. There was little difference
between the cluster graphs and none in the resultant search
tree size observed in the experiments for 1000 and 2000
ms. Total time for search, however, increased because the
increased allocation allowed Foretell more iterations
through the loop in Figure 2, during which it tinkered more
with whatever cluster it found, as indicated by the second
column in Table 2. Observe that, if Foretell dawdles dur-
ing local search (line 6 in Figure 2), it is possible to exceed

the allocated time on average. An allocation greater than
time per cluster indicates that Foretell has done all it can.
 One way to think about Table 2 is that as complete a
cluster graph as possible may provide an important expla-
nation for the user. In that case, one should iteratively in-
crease the time allocation until the time per cluster is
smaller than the allocation and a consistent number of clus-
ters is found. Another approach to Table 2 is computa-
tional, informed by two surprising observations. First, on
all 10 runs for RLFAP with 400 ms., cluster-guided search
averaged only 2 errors (retracted 2 assignments) in its first
300 assignments, and none at all in the last 350 (i.e., out-
side the cluster graph). Second, although Foretell some-
times delivered 10 different cluster graphs from 10 runs
under the same time allocation, focus used them the same
way, that is, the tightest, largest clusters dominated and the
standard deviation in the search tree size was 0. Thus the
difference between the 400 ms. experiment and the 2000
ms. experiment was that a few variables were treated dif-
ferently. The 2000 ms. experiment errs somewhat more
and earlier (8 retractions about 60 deep in the tree). This
suggests that effective search does not require the most ex-
tensive possible cluster graph, just enough of it to direct
search to the hardest subproblems first.
 Current work therefore addresses additional termination
conditions for Foretell (line 4 in Figure 2). These include
an overall VNS time limit, a Luby-like adaptive cutoff for
allocations on successive clusters (Luby, Sinclair and
Zuckerman, 1993) , and a limit on the percentage of vari-
ables that may be included in either an individual cluster or
the entire cluster graph.
 A cluster graph provides an explanation of where the
difficulties lie in a CSP. Figure 5(b) focuses attention on
the satellites, but the solution with focus is even more de-
scriptive: it searches only within three of those clusters and
proves that there is no solution with only 12 variables (out
of 200). This provides a more satisfying explanation than
either a search tree rooted at a single node or a collection
of edge weights.
 RLFAP and the driverlog problems demonstrate that a
problem need not have satellites to have clusters. On small-
world problems, for example, almost every variable is

Table 2: Average results of 10 runs on RLFAP. Allocated and actual times per cluster are in milliseconds; search time, time
consumed by Foretell to find all clusters, and total time are in seconds. Statistics include the average and range of the num-
ber of clusters on those runs, their average and maximum size, and their coverage (fraction of variables included in the clus-
ter graph). All cluster search time is included in the total time to solution.

Time per cluster (ms.) Cluster statistics Cluster-guided search (times in sec.)

Allocated

Actual

Count

Average
size

Count
range

Max
size

Coverage

Nodes

Search
time

Foretell
time

Total
time

300 395.318 55.100 6.886 7 - 65 15.600 55.80% 1616.100 35.457 21.782 57.239
400 479.895 38.100 7.912 36 - 41 16.000 44.33% 1557.000 32.849 18.284 51.133
500 573.561 39.600 7.468 5 - 69 14.800 43.49% 1519.000 50.859 22.713 73.572
600 621.343 31.005 7.548 5 - 65 15.700 34.42% 1655.000 43.691 36.031 74.696
800 821.202 46.600 7.769 17 - 65 16.000 53.24% 1532.800 43.269 38.268 81.537

1000 889.542 63.300 7.059 63 - 65 16.000 65.40% 1519.000 36.536 56.308 92.844
2000 1323.429 63.000 7.100 63 - 63 16.000 65.78% 1519.000 33.541 83.376 116.917

quickly shown to lie in some cluster. Having clusters,
however, does not justify directing computational re-
sources to Foretell. On easy problems, it is faster to use
MinDomWDeg or even MinDomDeg. Clusters are not de-
tected dynamically, during search, because Foretell does
not find clusters in order of either tightness or size. To
identify a good starting point, focus must therefore choose
among a set of clusters. This static but predictive perspec-
tive serves search well.

Cluster-based propagation is still in an early design
phase. Because cluster sizes vary in real-world problems,
ACR seems a wise choice unless the problem has uni-
formly small clusters. Cluster-based propagation should be
further tailored to the metastructure of the cluster graph,
including cluster size, domain size, variance in internal
edge tightness, and the number and tightness of inter-
cluster edges.

We see no impediment to adapting this approach for
non-binary constraints. Real-valued domains present a dif-
ferent challenge, one we believe to be surmountable
through the methods planned for large domains. There are
problems in which Foretell cannot find any clusters at all.
Other structures, such as lengthy cycles, can create search
difficulty without local density (Markstrom, 2006). Some-
thing similar may be operative in these problems.

No solver, human or machine, has an efficient way to
“see” Figure 1(c) perfectly without knowledge about the
problem generator. A cluster graph is a prediction of sig-
nificant metastructure, an abstraction of a CSP that focuses
on the hard subproblems, the ones where global search is
likely to fail. Those clusters can be used not only to focus
attention during search but also to inform propagation and
to provide insight into the nature of the problem in a user-
friendly representation.

Acknowledgements
ACE is a joint project with Eugene Freuder and Richard
Wallace of the Cork Constraint Computation Centre.
Thanks to Pierre Hansen and Ivan Petrovic for helpful dis-
cussions. This work was supported in part under National
Science Foundation awards IIS-0811437 and IIS-0739122.

References

Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004.
Boosting systematic search by weighting constraints. In
Proceedings of ECAI-2004, 146-149. IOS Press.
Cabon, R., S. De Givry, L. Lobjois, T. Schiex and J. P.
Warners 1999. Radio Link Frequency Assignment. Con-
straints 4: 79-89.
Dechter, R. and J. Pearl 1987. The cycle-cutset method for
improving search performance. In Proceedings of Third
Conference on Artificial Intelligence Applications, 224-
230.
Dechter, R. and J. Pearl 1989. Tree Clustering For Con-
straint Networks. Artificial Intelligence 38: 353-366.

Dilkina, B., C. P. Gomes and A. Sabharwal 2007. Trade-
offs in the Complexity of Backdoor Detection. In Proceed-
ings of CP-2007, 256-270. Providence RI, Springer.
Epstein, S. L., E. C. Freuder and R. J. Wallace 2005.
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.
Epstein, S. L., E. C. Freuder, R. M. Wallace and X. Li
2005. Learning Propagation Policies. In Proceedings of
Second International Workshop on Constraint Propagation
and Implementation, 1-15. Sitges, Spain.
Epstein, S. L. and X. Li 2009. Cluster-based Modeling for
Constraint Satisfaction Problems. In Proceedings of IJCAI
Workshop on Learning Structural Knowledge from Obser-
vations (StrucK-09), Pasadena, CA, AAAI Press.
Gompert, J. and B. Y. Choueiry 2005. A Decomposition
Techniques For CSPs Using Maximal Independent Sets
And Its Integration With Local Search. In Proceedings of
FLAIRS-05, 167-174. Clearwater Beach, FL, AAAI Press.
Gyssens, M., P. G. Jeavons and D. A. Cohen 1994. De-
composing constraint satisfaction problems using database
techniques. Artificial Intelligence 66(1): 57-89.
Hansen, P., N. Mladenovic and D. Urosevic 2004. Variable
neighborhood search for the maximum clique. Discrete
Applied Mathematics 145: 117-125.
Lecoutre, C. 2009. "Benchmarks in XCSP 2.1 — XML
representation of CSP/WCSP/QCSP instances." from
http://www.cril.univartois.fr/~lecoutre/research/benchmark
s/benchmarks.html.
Luby, M., A. Sinclair and D. Zuckerman 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters 47: 173–180.
Mackworth, A. K. and E. C. Freuder 1985. The Complex-
ity of Some Polynomial Network Consistency Algorithms
for Constraint Satisfaction Problems. Artificial Intelligence
25(1): 65-74.
Markstrom, K. 2006. Locality and Hard SAT-Instances.
JSAT 2: 221-227.
Ruan, Y., E. Horvitz and H. Kautz 2004. The Backdoor
Key: A Path to Understanding Problem Hardness. In Pro-
ceedings of AAAI-2004, 124-130. San Jose, CA, AAAI
Press.
Sabin, D. and E. C. Freuder 1997. Understanding and Im-
proving the MAC Algorithm. Principles and Practice of
Constraint Programming. Berlin, Springer Verlag: 167-
181.
Sacerdoti, E. D. 1974. Planning in a Hierarchy of Abstrac-
tion Spaces. 5(2): 115-135.
Smith, B. A. and S. A. Grant 1998. Trying Harder to Fail
First. In Proceedings of ECAI 1998, 249-253.
van Dongen, S. 2000. Graph Clustering by Flow Simula-
tion, University of Utrecht.

