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Abstract

In a constraint satisfaction problem, the tightnefsan indi-
vidual constraint only describes the influence tiat vari-
ables within its scope have on one another. Clsigtevide
a broader view; they are dense, tight subprobleitisinva
problem. A set of clusters for a problem and timédibe-
tween them provide an abstraction of it. That a&asion can
be used to guide search, to curtail inference,tanutovide
explanations to the user. This work is a hybrigjlobal and
local search, where local search creates an abstraand
then global search exploits it. Heuristics refeeetusters
to order variables and to propagate more thoudhtfulth

respect to them. Results are provided on a vadéhal-
lenging benchmark problems.

Introduction

The thesis of this work is that an appropriate ralotibn of

a constraint satisfaction probler@%P can provide guid-
ance for a solver and insight for a user. Ideatat ab-
straction would facilitate search for a solutiorberused to
prove that no solution exists, to reduce inferedaoeng
search, and to support concise, pertinent explamafior a
user. The principal results of this paper demotestiiaese
ideas withclusters particularly dense and tight subprob-
lems detected quickly prior to search. For somdlemg:
ing CSPs, cluster-based abstraction proves a polepf

proach to search and explanation.

One traditional representation of a CSP is as plgra
Formally, a CSP is a set of variables, each witlomain
of values, and a set of constraints that restrat those
variables can be bound simultaneously. In a bifGSpP,
each constraint addresses no more than two vasiable
constraint graphfor a binary CSP represents each variable
as a vertex and each constraint as an edge bethve@air
of vertices for the variables it restricts.

An automated graph-drawing program, however, is
unlikely to offer much insight into the nature ofC&P. A
program that plotted one problem’s 200 variablesglthe
circumference of a circle, for example, produceduFé
1(a). The problem’slensity(fraction of possible edges in-
cluded) obscures any meaningful information. A homa
guided rearrangement of the vertices in that grapt
duced Figure 1(b), which in some sense revealptbb-
lem’s “shape.” It consists of small subgraphs cated to
one another only through another, larger subgraph.

Many traditional CSP variable-ordering heuristiisect
search for a solution to variables with high degre¢he
graph. (Two vertices with an edge between themhan t
graph areneighbors and the number of neighbors a vertex
has is itsdegree) Such search on the problem in Figure 1
would begin in the larger subgraph — and it woudd, f
because it ignores tightness.

The tightnessof a constraint is the fraction of possible

@) (b)
Figure 1. For the same CSP (a) an uninformative constraimply plots variables on the circumference of aleivehile
(b) another constraint graph reveals some reldtipas (c) Darker edges represent tighter conssa{d) Detected from (a)
by local search, this cster graph is an abstracti that highlights each critical subproblems withrale for clarity.

(c) (d)



assignments to its variables that it excludes. Noifioarm
constraint tightness dictates that search cannigt on
shape alondn Figure 1(c), tighter edges are drawn darker.
Clearly the edges within the smaller subgraphstigreer
than the now faint edges that lead out from therd an
tighter than the edges within the larger subgraph.

A cluster graphis an abstraction that highlights dense,
tight subproblems in a CSP. After a discussionetéted
work, this paper describes the cluster-detectigorghm
that produced the imperfect but incisive clusteapdr in
Figure 1(d). Subsequent sections describe howethistre
exploited to guide global search, to explain thaureaof a
problem to the user, and to control inference dusearch.
The final sections demonstrate performance imprevgm
with cluster graphs and discuss current work.

Related Work

A cluster graph identifies subproblems that aresdesnd
tight before search for a solution. A cluster graph selects
elements of the original graph and groups themthmye
The variables and constraints not explicit in sstdu graph
have influenced its formation (via pressure, désctiin
the next section). Thus a cluster graph capturkina of
fail-first (Smith and Grant, 1998) metastructure that antici-
pates and confronts difficulties. This approachfeds,
therefore, from methods that relax, remove, oresofton-
straints. As used here, “cluster,” does not refeaggrega-
tions of data, sets of solutions in a search spaceela-
tively isolated, dense areas in a graph (van Donz@00).

Most structure-based work in CSP has focused upen t
identification and exploitation of tractable sturets, such
as trees (Mackworth and Freuder, 1985), acycliphga
(Dechter and Pearl, 1987), tree decomposition (ech
and Pearl, 1989), hinges (Gyssens, Jeavons andnCohe
1994), and other complex structures (Gompert and
Choueiry, 2005). Unlike clusters, however, that kvay-
nores tightness along individual constraints.

With respect to a given search algorithm, taekdoor

1 best-yet initial-solution

2 index 1

3 neighborhood~ neighborhoo¢inde®

4 until stopping conditioror index = k

5 unlessndex= 1, best-yet— shakelest-yet, index
6 local-optimum- local-searcHfest-yetneighborhoojl
7  If scorelocal-optimum > scoreest-yex

8 then best-yet— local-optimum

9 index— 1

10 else index — index+ 1

11  neighborhood- neighborhoo@index)

Figure 2. A high-level description of VNS meta-heuristic
search througlk neighborhoods. The initial solution, the
scoremetric, and the local search routine vary with dpe
plication. k = 10 was adopted from (Hansen, Mladenovic
and Urosevic, 200.

of a CSP is a set of variables that, once assigattes,
make the remainder of search trivial (Ruan, Horatmd
Kautz, 2004). A backdoor is typically less than 36f4he
variables, but its identification before search N&>-
complete. Recent work suggested that both staticdyn
namic properties should be considered during sefarch
backdoor (Dilkina, Gomes and Sabharwal, 2007). The
formation of a cluster graph prior to search comsidboth
static (initial) shape and potential (dynamic) as in
domain size. A cluster graph would, ideally, comtthe
backdoor, but no claim is made here that it does so

An abstraction can be used to simplify a problempe-
rarily (e.g., (Sacerdoti, 1974)). Its solution leh gradu-
ally revised to accept additional problem detaiitiluthe
revision solves the original problem. Because astelu
graph is applied in collaboration with the tradité graph,
not as a replacement for it, no re-solution is Beagy.

Elsewhere we have shown that, given 30 minutes
problem, a heuristic that merely prioritized vatésbin the
smaller subgraphs failed to solve any problem thett in
Figure 1 (Epstein and Li, 2009). Thus, individualge
tightness cannot be the sole consideration. Thak @&tso
investigated a variety of ways to use perfect kreoge,
such as that in Figure 1(c), to solve such problewis
showed there that it is important to explore onlepsab-
lem at a time. Individual edge tightness overlothies syn-
ergy among a set of variables with many mutual con-
straints, a synergy that clusters are designedtiocipate.

per

Cluster Detection

Cluster detection uses/NS (Variable Neighborhood
Search), a local search metaheuristic (Hansen, éviadc
and Urosevic, 2004). (The *“variable” in VNS refexs
changing neighborhoods in the graph, not to CSP- var
ables.) The original VNS application remains thatestof
the art for maximum clique detection within a graph
cliqgueis graph with an edge between every pair of distin
vertices.)

Local search begins with an initial solution armrt
seeks to move it toward some goal with respectotnes
metric. Figure 2 provides pseudocode for VNS. fea-
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Figure 3. Selected VNS steps to find a maximum clique
in graph (a). (b) A starting vertex. (c)-(d) Greestgps
add vertices adjacent to every selected vertex, aina
time. (e) A swap replaces vertex 2 with verticeand 5.

(H VNS for index= 1 shakes out one randomly selected
vertex. See the xt for further cetails.



edly calls (in line 6) a greedy local search aldon within
a neighborhoodin the graph, nodes adjacent to some of

cording to its number of variables, its densityd dhe av-
erage tightness of its constraints. After each tetuss

best-yet The subgraph returned by local search is scored, found, Foretell removes the variables within it from con-

but only the highest-scoring subgraph is retaifiddt top-
scored subgraph is then shaken (iredex randomly cho-

sideration, and seeks a new cluster among the blesia
that remain. Ties unbroken by maximum pressurepere

sen variables are deleted) to shift search to a new ken by maximum degree, and then, if need be, atoran

neighborhood, and the shaken graph is resubmitted a
starting point for local search. VNS terminates witehas
searched the maximum number of neighborhoods oerund
some user-specified stopping condition, typicahyet

Figure 3 is a sample of steps that might occuindur
VNS search to find a maximum clique in a simplepgra
The initial solution is a vertex that is a neighlwdrevery
vertex in the graph; the local search metric issstilsize.
VNS adds one vertex adjacent to every vertex irgtiogv-
ing subgraph. (This is the greedy step; ties aokéar on
maximum degree in the original graph.) When grestdps
are no longer possible, local search swaps outvenex
for a pair of adjacent vertices that are also adjato every
other vertex in the subgraph, as in Figure 2(egrfvally
neither greedy steps nor swaps can be found. Then t
subgraph is returned to VNS, scored, stored & the best
so far, and then shaken before local search resumes

Our cluster detection algorithrRpretell, adapts VNS to
detect multiple subgraphs, and redefines routimestte
initial solution, thescoremetric, and local search. The ini-
tial solution is all variables of maximum possildiegree in
the graph.Foretell relies on the notion opressureon a
variable V, the probability that, given all the constraints
upon it, when one o¥’s neighbors is assigned a value, at
least one value will be excluded frows domain. Precise
calculation of the series that defines pressureomputa-
tionally expensive. Instead, an algorithm was deliso
speed an approximation for the first term in theates, cor-
rected to avoid bias in favor of variables withthidegrees
or large domains. Le¥; be a variable with domain sii®
and neighbors\;. Let ty denote the tightnessf the con-
straint betweeV; andV, O N;. Then the approximate pres-
sure onV, is defined by the constraints upon it as:
(D, -1) D,
(1_t|k)D| DDk

DI [Dk
@-t,)D, D,

Foretell calculates the initial pressure on every variable,
and takes as an initial solution (in line 1 of FgR2) a ver-
tex that is the neighbor of every vertex in thepgrgoften
an empty set)Foretells greedy step maximizes pressure
(instead of degree, as in Figure 3), and uses ymess
break ties during swaps as well. Since we seele]dight,
closely related subproblemBpretell scores a cluster ac-

(1]

i ON;

p(Y)= degrleéxll)vZ [

Until all variables have \ues that satisfy all (nstraints ol
some variable has an empty domain

Assigna value to a variable

Infer the impact of that assignmetpropagation*

If a wipeout occurdhacktrack

Figure 4. Pseudocode for CSP global ses

The minimum acceptable cluster is a clique of dizdut
not every cluster is a clique.

Cluster-guided Search

Cluster-guided search is a hybrid of local and glob
search. As in Figure 4global search (henceforward,
searcl) iteratively selects a variable, assigns it a @aand
then propagatesto infer the impact of that assignment on
the domains ofuture variables(those not yet assigned a
value). Inference calculatelynamicdomainsas it tempo-
rarily removes from future variables’ domains aratues
inconsistent with the current assignments. If apgaiinic
domain becomes empty (&ipeou), searchbacktracks
that is, retracts one or more assignments. (Thek wer
ported here uses chronological backtracking, bun iao
way limited to it.) This search is complete andreot, but
often intractable on CSPs with many variables aogda
domains. A problem isolvedwhen search finds either a
solution or a proof that none exists.

A variable-ordering heuristic can speed searcHitgct-
ing it to the most troublesome variables first.raditional
favorite, MinDomDeg prefers variables with a small ratio
of dynamic domain size téorward degree(number of
neighbors that are future variables). Given anthefchal-
lenging problems used here, howewdinDomDegcould
rarely solve it in 30 minutes. Thus, we gauge probdif-
ficulty with MinDomWdeg.a heuristic that learns weights
(Boussemart et al., 2004). Initially every consitahas
weight 1. Then, whenever an assignment propagdbed a
that constraint creates a wipeout, the weight at ton-
straint is increased by one. Theighted degreef a vari-
able is the sum of the weights of the constraims tefer-
ence it.MinDomWdegprefers variables with a small ratio
of dynamic domain size to weighted degree.

Cluster-guided search first uses local searcharetell
to create a cluster graph like Figure 1(d), anch ttheects
global search for a solution witlecus,a cluster-oriented
variable-ordering heuristid-ocus restricts search to one
cluster at a time, and referenceinDomWdegto break
ties within that cluster. Clusters are prioritizéat focus
according to the product of the ratios of dynamiendin
size to original domain size for all future varieblin the
cluster. This value dynamically estimates the exten
which tuples have been eliminated as possible elsstlu-
tions, another application of the fail-first pripts.

Structure in Cluster Graphs

We have applied cluster-guided search to benchprati-
lems taken from (Lecoutre, 2009). In each chseetell
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Figure 5. Tight edges and cluster graphs for different kin €SPs produce different secondary structuresh Ekuster is
drawn within a circle, and tighter edges are darkée label gives the cluster's number of variabtee number of addi-
tional edges needed to make it a clique, Batktells score for it. (a) Tight edges in a typic@bmpproblem and (b) its
cluster graph. (c) The cluster graph for a 25-1@&tblem. (d) Edges in RLFAP scene 11 with tighsrre§.3 and (e) the

cluster graph for RLFAP. (f) The tightest edges idriverlog problem and (g) its cluster graph.

identified clusters, and the program joined therthvainy
constraints that connected their variables in thgiral
CSP to form a cluster grapRoretell is non-deterministic
because shaking in VNS is by random selection.tkrar
reason, every experiment usifgretell was repeated 10
times and averaged. Although the 10 cluster grémhany
given CSP were very similar to one another, thestelu
graphs for different kinds of CSPs were quite défd.
Figure 5 includes examples of these structuresravtte
vertices for each cluster are displayed withinrel€i

The first category of secondary structure is Saezom-
posed problems. AomposedCSP partitions its variables
into s+ 1 connected subsets:satellitesof uniform size
and acentral componentEvery constraint in a composed
problem is either éink (between a satellite variable and a
central-component variable) or joins two variabieshe
same subset. There are no edges between satell@es.
<n,k,d,t be a class of CSPs each of which hasriables,
maximum domain sizé&, densityd, and tightness$. Then
<n,k,d,t s<n’k’d’t> d” t” specifies a class of composed

<100,10,0.15,0.05> 5 <20,10, 0.25, 0.50> 0.12,0.05
Compcontains both satisfiable and unsatisfiable instanc
Composed problems can be designed to mislead tradi
tional CSP search heuristics that prefer the higlegiree
variables in the readily-solved central componéater,
when conflicts arise within a satellite, searchkbacks to
the central component, although the true diffiadtlie in
the satellites. Composed problems’ relatively deriggnt
satellites are isolated from one another. Drawhegtight-
est edges would produce Figure 5(a); the clustaptgin
Figure 5(b) is suggestive of the same structurecéBse
satellites, with density 0.25, are far from cliqugsite of-
ten more than one cluster lies in the same satellihus
some clusters are linked.) Figure 5(c) shows alainsiec-
ondary structure for a problem from the class destied
25-10-20 by (Lecoutre, 2009), and here by
<25,10,0.667,0.15.>10 <8,10,0.786, 0.5> 0.01, 0.05
Its higher satellite density (0.786) encourages ftrena-
tion of somewhat larger clusters, and typicallyk=a be-
hind too few edges to form a second cluster inshme

CSPs, each with a central component described by satellite. Thus these clusters are isolated fromanother.

<n,k,d,t, s satellites in «',k’,d’t*>, and links with density
d”and tightness”. Figure 1 is a problem i@Gomp

Clusters are not always composed from the tigledges
in the graph, howeveRLFAPhere is scene 11 of the radio



link frequency problems (Cabon et al., 1999). RLFAP
many constraints vary dramatically in their tightseFig-
ure 5(d), with the variables on two concentric leis¢
shows that the tightest constraints form a biparitaph.
The cluster graph is considerably more informathere-
tell finds the identical clusters of size 6 and 13 warg
run. Figure 5(e) shows the four clusters with thghést
priority for focus (including the two of sizes 6 and 13)
from a typical run. Note that only two of the clust are
connected, and the size 13 cluster is not oneeshtiThese
40 variables are the crux of RLFAP, the part thakes its
rapid solution possible. Of particular interesthis fact that
only 18 of the tight edges in Figure 5(d) appeaFigure
5(e) at all, and only two are in the top-priorityster.

The driver problems (driverlogw-08cc-sat_ext and
driverlogw-08c-sat_ext) have the same 408 variablas
9321 constraints with identical tightness; theyfatifonly
in the values permitted by the constraints. Giveirtiden-
tical graphs and tightness, one would exgdectetell to
produce the same cluster graphs, and so it dogsedh on
every run on both problentoretell found only three large
clusters, all of which were cliques. Figure 5(fpsals the
tightest edges in that problem; Figure 5(g) shdvesdlus-
ters Foretell finds. This structure is a path among three
cligues, and behaves, as we shall see, quite eliffigrfrom
the less connected structures of the others.

Clusters and Inference

A cluster graph provides information that can bmbased
to guide inference. Inference methods can be cteiaed
along a spectrum by the effort they exert. Moresri@hce
does not always result in more domain reductiont-s i
often faster to risk and retract mistakes thanrticgpate
them. Inference after every assignment, as in Eigyris
calledconsistency maintenancthe simplest methodor-
ward checking(FC), removes from the dynamic domains
of the neighbors of a just-bound variable any valineon-
sistent with its newly assigned value. The MAC-goal
rithm to maintainarc consistency (ACjoes more work: it
initially enqueues the edges to all the unvalueidhi®ors
of the just-bound variable, and checks each elemiktite

80y AC 90.0 1
70{ —-ACRO03
-+ ACR 0.4
6.01 —«-ACRO0S5
—~-ACRO0.6 - ACR 0.4
509 —AcrRO.7 A~ ACRO3

401 —~*FC 50.04{ -s-AC
40.0 4

—~+FC

—+ACR 0.7
——ACR 0.6
—+ACR0.5

80.0 -
70.0
60.0 -

3.0
30.0

20.0
1.0 10.0
0.0 0.0

2.0+

outside

Figure 6. Propagation regions delineated with respect to a
cluster.

queue for domain reduction (Sabin and Freuder, 997
Whenever a variable’s domain is reduced, MAC-3 en-
queues the constraints between that variable anghital-
ued neighbors ACR-k takes a stance between FC and
MAC-3 (Epstein et al., 2005). It begins with thergaini-
tial queue as MAC-3, but subsequently enqueues amty
straints on variables whose dynamic domains lodeast
k% of their values. (The R is for “response.”) Itigly,
higher values fok make ACR lazier.

Cluster-based inferenceonsiders where other variables
lie with respect to the clusters. As in Figure &lecluster
C in problemP delineates dringe (variables inP — C
within width edges of some variable @), and anoutside
(P — C — fringe(Q), as shown in Figure 6. The question
then becomes how to select propagation methodshéor
cluster, the fringe, and the outside.

To begin, we generated classes of small, not nadbss
solvable CSPs similar to the clustdteretell finds. The
densest possible graph is a clique. Intuitivelpear clique
is a subgraph that is a few edges short of a cliqueear
clique is defined recursively. A clique on 3 veescis a
near clique and, given a near cligN€ on v vertices with
m missing edges, the addition of a new verteN®@also
forms a near clique if and only &m, the increase in the
number of missing edges, conforms to:

Am<X+i
2 v-1
Forn > 3, this requires

0.07 4

—~+FC
—+ACRO0.7
—-ACR 0.6
—-ACRO0.5
—-+ACR 0.4
—~+-ACRO0.3
= AC
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0.05 4

0.04 4
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Figure 7. Number of (a) checks (b) expanded nodes and (c) §#dnds required to solve cluster-like graphsanious
sizes under 7 different propagation methods. Lgziepagation does fewer checks, expands more naddds sometimes

faster



To simulateForetell's clusters, we generated classes of
CSPs that were near cliques of sizes 5 to 13 wdigee
tightness 0.5, and solved them whiktinDomDegin sepa-
rate runs that maintained consistency with FC, MA@

a MAC-3-like version of ACRk for k from 0.3 to 0.7. The
results are shown in Figure 7. AC is warranted evblus-

ters are of size no more than 7, but on larger Isitad

clusters it is statistically significantly slowehan ACR-

0.4. ACR-0.4 also showed low variation in perforicaimon

the simulated clusters.

The structure of a cluster graph suggests theydesi
cluster-based inference methods. taw/f/o be a cluster-
based method that propagates within a cluster mvéthod
¢, within its fringe of widthw with methodf, and outside
with methodo. For Comp the clusters in Figure 5(b) are
small; that mandates AC propagation within thencdese
Compclusters are often linked, even a fringe of width
may reach other clusters. Thus AC is a wise apjroac
within the fringe as well. Once outside the clust@ropa-
gation can afford to be lazy. Thus a reasonablst&iu
based propagation method f@ompis as AC/2/AC/FC.
RLFAP’s cluster graph is different; the clustere &rger,
so that propagation within clusters of ACR 0.4 éagon-
able. The relative isolation of the 4 crucial chrstthere
suggests propagation in the fringe with ACR-0.6, B0 is
expected to be safe in the rest of the graph. pituduces
the method ACR-0.4/1/ACR-0.6/FC. Finally, the large
clusters in the driver problems are so closely ected
that it may only be reasonable to attempt ACR-GAR-
0.5/FC.

Experimental Design and Results

These experiments were run WAICE (the Adaptive Con-
straint Engine), a test-bed for CSP solution (Epstereu-
der and Wallace, 2005). Because ACE is a reseaah t
that gathers extensive data, it is highly informatbut not

honed for speed. Performance is therefore repdrted
both as elapsed CPU time in seconds and as nuniber o
nodes in the search tree. To control for the vagaof local
search, performance for any experiment Ftiretell was
averaged across 10 trials for each problem. On peai+
lem, Foretell was given some number of milliseconds per
cluster, and identified as many clusters as it cautil a
call to VNS failed. All cited differences are siitally
significant at the 95% confidence level on a oriledat-
test. Table 1 lists the number, average size,nasdmum
size of the clusters detected withretell prior to search.

All but the last of the classes above the lindable 1
are composed problems from (Lecoutre, 2009). A lerab
described there bg-b-c denotes a central component with
a variables and satellites of 8 variables each. All vari-
ables have domain size 10, constraint tightnes$00.1
within the central component and tightness 0.05@Gach
link. Constraint density within a satellite is alyga0.786.
Clusters are often readily detected in non-compd38Bs
as well. Table 1 includes RLFAP and the driver peots.

The difficulty of a class of problems is gaugedehby
the resourcesMinDomWdegrequired to solve it. Both
MinDomWdeg and cluster-guided search solved every
problem within 30 minuted-or cluster-guided search, time
includes the time used thoretell to detect clusters. The
results support the premise that a cluster gramheades
the hardest parts of a problem. Far fewer incorassign-
ments were made under cluster-guided search.

In Comp, Foretelfound at least one cluster in every sat-
ellite in every problem on every run. The clusteah in
Figure 1(d) is typical of the result. The structwkthe
composed problems in the other classes, howevdeliis-
erately obscured. Nonetheled¥retells output matches
the descriptions provided for those problems.

Cluster-based inference was added to cluster-duide
search and tested on all the problems in TablenlalCthe
classes of composed problems there was little réom

Table 1 At the 95% confidence levi focusoutperformsMinDomWDecon these problem classOrder of magnituc im-
provements oveMinDomWdegn bold. Classes above the line are composed, with cetraponent densitg, satellite
tightnesst’, andlink densityd”’. Time is in CPU seconds. Data fBoretell includesnumber of clusters, average cluster
size, and maximum cluster size, averaged acrossni0 Data fofocusis mean and standard deviation over 10 fanss.

MinDomWdeg Foretell's clusters Focus Time FaeiNodes
Problem d| t d’ Time Nodes | Count Size Ma o 1l o
25-10-20 0.66y7 0.50 | 0.010 2485 670.10 10.17 5.197 5/58 0.882 .4660, 192.07 149.883
25-1-80 0.667 0.65 | 0.010 0.951 308.00 5.60 5.281 6.08 0.262 0/24®4.50 71.805
75-1-80 0.216 0.65 | 0.133 2.317 595.20 9.09 4.864 5.00 0.365 0/16I/81.40 21.687
25-1-2 0.667 0.65 | 0.010 1.007 553.00 1.01 5.770 5.77 0.019 0.003 41.40 1.363
25-1-25 0.667 0.65 | 0.125 0.913 465.70 2.30 5.597 5.80 0.042 0.021 41.60 1.287
25-1-40 0.667 0.65 | 0.200 1.097 473.80 5.00 5.372 6.40 0.073 0.016 41.50 1.210
75-1-2 0.216 0.65 | 0.003 3.330 117170 1.00 5.690 569 0.044 0.005| 91.60 1.504
75-1-25 0.216 0.65 | 0.042 3.289 1084.4Dp 5.40 5.242 646 0.146 0.121| 91.40 1.287
75-1-40 0.216 0.65 | 0.067 2972 960.90 4.60 5.292 580 0.153 0.142| 91.30 1.275
Comp 0.150 0.50| 0.120| 83.580 12519.40 11.0( 4.309 5.15| 4.311 2.411| 497.96 324.327
RLFAP scene 11 — — — 58.034 2777.00] 38.10 7.912 16.0051.133 1.285| 1557.00 0.000
Driverlogw 08cc — — — 134.281 4200.00 3.00 34.333 45.0087.842 3.712| 2983.70 14.100
Driverlogw 08c — — — 149.449 4136.00 3.00 34.333 45.0083.622  3.406 | 2815.30 3.900




improvement over cluster-guided search, and none ap the allocated time on average. An allocation gretitan

peared. On RLFAP, however, cluster-based inferduice
ther improved the performance of cluster-guidedrcdea
reducing it to 49.294 seconds, a statistically i§icgmt im-
provement. As Figure 7 anticipated, the lazinesB©R-k
engendered more mistakes than AC, so there wasmo ¢
comitant reduction in nodes. The success of clisieed
inference on RLFAP suggests tifatretell's clusters cover
enough of the backdoor so that FC suffices for“the-
side.” (This improvement is not attributable solétyFC;
FC alone is dramatically slower on this problemr) tBe
driver problem, cluster-based inference did not romp
cluster-guided search. We suspect that this isusecthe
secondary structure is markedly different.

Discussion

Foretell's key parameter is how much time to devote to the
detection of any single cluster. It has no prioowledge
about how many clusters lie within a problem, nbowt
how many might be necessary to solve it. We hauado
empirically that too few clusters provide inadegugtid-
ance, but that too many clusters requiveusto do too
much computation to pick its next target

Consider, for example, the experiments in Table 2,
whereForetell was allocated some fixed amount of time to
find each cluster in RLFAP. (At 200 ms. per clustdus-
ters were rarely found at all; data omitted.) AO38s., the
average size of the clusters was smaller thaneabther
times, which suggests that 300 ms. was not enaaghtb
build clusters substantial enough to guide search.

As Foretell's time allocation increased, the number of
clusters it found increased. By 2000 ms. the saargebt
cluster was found consistently. There was littifedénce
between the cluster graphs and none in the resuléamch
tree size observed in the experiments for 1000 20@D
ms. Total time for search, however, increased berdoe
increased allocation allowed-oretell more iterations
through the loop in Figure 2, during which it tinkd more
with whatever cluster it found, as indicated by #seond
column in Table 2. Observe that,Fbretell dawdles dur-
ing local search (line 6 in Figure 2), it is possito exceed

time per cluster indicates thabretell has done all it can.

One way to think about Table 2 is that as compéete
cluster graph as possible may provide an imporapta-
nation for the user. In that case, one shouldtiiety in-
crease the time allocation until the time per dusbk
smaller than the allocation and a consistent nurabelus-
ters is found. Another approach to Table 2 is camapu
tional, informed by two surprising observationstsEi on
all 10 runs for RLFAP with 400 ms., cluster-guidsghrch
averaged only 2 errors (retracted 2 assignmentit3 fiirst
300 assignments, and none at all in the last 380 @ut-
side the cluster graph). Second, althodgiretell some-
times delivered 10 different cluster graphs from ri@s
under the same time allocatidiocusused them the same
way, that is, the tightest, largest clusters doteith@nd the
standard deviation in the search tree size washQs The
difference between the 400 ms. experiment and €8 2
ms. experiment was that a few variables were tdedil
ferently. The 2000 ms. experiment errs somewhatemor
and earlier (8 retractions about 60 deep in the)ir€his
suggests that effective search does not requirents ex-
tensive possible cluster graph, just enough ob itlirect
search to the hardest subproblems first.

Current work therefore addresses additional teaiton
conditions forForetell (line 4 in Figure 2). These include
an overall VNS time limit, a Luby-like adaptive ofit for
allocations on successive clusters (Luby, Sinckid
Zuckerman, 1993) , and a limit on the percentageaoi
ables that may be included in either an individiiaster or
the entire cluster graph.

A cluster graph provides an explanation of whire
difficulties lie in a CSP. Figure 5(b) focuses atien on
the satellites, but the solution witbcusis even more de-
scriptive: it searches only within three of thosesters and
proves that there is no solution with only 12 valés (out
of 200). This provides a more satisfying explanatiban
either a search tree rooted at a single node @llaction
of edge weights.

RLFAP and the driverlog problems demonstrate that
problem need not have satellites to have clust@mssmall-
world problems, for example, almost every variakde

Table 2: Average results of 10 runs on RLFAP. Allocated antlial times per cluster are in milliseconds; dedroe, time
consumed byroretell to find all clustersand total time are in seconds. Statistics inclindeaverage and range of the num-
ber of clusters on those runs, their average andnmen size, and their coverage (fraction of varghihcluded in the clus-
ter graph). All cluster search time is includedha total time to solution.

Time per cluster (ms) Cluster statistics Cluster-guided search (timessic.)
Average Count  Max Search  Foretell Total
Allocated  Actual | Count  size range size  Coverage Nodes time time time
300 395.318 55.100 6.886 7-65 15.600 55.80% 1616.100 35.4571.782 57.239
400 479.895 38.100 7.912 36-41 16.000 44.33% 1557.000 32.8498.284 51.133
500 573.56{ 39.600 7.468 5-69 14.800 43.49% 1519.000 50.8592.713 73.572
600 621.348 31.005 7.548 5-65 15.700 34.42% 1655.000 43.6916.033 74.696
800 821.200 46.600 7.769 17-65 16.000 53.24% 1532.800 43.2698.268 81.537
1000 889.54p 63.300 7.059 63-65 16.000 65.409% 1519.000 36.5366.308 92.844
2000 1323.429 63.000 7.100 63-63 16.000 65.78% 1519.000 33.5483.376  116.917



quickly shown to lie in some cluster. Having cluste
however, does not justify directing computationa- r
sources taroretell On easy problems, it is faster to use
MinDomWDegor evenMinDomDeg.Clusters are not de-
tected dynamically, during search, becabseetell does
not find clusters in order of either tightness @es To
identify a good starting poinfocusmust therefore choose
among a set of clusters. This static but predigtgespec-
tive serves search well.

Cluster-based propagation is still in an early giesi
phase. Because cluster sizes vary in real-worlthlpras,
ACR seems a wise choice unless the problem has uni-
formly small clusters. Cluster-based propagatioouth be
further tailored to the metastructure of the clugieaph,
including cluster size, domain size, variance itefinal
edge tightness, and the number and tightness ef-int
cluster edges.

We see no impediment to adapting this approach for
non-binary constraints. Real-valued domains preaatif-
ferent challenge, one we believe to be surmountable
through the methods planned for large domains. & hee
problems in whicH-oretell cannot find any clusters at all.
Other structures, such as lengthy cycles, caneszdrch
difficulty without local density (Markstrom, 2006%0me-
thing similar may be operative in these problems.

No solver, human or machine, has an efficient way t
“see” Figure 1(c) perfectly without knowledge abdhé
problem generator. A cluster graph is a predictbrsig-
nificant metastructure, an abstraction of a CSPftauses
on the hard subproblems, the ones where globatlsésar
likely to fail. Those clusters can be used not doljocus
attention during search but also to inform propagasand
to provide insight into the nature of the problemaiuser-
friendly representation.
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