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Abstract

Tailoring solver-independent constraint instances to target
solvers is an important component of automated constraint
modelling. We augment the tailoring process by a set of en-
hancement techniques of which many are successfully estab-
lished in related fields, such as common subexpression elim-
ination. Our aim is to apply these techniques in an efficient
fashion, since we tailor instance-wise, and not whole problem
classes. We integrate automated enhancement into the tailor-
ing procedure, which creates a novel setup with great poten-
tial, as our empirical analysis confirms: impressive speedups,
additional propagation and instance reduction, all for invest-
ing little computational effort.

1. Introduction
Modelling is widely acknowledged as a major bottleneck
in the process of solving a problem of interest using a
constraint-based approach. Many models are possible for a
given problem, and the model chosen has a substantial effect
on the efficiency of the solving process. However, it is diffi-
cult (especially for a non-expert) to know which is the best
model to choose. Therefore, any automated means by which
a given model can be improved automatically is valuable.

The context of this work is tailoring constraint instances,
a process where a solver-independent constraint model is
adapted to a target solver, an important component of our
automated modelling approach. We investigate augment-
ing tailoring by a set of enhancement techniques, many of
them successfully applied in related fields, such as Com-
piler Optimisation, Satisfiability and Proof Theory. Since
we consider tailoring problem instances, little time should
be invested into automated enhancement. Therefore, this pa-
per discusses how enhancement techniques can be integrated
into the tailoring process while using little computational ef-
fort to enhance constraint instances.

First, we discuss using solver profiles to guide the flat-
tening process so as to avert unnecessary overhead of auxil-
iary variables or constraints. Second, we present the integra-
tion of common subexpression elimination into the flatten-
ing procedure, providing cheap detection and elimination of
syntactically common subexpressions. Third, we show how
to detect and eliminate some semantically common subex-
pressions, a technique that involves slightly more computa-
tional effort, but that can provide further enhancement.

In summary, we present well-known techniques inte-
grated in the tailoring process, resulting in a novel setup.
Our experimental results confirm that automated model en-
hancement succeeds in cheaply producing effective con-
straint instances from weak models while employing little
computational time.

2. Background
Constraint solving of a combinatorial problem, such as
timetabling or planning, proceeds in two phases. First, the
problem is modelled as a set of decision variables, and a set
of constraints on those variables that a solution must satisfy.
A decision variable represents a choice that must be made to
solve the problem. The domain of potential values associ-
ated with each decision variable corresponds to the options
for that choice. The second phase consists of using a con-
straint solver to search for solutions: assignments of values
to decision variables satisfying all constraints.

Typically, a constraint model represents a parameterised
problem class (e.g. the n-queens problem). A problem in-
stance is obtained by instantiating a problem class with pa-
rameters, e.g. the 4-queens instance is obtained from the
n-queens problem class where parameter n is set to 4. Typ-
ically, a problem class formulation is paired with a param-
eter file to create an instance. There exist several success-
ful solver-independent constraint modelling languages such
as OPL (Hentenryck, Michel & Perron 1999), MINIZINC
(Nethercote et al 2007) or ESSENCE′ (Gent, Miguel & Rendl
2007). In this paper, all constraint expressions are formu-
lated in ESSENCE′. However, we stress that in our work the
choice of modelling language is unimportant.

To solve a solver-independent constraint model, it has
to be tailored (Gent, Miguel & Rendl 2007) to be suitable
for input to a target constraint solver. This is an impor-
tant step, since different constraint solvers have different
strengths, weaknesses and facilities, such as the library of
decision variable types and constraints. In general, tailor-
ing involves adapting constraints, variable types and stated
heuristics to the target solvers repertory, which includes flat-
tening of constraints, propagator selection and adaption of
heuristics. Most solver-independent modelling languages
require some form of tailoring.

A key part of the tailoring process is flattening: decom-
posing a complex constraint expression into an equivalent



conjunction of simpler expressions. The general approach
is to replace a subexpression by an auxiliary variable that
represents the subexpression, e.g. decomposing a ∗ b + c=0
into the two constraints aux=a ∗ b and aux + c=0. This
is necessary whenever the target constraint solver does not
support the original complex constraint expression. Most
target solvers require flattened input.

3. General, Efficient Tailoring
A wide range of constraint solvers exist, each with its own
strengths and weaknesses, each tackling problem instances
in its own way. Problems, where some solvers struggle, oth-
ers can easily solve and vice versa (CSP Solver Competition
2008). Therefore, automated modelling should not target
only one solver, but as many solvers as possible. This can
be achieved by generalising the tailoring process.

A main challenge of generalising tailoring is the general-
isation of the flattening procedure: every constraint solver
has a different library of constraints, hence many expres-
sions are flattened differently for each solver. As an exam-
ple, consider flattening the nonlinear constraint ‘a + b + c 6=
e ∗ f’ to three different solvers: Eclipse Prolog (Eclipse
2009), Gecode (Gecode 2009) and MINION (Gent, Jefferson
& Miguel 2006). The appropriate constraint representation
for each solver is given in the table below:

Eclipse Prolog Gecode MINION
a + b + c 6= e ∗ f aux1 = e ∗ f aux1 = e ∗ f

a + b + c 6=aux1 a + b + c ≤aux2

a + b + c ≥aux2

aux1 6= aux2

Eclipse takes arbitrarily complex expressions, hence no flat-
tening is required. Gecode provides a linear disequality con-
straint, allowing variables as arguments only, hence we flat-
ten e ∗ f by introducing auxiliary variable aux1, and post
a + b + c 6= aux1. MINION only supports binary disequality,
hence we introduce another auxiliary variable, aux2, repre-
senting a + b + c.

Note, that the flat representation of MINION would also be
valid for solvers Gecode and Eclipse Prolog, but would con-
tain additional variables, aux1 and aux2, respectively. Such
a representation can result in worse propagation/runtime
than a representation that is exactly tailored to the solver’s
repertory. Therefore, the flattening engine should decom-
pose expressions only if the expression is not directly sup-
ported by the solver. In order to do this, the flattening engine
requires information about the solver’s constraint repertory
- information a solver profile can provide.

Solver Profiles
We propose the notion of a solver profile, similar to rule-
based systems in retargetable compilers (Fraser & Hanson
1991), that captures important features of a particular solver.
Those features include variable information (variable and
domain types, available data structures), propagator infor-
mation (constraint type, consistency level, arity, reifiability,
etc.), provided search heuristics and other, solver-specific
features. Given a general list of features, every solver profile
associates a boolean value to each feature that indicates if the
feature is supported or not. For instance, if solver S provides

one n-ary conjunction propagator that is not reifiable, then
the the feature n-ary conjunction will be set to true, but fea-
ture reifiable n-ary conjunction will be set to false. Solver
profiles can also include solver-specific features, e.g. vari-
able labelling.

Solver Profile-driven Tailoring
Solver profiles can be used to customise tailoring. First, we
focus on customising flattening, i.e. using the solver pro-
file’s propagator and variable information to direct the flat-
tening procedure. The flattening engine works recursively,
i.e. when given an expression, the flattening procedure is
again invoked on the expression’s arguments. A solver pro-
file can guide the flattening engine: when given an expres-
sion, e.g. an n-ary multiplication, the flattening engine con-
sults the solver profile about the availability of the corre-
sponding propagator. If no applicable propagator exists, flat-
tening proceeds (e.g. the n-ary multiplication is flattened
into a binary multiplication). In this manner, an expression
is only flattened, if the target solver does not support it.

This approach provides three key benefits: first, it as-
sists in reducing the overhead when flattening expressions,
since expressions are only flattened if necessary for the tar-
get solver. Second, a general flattening engine can be used
for different solvers. Third, the flexibility of the solver pro-
file allows to easily adapt to changes in the target solver (e.g.
a new constraint is supported by simply changing the set-
tings in the solver profile). Solver profiles can also assist
in other parts of the tailoring process, such as selecting an
appropriate propagator or seach heuristic (in case favoured
propagators or search heuristics are not already defined in
the modelling language, as possible in MINIZINC). We have
extended the tool TAILOR (Gent, Miguel & Rendl 2007)
to apply solver profiles during tailoring, currently targeting
solvers MINION and Gecode.

Note, that solver profiles cannot provide alternatives in
case a constraint is not supported. This can be resolved by
either extending the tailoring engine with additional reason-
ing or extend the modelling language to support the defini-
tion of alternative representations (as in MINIZINC).

4. Eliminating Common Subexpressions
In this section we discuss common subexpression elimina-
tion, an optimisation technique originating from compiler
optimisation (Cocke 1970), that has proven to be powerful
in several related disciplines, such as Satisfiability (Mari-
nov et al 2005), Model Checking (Latvala et al 2004),
Proof Theory (Plaisted & Greenbaum 1986) and Numerical
CSPs (Araya, Neveu & Trombettoni 2008). We show how
to exploit the tailoring process to integrate common subex-
pression elimination in a computationally cheap way.

Two expressions are called common (or equivalent) if
they take the same value under all possible satisfying as-
signments. There exist two types of equivalent subexpres-
sions: subexpressions that are syntactically equivalent and
subexpressions that are semantically equivalent. Syntacti-
cally equivalent expressions are written in the same way,
such as a pair of occurrences of a ∗ b. Semantically equiva-
lent expressions mean the same thing, which can be deduced



by their operational semantics, e.g. expressions a∗b and b∗a
are equivalent. Clearly, syntactically equivalent expressions
are also semantically equivalent.

Exploiting explicit linear equalities has been well stud-
ied (Harvey & Stuckey 2003; Le Provost & Wallace 1993;
Nadel 1990). As an example, consider the explicit linear
equality x = y, where x and y are decision variables. If x
and y have the same domain, every occurrence of y can be
replaced with x (or vice-versa) and y removed from the set
of variables. Otherwise, a new variable can be introduced
with the intersection of the domains of x and y and replace
both throughout.

This work is concerned with the advanced case, where the
equivalence between two expressions is not explicitly given,
as above, but has to be derived, either by checking for syn-
tactic or semantic equivalence. The detection of syntactic
equivalences is discussed in this section, whereas semantic
equivalence is covered in Section 5.

Common Subexpressions in Constraint Instances
Both syntactically and semantically common subexpres-
sions occur naturally and often in constraint instances. Typi-
cally, unrolling quantifications exposes common subexpres-
sions. Quantified expressions are unrolled when deriving
an instance from a problem class by instantiating the prob-
lem parameters. As an example, consider the Golomb Ruler
Problem that is concerned with finding a ruler of minimal
length with n ticks where all distances between ticks are
distinct. The distance constraint of a basic constraint model
(Smith, Stergiou & Walsh 1999) is given below:

forall i,j,k,l : int(1..n) .
((i<j) ∧ (k<l) ∧ ((j>l)∨(i>k))) =>

(ticks[j] - ticks[i] != ticks[l] - ticks[k])
The 1-dimensional array ticks represents the position of each
tick, and parameter n denotes the number of ticks. The con-
straint states that the distance between every pair of ticks
must be different. When unrolling the quantification, we get
the set of constraints

ticks[3] - ticks[1] != ticks[2] - ticks[1]
ticks[3] - ticks[2] != ticks[2] - ticks[1]
ticks[3] - ticks[2] != ticks[3] - ticks[1]

which contain several occurrences of each subexpression
ticks[2] - ticks[1], ticks[3] - ticks[1] and ticks[3] - ticks[2].

Although a constraints expert can, of course, recognise
common subexpressions and perform elimination manually,
it is likely that a non-expert would not. Even for an ex-
pert, performing this step in a complex model can be la-
borious and, without care, a source of error. Furthermore,
common subexpression elimination is not routinely done by
constraint solvers: solvers that expect a pre-flattened input,
such as MINION or Gecode have no opportunity. Solvers
that allow nested input, such as Eclipse or Choco (Choco
2009), do not make use of common subexpressions.

Eliminating Syntactically Common Subexpressions
during Flattening
Flattening can be considered a recursive process that, when
given an expression, replaces its subexpressions with auxil-

iary variables, if appropriate for the target solver (see Sec-
tion 3). Hence, in a typical flattening engine, two common
subexpressions will be represented by two different auxil-
iary variables. However, if the flattening engine is able to de-
tect the equivalence between two common subexpressions,
it can replace both subexpressions with the same auxiliary
variable, thus saving one variable.

In order to perform the detection step, we simply augment
the flattening process to record each flattened subexpression
together with its associated auxiliary variable in a hashmap
as it is introduced. Whenever we flatten a new subexpres-
sion, we test for a match in the hashmap (this is a test for syn-
tactic equivalance). If an equivalent expression is found, we
replace the subexpression with the existing auxiliary vari-
able, rather than creating a new one. This approach reduces
the time required to match subexpressions and the memory
we spend to collect previously flattened subexpressions.

Embedding common subexpression detection and elimi-
nation in flattening in this way is particularly attractive be-
cause it produces a monotonic reduction in the number of
constraints and variables in the model without adding sig-
nificant computational overhead. Furthermore, it guarantees
that we only eliminate common subexpressions that need to
be flattened and therefore we do not impair the model. As an
example, consider the two linear constraints: x − y ≤ a and
x−y ≤ b that share the subexpression x−y. In our approach,
we would not eliminate x − y because linear constraints of
this form generally do not require flattening. Nevertheless,
we could eliminate x − y by introducing an additional vari-
able aux and post the constraints

aux = x− y
aux ≤ a
aux ≤ b

However, this representation has worse propagation than the
initial two constraints, since eliminating x − y introduces
overhead (one additional variable and constraint) without re-
ducing the complexity of the initial constraints (aux ≤ a
and aux ≤ b are still ‘only’ linear). Linear propagators are
very powerful and the number of arguments (x − y ≤ a or
aux ≤ a) does not matter greatly. This example highlights
that common subexpression elimination should only be per-
formed if the elimination does not introduce additional vari-
ables. Clearly, this premise holds during flattening, since
common subexpressions are only eliminated if they have to
be flattened to an auxiliary variable in the first place.

Benefits of Common Subexpression Elimination
The benefits we gain are great. First, if an instance contains
common subexpressions of this kind, we save at least one
variable and constraint (depending on the complexity of the
common subexpression) for every subexpression. Second,
we can reduce solving time by up to an order of magnitude,
as we report in the Section 7. Less importantly, we can also
reduce the flattening time, since we do not spend additional
time on flattening expressions that we have already flattened.
The third large benefit has even greater potential: we can get
additional propagation through re-using auxiliary variables.
We illustrate this by the example given in the table below.



Unflattened Flattened with CSE Standard Flattening
a+x*y=b aux1=x*y aux1=x*y
b+x*y=t a+aux1=b a+aux1=b

b+aux1=t aux2=x*y
b+aux2=t

Suppose that the domains of x and y are both {1, 2}. Dur-
ing search, we might set b=0, t=2. From this we can de-
duce x∗y=2 and in the standard flattening we get aux2=2.
However, we can deduce nothing about x or y because ei-
ther x=1, y=2 or x=2, y=1 is possible. From a+aux1=0
and x, y∈{1, 2}, propagation will only result in the do-
main of aux1 set to {1, 2, 4} and the domain of a set to
{−4,−2,−1}. When we use enhanced flattening, we share
the same variable, so we deduce aux1=2 and immediately
propagate to set a=−2. Of course this can propagate fur-
ther, depending on the problem. Thus, the simple detection
of common subexpressions can lead to reduced search. Not
only can it do this in principle, we will see below that it can
reduce search by a factor of more than 2,000 in practice.

5. Reducing Simple Semantic Equivalence to
Syntactic Equivalence

Our approach of eliminating common subexpressions during
flattening (see Section 4) is restricted to syntactically com-
mon subexpressions. This is because we tailor instances,
where time cannot be invested into detecting semantically
common subexpressions, which is an operation that can be
arbitrarily hard. However, typically, there are many simple
semantic equivalences that can be easily reduced to syntactic
equivalence, and hence detected and eliminated. In this sec-
tion we discuss two different approaches of detecting and
reformulating semantically equivalent subexpressions into
syntactically equivalent subexpressions in order to increase
the overall number of eliminated common subexpressions.

Detecting and Reducing Semantic Equivalences
We restrict our investigations to a clear-cut set of sim-
ple equivalence relations (stemming from general refor-
mulation rules, such as commutativity, associativity, logic
etc.), that state when two expressions are semantically com-
mon. When detecting two semantically equivalent subex-
pressions, we first identify the preferable representation and
then re-write the other subexpression into that representa-
tion. For instance, consider detecting common subexpres-
sions a*b and b*a: first we pick a*b as preferable representa-
tion and re-write b*a into a*b, thus generating two syntacti-
cally common subexpressions.

However, it is not always clear, which representation is
preferable. For instance, consider the semantically common
subexpressions a*(b+c) and a*b+a*c. Generally, the first
representation is preferable, since it provides better propaga-
tion. However, if a*b and a*c have common subexpressions
and b+c does not, then the second representation is to be pre-
ferred. Clearly, some equivalence relations cannot be clas-
sified without considering the rest of the constraint model.
We therefore distinguish between two kinds of equivalence
relations: those where we can determine the preferable rep-
resentation immediately (e.g. a ∗ b and b ∗ a), and those that

require further investigations. Below we give an overview of
the basic reformulations rules and the respective operators:

Reformulation Rule Detected during
Commutativity (+,∗,∧,∨) preprocessing (1)
Associativity (∗) preprocessing (1)
Distributivity flattening (2)
Negation flattening (2)
Horn Clause Reformulation flattening (2)
De Morgan’s Law flattening (2)

To reduce tailoring time, we integrate the detection of the
first kind of equivalences relations(1) into the preprocessing
phase of tailoring, which is cheap to perform. The detec-
tion of the second kind(2) is integrated into the flattening
procedure, where information about other, previously flat-
tened subexpressions is available. Note that both approaches
do not guarantee the detection of all semantically common
subexpressions of this kind - a tradeoff for investing little
computational time into the procedures. We discuss both
approaches in more detail below.

Reducing Semantic Equivalence during
Preprocessing
The simplest case of semantic equivalences are those given
by commutativity and associativity, e.g. 2∗x and x∗2, which
can easily be reduced by normalisation. Normalisation is a
wide-spread technique to transform expressions into a nor-
mal form. Our normalisation of ESSENCE′ has two compo-
nents, evaluation and ordering, that are applied in an inter-
leaved manner until a fixpoint is reached.

Evaluation is important to simplify expressions involving
constants and is performed only to a certain extent to min-
imise the computational effort. We evaluate constant and
simple logical expressions and apply several simple alge-
braic transformations, such as algebraic identity or inverses.
Note, that evaluation also reduces basic semantic equiva-
lences, such as of (7 + 4)*x and 11*x.

The main reduction of semantic equivalent expressions re-
sults from ordering expressions. We define a total order over
the expressions of ESSENCE′ and transform each expression
into a minimal form with respect to this order. The ordering
affects commutative operators only. As an example, b+a=c
is ordered to c=a+b. Note, that ordering does not reveal all
common subexpressions in commutative expressions. Con-
sider the two subexpressions a + b + c and a + c. Ordering
will not detect that a+ b+ c contains a+ c. This is a tradeoff
for investing little time into detection. Moreover, detecting
a + c in a + b + c is relevant only, if linear sums are repre-
sented by ternary propagators in the target solver. However,
most target solvers provide n-ary propagators for commuta-
tive operators (e.g. summation, disjunction, conjunction), so
detecting these equivalences is mostly not necessary.

Reducing Semantic Equivalences during Flattening
Detecting semantic equivalence can be arbitrarily hard and
hence time consuming, especially when dealing with in-
stances only. Therefore we restrict our investigations to sim-
ple semantic equivalences. The main idea is to reformulate



expressions with a high potential of semantically equiva-
lent subexpressions and test the resulting expression (and its
subexpressions) for syntactically common subexpressions.

The reformulations we investigate are very simple, thus
easy and cheap to perform. Since we perform detection dur-
ing flattening, the order of constraints has a great influence
on which common subexpressions we detect. Hence, this
approach of detecting semantically common subexpressions
is not confluent.

Negation-Reformulation The first reformulation is con-
cerned with transforming particular subexpressions to their
negated form. For instance, consider the subexpression
A < B whose negated form would be ¬(A ≥ B). Whenever
A < B has no common subexpression in the model, we test
its negated form, ¬(A ≥ B), and its subexpression A ≥ B
for common subexpressions. We apply this strategy to ex-
pressions composed by relational operators (e.g. 6=,≥,..),
since they are most likely to contain equivalent subexpres-
sions from our experience. For instance, consider

(A = B) ⇒ D
(A 6= B) ⇒ C

If A 6=B has no common subexpression, we reformulate
A 6=B to ¬(A=B) and detect the common subexpression
A=B. Assume A=B is represented by auxiliary variable
aux, then A 6=B is presented by ¬aux instead of introduc-
ing a new auxiliary variable for A 6=B.

Detecting common subexpressions by this reformulation
is clearly not confluent. If we switch the order of the two
constraints in the example above, then the two subexpres-
sions will be flattened the other way round: A 6=B will be
flattened to aux and A=B to ¬aux. However, this repre-
sentation impairs the model since the equivalence relation
A=B, expressed by ¬aux, corresponds to ¬¬A=B. Hence
we only perform the negation-reformulation on disequality
constraints and not vice versa.

Horn Clause-Reformulation Another interesting refor-
mulation to consider is the reformulation from and to Horn
Clause representation. A horn clause is a disjunction of lit-
erals where at most one literal is positive, i.e. the disjunction
can be expressed as an implication. As an example, consider
the expression A⇒B where A and B are arbitrary relational
expressions. Its horn clause representation is ¬A∨B. If nei-
ther A⇒B, A nor B have a common subexpression, then
the alternative representation, ¬A∨B, or ¬A, can be tested
for a common subexpression (and vice versa).

Other Simple Reformulations We can use De Morgan’s
Law as reformulation to create and detect further common
subexpressions. As an example, consider the expression
¬

∧1..n
i Ei where Ei is an arbitrary expression, dependant

on i. Using De Morgan’s law, it can be reformulated to∨1..n
i ¬Ei. This reformulation can be used to match ¬Ei

with a common subexpression. Similiarily, the law of dis-
tributivity can be exploited to create expressions that are
likely to match other subexpressions.
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for tailoring with enhancement, the y-axis the tailoring time factor
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ample, tailoring Armies of Queens instances using cheap enhance-
ment takes slightly less time than tailoring without; full enhance-
ment takes longer, increasing with complexity.

6. Local Enhancements
This section covers simple but effective local enhancements,
enabled by common subexpression elimination.

Consequent Decomposition: is the decomposition of a
complex implication into a conjunction of simpler implica-
tions. Specifically, consider the implication A ⇒

∧1..n
i Ei

where A and all Ei are arbitrary relational expressions. Us-
ing basic Boolean laws, the implication can be decomposed
into a conjunction of implications:

A ⇒ E1, A ⇒ E2, . . ., A ⇒ En

where subexpression A has several occurrences. This refor-
mulation is beneficial only if subexpression A is represented
by the same auxiliary variable, i.e. is detected and elim-
inated by common subexpression elimination. Despite its
simplicity, it provides a reasonable speedup, as illustrated in
the Experimental Section (Peaceful Army of Queens).

Enhanced Auxiliary Variable Ordering We can en-
hance the variable ordering of auxiliary variables by con-
sidering those auxiliary variables that represent common
subexpressions and put them on top of the variable order-
ing of auxiliary variables. This is just a slight improvement,
since auxiliary variables do not typically play an important
role during search.

7. Experimental Results
In this section we summarise the empirical analysis of our
enhancement techniques during tailoring. In particular, we
evaluate two enhancement strategies:
(a) cheap enhancement: syntactic common subexpres-
sion eliminiation and preprocessing (i.e. restricted semantic
equivalence reduction to save time)
(b) full enhancement: applying all proposed enhancement
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techniques (i.e. investing more time)
We apply both techniques to different types of constraint
problems (optimisation problems, planning problems, puz-
zles) to demonstrate the general applicability of our work.
Each problem is formulated in ESSENCE′ without applying
symmetry breaking and is available on TAILOR’s website1.
Additionally, we include two examples from the CSP solver
competition (CSP Solver Competition 2008) in XML XCSP
2.1 format (XCSP Format 2008). We tailor the instances to
MINION input using the tailoring tool TAILORv0.32. TAI-
LOR performs all enhancement techniques automatically
(and optionally). For each problem instance, we generate
three MINION input files, each tailored in a different way:
without enhancement, applying cheap enhancement and full
enhancement. All instances are solved on the same machine
(Dual-core Intel P4 at 3GHz with 1.5Gb RAM) using MIN-
ION v0.8.0. We apply the same variable ordering heuristic
(decision variables first, then auxiliary variables) and same
value ordering heuristic (ascending) in both cases. We are
interested in three different features: solving performance,
instance size and tailoring time.

Speedups in solving time are summarised in Figure 1.

1Tailor’s website: http://www.cs.st-and.ac.uk/∼andrea/tailor
2Note that Tailor also targets solver Gecode, which is not in-

cluded: in Gecode problems are more efficiently represented as
classes than as instances, thus an evaluation is not useful

Cheap enhancement can speedup solving by up to a mag-
nitude, full enhancement even up to 3,500 times. We also
observe a vast reduction in search space for some problem
families (Peg Solitaire, Armies of Queens and Golomb). The
reduction of auxiliary variables through our enhancements is
given in Figure 3: cheap enhancement can reduce the num-
ber of auxiliary variables to 10% (Armies of Queens) of the
unenhanced instances. Full enhancement even achieves a re-
duction to 5% (that is 20 times less auxiliary variables). Fi-
nally, we investigate the most critical feature: tailoring time
(Figure 2). We observe that cheap enhancement does not im-
pair tailoring time that sometimes even decreases by a small
factor. Full enhancement however, is more expensive: tailor-
ing Armies of Queens with full enhancement can take up to
triple the time of tailoring without. However, the investment
of some seconds is worthwile, when saving several minutes
during solving.

Golomb Ruler
We model the basic model from (Smith, Stergiou & Walsh
1999) that uses quarternary constraints to express the dis-
tances between the ticks (see Example in Section 4). Cheap
enhancement yields the enhanced distance model from the
same paper. This demonstrates how weak models can auto-
matically be enhanced to advanced, effective models from
the literature. We do not detect any semantic equivalences
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Figure 3: Reduction of Auxiliary Variables. The x-axis repre-
sents the number of auxiliary variables introduced with enhance-
ment, and the y-axis the factor of reduction over not enhancing.
As an example, Peg Solitaire instances using cheap enhancement
have only 25% auxiliary variables of Peg Solitaire instances tai-
lored without; those using full enhancement just 15%. All points
are above y = 1, so we always use less variables when applying
enhancement techniques. Peg Solitaire instances differ only in the
starting hole, so they have the same number of auxiliary variables.

during flattening. In average, we gain a 40× speedup in
solving time and reduce the search space by 25%.

Peg Solitaire
We consider the state-centric model of Peg Solitaire from
(Jefferson, Miguel & Tarim 2006). As depicted in Fig.1,
cheap enhancement provides a vast speedup, in average 10
times in solving time. When applying semantically com-
mon subexpression elimination during flattening, we de-
tect and eliminate many negatated semantical equivalencies.
This and the advanced variable ordering result in another
speedup of about 2×. More details about the sources of
common subexpressions in Peg Solitaire can be found in
(Rendl, Miguel, Gent & Gregory 2009).

Peaceful Army of Queens
We take the ‘basic model’ from (Smith, Petrie & Gent 2004)
without symmetry breaking constraints in ESSENCE′. First,
we investigate syntactic common subexpression elimination
that, in average, reduces the instance to about a fifth of its
size, while also reducing the tailoring time as the problem
size increases. The most impressive improvement is given in
the number of search nodes and solving time, both reduced
by a magnitude.

Secondly, we consider overall enhancement. In this prob-
lem model, we apply consequent decompostion (Section 6)
and detect semantic equivalences in form of negations. As
expected, tailoring time increases (e.g. doubles from 1sec
to 2.1sec for n=9) since we invest more time into detect-

ing semantic equivalences. However, this investment pays
off: consequent decomposition combined with the eliminta-
tion of negated common subexpressions reduces the number
of auxiliary variables to 5% of the original amount, while
the number of constraints stays about the same (slightly re-
duced). The consequences are dramatic: compared to in-
stances without enhancement we gain a speedup in solving
time by about 3,500 times, compared to syntactic common
subexpression elimination 3×, using the same search space.

Comparison with results of (Smith, Petrie & Gent 2004)
highlights an important aspect of our work: our results with-
out enhancements are much worse than reported there, while
results with it are similar. This is due to the lack of ex-
pressiveness in MINION, which, unlike most solvers, does
not provide a propagator for linear disequality (hence linear
disequality constraints have to be flattened to binary dise-
quality constraints). However, this only demonstrates, that
despite the limitations of the target solver, automated mod-
elling succeeds in generating a most effective instance that
is competitive with expert instances from the literature.

Balanced Incomplete Block Design (BIBD)
BIBD is problem 28 in CSPLib (Gent & Walsh 1999). We
use the standard model from the literature that does not con-
tain common subexpressions, nor any other scope for en-
hancement. As shown in Fig.2, we do not suffer significantly
from attempting cheap or enhancement: tailoring times are
approximately the same. The little tailoring time for full en-
hancement might be suprising. The reason for this lies in the
restriction of enhancements: we only attempt to reformulate
particularily promising expression types and the BIBD prob-
lem model has none. This demonstrates the efficiency of our
enhancement techniques.

For both approaches we generate identical instances and
get identical results in terms of time and nodes searched.
Fluctuations in search time are presumably just the differ-
ence between separate runs. From this experiment we draw
the conclusion that the attempt to eliminate common subex-
pressions - even in vain - need not significantly slow down
the modelling and solving process.

Knight’s Tour and Chessboard Colouring
We also include benchmarks from the CSP Solver Compe-
tition (CSP Solver Competition 2008): the Knight’s Tour
Problem and the Chessboard Colouring Problem. The in-
stances we use are available at the competition’s web-
site (XCSP Instances 2008). Both problems could be solved
in half the time using enhancement (results for cheap and
full enhancement are the same).

8. Related Work
In their work on interval analysis, Schichl et al (Schichl &
Neumaier 2005; Vu, Schichl & Sam-Haroud 2004) discuss
common subexpression elimination in models of mathemat-
ical problems represented as directed acyclic graphs(DAGs).
These studies have much in common with our work, and fur-
ther examine the issue of propagation over common subex-
pressions. However, they do not include logical expressions,



such as quantification, which we have identified as one of the
main sources of common subexpressions.

Independently of our work3, Araya et al have shown how
the idea of common subexpression elimination from compil-
ers can be applied to numerical constraint satisfaction prob-
lems (Araya, Neveu & Trombettoni 2008) by transforming
expressions into DAGs, adapting Schichl et al’s approach.
Their algorithm has similarities to our approach, for instance
their node intersection approach has the same effect as our
normalisation approach. However, numerical CSPs repre-
sent a different set of problems and are solved by different
means: numerical variables range over real values instead
of discrete values; numerical constraints are arithmetic func-
tions, both linear and nonlinear, such as log or sin, excluding
all Boolean relations, which are included in our work.

9. Conclusions
We have shown how the tailoring process can be augmented
so as to cheaply perform enhancement techniques to gener-
ate effective constraint instances. First, we discuss solver
profiles, that, when used to guide the flattening process, as-
sist in reducing the overhead (of auxiliary variables or con-
straints) introduced by inappropriate flattening. Second, we
present the integration of common subexpression elimina-
tion into the flattening procedure, which provides cheap de-
tection and elimination of syntactically common subexpres-
sions. Third, we show how to detect and reduce semantically
common subexpressions into syntactically common subex-
pressions, a technique that involves slightly more computa-
tional effort, but that can provide further enhancement.

Our experimental results show three things. First, both
syntactic and semantic common subexpression elimination
can have a great effect on both solving time and search
space. Second, we can reduce the instance size dramat-
ically which results in a more effective constraint model.
Third, we see that eliminating syntactically common subex-
pressions, even if attempted in vain, does not affect tailoring
time. Detecting semantic equivalencies is more expensive,
but the additional effort is traded off for additional speedup.
For future work, we want to extend our enhancement tech-
niques to whole problem classes instead of instances only
where more time can be invested into advanced techniques,
such as detecting complex semantic equivalences.

Again, we stress that all these steps, although power-
ful and efficient, are not routinely performed by constraint
solvers or flattening tools at present. Almost all constraint
systems perform some translation of the expressions they al-
low the user to input to match the constraints provided in the
system. Thus, the benefits of enhancing techniques during
tailoring could be made available in most constraint systems.
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