CMPUT 229 (Draft 2001) von Neumann

-

The von Neumann machine is the basis of most

~

(von Neumann machines)

(but not all) modern computers. Another
common name is stored program machines.

| Address Bus i
Memory

Control = Instructions
Processor
Data Bus i DLl

Memory Organization: Array of bytes

word word word
| | | | | |
(0D} (0D} [} (0D} (0D} [} (D) (D) (0D} (D) (€] (D)
d L L d L L d L S L L S
> > > > > > > > > > > >
0 O Q0 O O Q0 O O O O o) O
0 1 2 3 45 6 7 n-4n-3n-2n-1

Two key characteristics are:

1. Common memory (i.e., storage) for
instructions and data

KZ Use of a program counter /

CMPUT 229 (Draft 2001) von Neumann

4 N

[Common memory]

e Memory is organized into bytes (8 bits) of
data (compare to a 1-D array)

e Memory is referenced by an address (e.g., a

number)
Why a common memory?
e Only requires one memory module

e Only requires one path from CPU to memory

for addresses

e Only requires one path from CPU to memory
for data

The path is often a bus: a connection between
two or more computer components. Today, it

is commonly a set of electrical wires.

_ _

CMPUT 229 (Draft 2001) von Neumann

4 N

[Program counter (PC)]

e Keeps track of current machine instruction

(i.e., PC)

e Implicitly points to next machine instruction
(i.e.,, PC + 1)

e Can save and restore the PC to return a

point of execution

Alternatively, each machine instruction could

explicitly indicate the next instruction to execute.

repeat
1. Fetch/get instruction at PC
2. Execute instruction

3. PC:=PC +1

forever

CMPUT 229 (Draft 2001)

von Neumann

-

(Typical Architecture]

CPU Memory

Memory bus
133 to 266MHz

Bridge

AGP

I/O bus (PCI)

‘ 33 or 66 MH:

Disk

Network

Video

~

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

4 N

[Number Representationj

e Computers operate with 0’s and 1’s

e But, people prefer decimal numbers like 127,
-14 (i.e., negative number)

How do we represent decimal numbers in binary

form? (Negative/signed numbers come later.)
e First, let us deconstruct 127.
127 = (1 x 10%) 4 (2 x 101) + (7 x 109)

e More abstractly, 127 is a base 10 number and
the value of the ith digit d is:

d x base’

CMPUT 229 (Draft 2001)

Chp. 4: Arithmetic

-~

_

(Different Bases)

For a given base, the valid digits in the

number system are between 0 and base — 1

If base = 2 = binary number
— Valid digits are { 0, 1 }.

— For example, 10115 = 11 decimal.

If base = 8 =—> octal number
— Valid digits are { 0, 1, 2, 3,4, 5,6, 7 }

— For example, 373 = 31 decimal.

If base = 10 = decimal number

— Valid digits are { 0, 1, 2, 3,4,5,6,7,8,9 }

If base = 16 =—> hexadecimal number

— Valid digits are { 0, 1, 2, 3,4, 5, 6, 7, 8,

A B, C, D, E F}
— For example, FFE g = 4094 decimal.

~

9,

_/

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

4 N

[Binary to Decimal Conversionj

What is binary number 1015 in decimal?
Answer:

1015 = (1 x 22) + (0 x 21) + (1 x 29)
=4+0+1

= d10

What is binary number 1011015 in decimal?
Answer:

1011015 =
(1x2°)+(0x24)+(1x23)+(1x2%)+(0x21)+(1x2Y)

=32+8+4+1

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

4 N

[Largest Numbers]

What is the largest decimal number with 3 digits?
Answer:

Easy, 999. Or, 10° — 1.

What is the largest binary number with 3 digits
(expressed in decimal)?

Easy, 1115. Or, 23 — 1.
1115 = (1 x 22) + (1 x 21) + (1 x 29)

—44+2+1
= T10
=23 -1

With n binary digits, the largest number is 2™ — 1.

For n digits of base base, the largest number is

base™ — 1.

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

4 N

[32-bit Unsigned Numbers]

On our MIPS CPU architecture, each register has
32 bits. What is the largest (unsigned) number?

Answer: 232 — 1 = 4,294,967,295.

NOTE:
932 _ 92 5 930
— 922 5 910 3 910 y 910 where 210 — 1024

= 4(1024)% = approx. 4,000,000,000

e HINT: Memorize various powers of 2 up to
210,

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 10

4 N

(Overﬂowj

What happens when we try to store 4,294,967,295
plus 1 in an unsigned 32-bit register?

Answer:

Overflow (and wrap around, like your car’s
odometer)

e Lesson: Computers have limits in the
numbers that they can represent. Be aware of

this, or risk getting wrong answers.

With a 64-bit register, what is the largest possible

(unsigned) number?

Why are 64-bit computers becoming more

common?’

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 11

4 N

[Decimal to Binary Conversion]

What is 231 in binary?
There are 2 common methods:

1. Express decimal as sum of distinct powers of
2.

e 23=16+7=16+4+2+1
o = (1x2%)+(1x2%)+(1x2)+(1x2%
e Read off the coefficients: 10111,

2. Repeated long division
e 23/2 = 11 remainder 1
e 11/2 = 5 remainder 1
e 5/2 = 2 remainder 1
e 2/2 = 1 remainder 0
e 1/2 = 0 remainder 1

e Read off the remainders: 10111,

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 12

4 N

(Hexadecimal Numbersj

e If base = 16 = hexadecimal number

— Valid digits are { 0, 1, 2, 3,4, 5,6, 7, 8, 9,
A,B,C,D,E,F)}

— For example, FFE g = 4094 decimal.
How do we convert FFE 4 to decimal?
Answer:

FFE = (15 x 16%) + (15 x 16') + (14 x 16°)
= (15 x 256) + (15 x 16) + (14 x 1)

= 3840 + 240 + 14

= 409419

What is 204;¢ in decimal?

Answer:

20416 = (2 x 162) + (0 x 161) + (4 x 16Y)

= (2 x 256) + (0 x 16) + (4 x 1)
=512+0+4

C 01610 /

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

4 N

If

A=10 C=12 E
B=11 D =13 F

14
15

What is DEADBEEF ¢ in decimal?
Answer:

DEADBEEF ¢4

= (D:13x167) + (F:14 x 16°%) + (A :
10 x 16°) + (D : 13 x 16*) + (B : 11 x 16°) + (E :
14 x 162) + (E : 14 x 16%) + (F : 15 x 16Y)

— (D : 3,489,660,928) + (F : 234,881,024) 4 (A :
10, 485, 760) + (D : 851,968) + (B : 45,056) + (F :
3,584) + (E : 224) + (F : 15)

= 3,735,928, 55910
e DEADBEEF¢ is often used as an “initial

value” for memory

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 14

4 N

This is a lot easier than hex to decimal, or binary

[Hex to Binary Conversion]

to decimal.
Why?

Because the base for hex (base = 16) and binary
(base = 2) are powers of 2. Therefore, each
hexadecimal digit is exactly 4 bits.

Dec Hex Binary Dec Hex Binary
0 0 0000 3 3 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

-
_

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

-~

_

as distinct powers of 2

A215 = 1624¢

= 12810 + 3210 + 210

= 27 + 2% 4+ 2! (decimal numbers)
= 10100010,

NOTE: A =1010, 2 = 0010

. Do a table look-up on each hexadecimal digit

What is DEADBEEF4 in binary?

Answer:
1101 1110 1010 1101 1011 1110 1110 1111

What is ATFBg in binary?

Answer:
1010 0111 1111 1011

Therefore, a 32-bit register can hold 8
hexadecimal digits (e.g., DEADBEEF4).

15

~

1. Convert hex to binary by expressing number

_/

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 16

4 N

[Addition and Subtraction in Binary]

Example of (plain) addition:

Decimal Binary
5 0101

+ 6 + 0110
11 1011

Example of (plain) subtraction:

Decimal Binary
6 0110

- 5 - 0101
1 0001

NOTE: A “borrow” equals 2.

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 17

4 N

[Negative Numbers]

So far, we have ignored numbers like -14, -1, and
-223,433.

How can we encode these numbers in binary

format (or hexadecimal)?

1. Signed magnitude representation

Basically, we use one bit for the sign.

0 = positive, 1 = negative.

So, -14 =1 000 1110

If 1 bit is used for the sign, then we have 7
bits left over for the number itself (aka
magnitude).

So, the smallest number we can represent
with 8 bits using signed magnitude is 27 — 1
— -127

2. Two’s complement representation

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 18

4 N

[2’5 Complement]

Given a number N to be encoded in n bits, its 2’s

~

complement (V) is defined as:

~

N=2"—-N
Example: Assume n =4 — 2™ = 16,

1. If N =3 =0011,,
3=16—-3=13
= 11015

2. If N =6 = 0110,
6=16—6=10
= 1010,

3. If N = 2 = 00105,
2=16—2=14
= 1110,

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 19

~

Notice the following properties:

~
~

1. N=N
Why? N = 2" — (N)
=27 — (2" — N)
=N

2. N=N+1 (NOTE: Tilde-N and Bar-N)

where N is called the 1’s complement, or

bitwise negation

For example, if N = 2 = 00105,
2 = 0010, = 1101,

Therefore, 2 = 2 + 1

= 11015 + 00015

= 1110,

3. N+ N =0, with carry out
For example, if N = 2 = 00105,
2 +2 = 11105 + 0010,

= 0, with carry out

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

/ [—I— /- with 2’s Complementj \

In practice, we do the following:

1. If N > 0, use “plain” binary representation.

For example, +2 = 0010,
2. If N <0, use 2’s complement of the absolute

value

For example, —2 = 1110,
Recall that 2 —2 =2+ (—2) =

Decimal Binary

2 0010
+ -2 + 1110
0 0000

—> Subtraction is the same as taking the 2’s
complement of the second number and then
adding!

Also, adding numbers, whether positive or

Qegative, works as expected. /

20

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 21

4 N

[Advantages of 2’s complement]

1. Subtraction can be done in terms of addition.
A-B=A+(-B)=A+B
NOTE: This works even if A or B is already
negative and in 2’s complement form.

2. We do not need to check the sign bit (as with
signed magnitude) and then compare

magnitudes.

Example of subtraction, 3 — 2,
(2 = 00103 + 13 = 11015 + 15 = 11103)

Decimal Binary
3 0011

- 2 + 1110
1 0001

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 22

4 N

Example of subtraction, 14 — 5.
1. 14 = 0000 1110,

2. —=5=5
Easiest to logically negate and add 1.
= 0000 0101
= 1111 10102 + 15
= 1111 1011,
Decimal Binary

14 0000 1110
- 5 + 1111 1011
9 0000 1001

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic

-

Since n = 32 on our MIPS architecture,

(Common Patterns)

~1=1

= 0000 0000 0000 0000 0000 0000 0000 00015
= 1111 1111 1111 1111 1111 1111 1111 1111,
— FFFF FFFF

—2=1111 1111 1111 1111 1111 1111 1111 11109

—3=1111 1111 1111 1111 1111 1111 1111 1101,

Largest number is 2, 147,483, 647 =
0111 1111 1111 1111 1111 1111 1111 1111,

Smallest number is —2, 147,483, 648 =
1000 0000 0000 0000 0000 0000 0000 00004

e All positive numbers have 0 as the most
significant bit.

e All negative numbers have 1 as the most

K significant bit.

23

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 24

4 N

Question: If 10105 is a number in 2’s complement,
what is its value in decimal?

1. Since the most significant bit is 1, we know it

is a negative number.

2. To find out the magnitude, we simply take
the 2’s complement (recall that: N = N)

1010

= 10105 + 1,
= 01015 + 1,
= 0110,

= 610

— -6

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 25

/ [Range of Numbersj \

So, if n = 32 bits, then the 2’s complement

representation allows a 32-bit binary number to
hold the integer numbers N in the range:

—2,147,483,648 < N < 2,147,483, 647
In general,
2"t < N <2l -1
NOTE:

1. There is one “extra” negative number
because the 0 (zero) takes up a value.

2. Overflow is possible, as with unsigned

numbers.

Decimal Binary

5 0101
+ 6 + 0110
11 1011

No overflow for unsigned. Yes, overflow for

K 2’s complement. Why? /

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 26

4 N

[Logical Operations]

e Chapter 4.4 and Cmput 272

In addition to arithmetic, computers are good at
logical operations on binary values: logical-AND,
logical-OR, logical-NOT (or just AND, OR, NOT
for short).

The output of a logical operation is a result of the

input according to the following truth table for
values A and B.

AND OR NOT
A B A& B A v B ~A
O O 0 0 1
0O 1 0 1 1
1 O 0 1 0
1 1 1 1 0

0 = false, 1 = true

_ _

CMPUT 229 (Draft 2001)

Chp. 4: Arithmetic

27

-

with 1’s complement.

Other examples:

0101
& 0110 v

0100

We have already seen bitwise logical-negation

OR NOT

A v B “A
0 1

1 1

1 0

1 0

0101 0101

0110 -

0111 1010

~

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 28

4 N

What are logical operations used for?

They are used for manipulating individual bits
within a word (i.e., 32-bit value).

1. AND is often used to clear bits using a mask.

0101 0101
& 1100 & 0011

0100 0001

2. OR is often used to set bits.

0101 0101
v 0010 v 1000

0111 1101

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 29

4 N

Using hexadecimal numbers, suppose A = 0x000F
(0x is a common prefix for hexadecimal)
and B = OxABCD.

Then
0xO000F 0xO000F
& OxABCD v OxABCD
0x000D OxABCF

Masks can be used to dissect and reconstruct

numbers:
OxOOFF OxFFO0O0 O0xABOO
& OxABCD & OxABCD v 0x00CD
0x00CD OxABOO OxABCD

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 30

4 N

Suppose I want to set the hexadecimal digit at

position 1 to be E for any number.
How can I do this using logical operations?

If the original number is 0x1234, then:

Step 1 0x1234 Step 2 0x1204
& OxFFOF v 0xO0O0EO

0x1204 Ox12E4

Why does using OR in a single step not work?

If the original number is 0xABCD, then:

Step 1 OxABCD Step 2 OxABOD
& OxFFOF v 0xOOEO

O0xABOD OxABED

_ _

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 31

Usually, there are assembly language instructions
for moving all bits of a word one radix to the left

/ (Shift Operations|

or the right.
1. Logical shift right (in C “>>”).
>> 0110 >> 0011

0011 0001
Shifting right is equivalent to dividing a
number by 2.
2. Logical shift left (in C “<<”).
<< 0110 << 0011

1100 0110

Shifting left is equivalent to multiplying a
number by 2.

NOTE: Be careful of signed numbers when

Kshifting (Chapter 4.10)! /

CMPUT 229 (Draft 2001) Chp. 4: Arithmetic 32

/ (ASCII Characters) \

Keyboard input is read as ASCII characters, each

requiring one byte of storage.

The key A on the keyboard generates a specific
number, namely decimal 65. Lowercase a is
number 97.

Compare this to type char in C.

From man ascii under Unix. The numbers are
decimal values.

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 °
40 (41) 42 * 43 + 44 45 - 46 . a7 /
48 0 49 1 50 2 51 3 52 4 63 b 54 6 65 7
56 8 57 9 68 : 59 60 < 61 = 62 > 63 7
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77T M 78 N 79 0
80 P 81 Q 82 R 83 S 84 T 86 U 86 V 87 W
88 X 89 Y 90 zZ 91 [92 '\ 93] 94 - 95 _
96 ¢ 97 a 98 b 99 ¢ 100 4 101 e 102 f£ 103 g
104 h 105 1 106 j 107 k 108 1 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 v 118 v 119 w
120 x 121 y 122 =z 123 { 124 | 125} 126 ~ 127 del

Arrays of characters, or strings, make up the vast
majority of input and output intended for human
consumption.

Strings are null terminated (i.e., the last byte of

Qata is a zero). /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 33

4 N

[MIPS Assembly Language]

Key concepts:

1. There are 32 general-purpose registers, each
32-bits wide (r0 to r31)

2. The same 32 general-purpose registers have
aliases:
(a) v0, v1: result of expression or function
(b)
(c)
(d) sO to s7: saved temporary
)
)

(e
(

-

a0 to a3: arguments

t0 to t9: temporary

$zero: always set to zero

f) others: at, Hi, Lo, sp,

3. There are 32 floating-point registers (£f0 to
£31). We will not discuss any further for now.

4. All arithmetic and logical computation occurs
between registers. Data must first be moved

K into a register. /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 34

4 N

5. The MIPS assembler (and SPIM/XSPIM)

provides extra functionality not directly
provided by the hardware.

(a) Data layout directives
(b) Pseudoinstructions (Careful!)
6. The SPIM/XSPIM environment provides
extra functionality
(a) Input/output functions
(b) XSPIM provides debugging capabilities

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 35

/ (Example: Hello, world] \

How to run: spim -file exl.s, or use xspim
.data
strl:

.asciiz "Hello, world\n"

.text
.globl main
main:
13 $vo, 4 # print_string
la $a0, stri
syscall

Comments start with # and go to end-of-line
Data (.data) and code segments (.text)

Data layout (.asciiz)

Global labels (.globl)

otk W o=

. Assembly language instructions and
pseudoinstructions

K6. Function call to SPIM/XSPIM (syscall) /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 36

KI‘he pseudoinstructions are: \

1. 1i $v0, 4: load immediate value

v0 = 4 (load vO with constant 4)
2. la $a0, strl: load address
a0 = address of str1 (load a0 with address)

Load the file into XSPIM. It is clear that these
are pseudoinstructions.

From XSPIM’s Text Segment Window:

[0x00400020] 0x34020004 ori $2, $0, 4
[0x00400024] 0x3c041001 1lui $4, 4097 [stri]
[0x00400028] 0x0000000c syscall

; 10: 1i $v0, 4 # print_string
; 11: la $a0, stri
; 12: syscall

If we single step to after line 11, we see:

From XSPIM’s Register/Top Window:

R4 (a0) = 10010000

NOTE: 409719 = 100116

From XSPIM’s Data Segments Window:

[0x10010000] 0x6c6c6548 0x77202c6f 0x646c726f 0x0000000a
[0x10010010] ... [0x10020000] 0x00000000

\nwhich is ASCIL. /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 37

4 N

[Basics of Assembly Language]

There are 4 main groups of instructions (specified
by mnemonics) for any CPU architecture:

1. Data transfer (aka load, store)
e.g. 1w, sw, 1la, 1b, 1bu, sb, move

2. Computation (between registers)
(a) Arithmetic, e.g. add, sub, addi, addu
(b) Logical, e.g. and, or, s11, srl

3. Control flow change (affects PC)
(a) Conditional branch, e.g. beq, bne
(b) Unconditional branch, e.g. b, j

4. Privileged instructions (for the OS)

NOTE: Mnemonics are encoded into binary

opcodes by the assembler.

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 38

4 N

[Basics of Addressing Modesj

Instructions operate on operands, or “arguments”.

There are 4 general categories (compare with
pages 151, A-50):

1. Immediate: use a constant data value

2. Absolute: use data from memory
e “address of label” on MIPS
e “address of label + or - immediate” on MIPS

3. Register direct: use data in a register
e “contents of register” on MIPS, register addressing
e PC-relative addressing, Pseudodirect addressing
4. Register indirect: use data pointed to by a
register
e “immediate 4+ contents of register” on MIPS

e “address of label + or - (immediate + contents of
register)” on MIPS

e base or displacement addressing

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 39

Be careful: Absolute addressing on the MIPS \
architecture is implemented by the assembler and
NOT by the hardware.

.text
1b $s0, strsingle # Load byte into $s0O
NOT la $s0,strsingle
.data
strsingle:
.asciiz " "

From XSPIM’s Text Segments Window:

[0x00400034] 0x3c011001 1lui $1, 4097 ; 70: 1b $s0, strsingle
[0x00400038] 0x80300000 1b $16, 0($1)

Things to note:

1. $1 is the same as register $at, which is
reserved for the assembler’s use

2. In fact, the only memory-addressing mode
implemented by the CPU hardware is register

_/

indirect: C(rx)

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 40

/ [Example: Count] \

How to run: spim -file ex2.count.s, or use xspim
Program by John Waldron

.text
.globl main
main:
1i $t1,0 # $t1 will be the array index
1i $t2,0 # $t2 will be the counter
1b $t3,char # and $t3 will hold the char
loop: 1b $tO0,str($tl) # fetch next char
beqz $t0,strEnd # if it’s a null, exit loop
bne $t0,$t3,con # not null; same as char?
add $t2,$t2,1 # yes,increment counter
con: add $t1,$t1,1 # increase index
j loop # and continue
strEnd:
la $a0,ans # system call to print
1i $v0,4 # out a message

syscall
move $a0,$t2 # system call to print

1i $vO,1 # out the count worked out
syscall

Q)ntinued. . /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 41

4 N

la $a0,endl # system call to print
1li $v0,4 # out a newline
syscall
1i $v0,10
syscall # au revoir...
.data

str: .asciiz "abceebceebeebbacachb"

char: .asciiz "e"

ans: .asciiz "Count is "

endl: .asciiz "\n"

unix-prompt/% spim -file ex2.count.s

SPIM Version 6.2 of January 11, 1999

Copyright 1990-1998 by James R. Larus (larus@cs.wisc.edu).
A1l Rights Reserved.

See the file README for a full copyright notice.

Loaded: ./trap.handler

Count is 6

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 42

4 N

[Example: Dec to Hexj

How to run: spim -file ex3.dec2hex.s, or use xspim
Program by John Waldron
Purpose: ask user for decimal number,
convert to hex, print the result.
.text
.globl main
main:
la $a0,prompt # print prompt on terminal
1i $v0,4
syscall
1i $v0,5 # syscall 5 reads an integer
syscall
move $t2,$v0 # $t2 holds hex number
la $a0,ansl1 # print string before result
1i $v0,4
syscall
continued...

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 43

////;# t0 - count for 8 digits in word _—\\\\

tl - each hex digit in turn

t2 - number read in

t3 - address of area used to set up answer string
1i $t0,8 # eight hex digits in word

la $t3,result # answer string set up here

loop: rol $t2,$t2,4
and $t1,$t2,0xf
ble $t1,9,print
add $t1,$t1,7

print: add $t1,$t1,48
sb $t1, ($t3)
add $t3,$t3,1
add $t0,$t0,-1
bnez $t0,loop

start with leftmost digit
mask one digit

check if 0 to 9

7 chars between ’9’ and ’A’
ASCII °0’ is 48

save in string

advance destination pointer
decrement counter

H H OH O H H O H O H H H

and continue if counter>0

la $a0,result # print result on terminal
1i $v0,4
syscall

1i $v0,10
syscall # au revoir...

.data
result: .space 8

.asciiz "\n"
prompt: .asciiz "Enter decimal number: "
ansli: .asciiz "Hexadecimal is "

2 _/

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 44

4 N

unix-prompt’ spim -file ex3.dec2hex.s

SPIM Version 6.2 of January 11, 1999

Copyright 1990-1998 by James R. Larus (larus@cs.wisc.edu).
A1l Rights Reserved.

See the file README for a full copyright notice.

Loaded: ./trap.handler

Enter decimal number: 16

Hexadecimal is 00000010

Enter decimal number: 334
Hexadecimal is 0000014E

Enter decimal number: 299
Hexadecimal is 0000012B

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 45

4 N

Still have to be careful of pseudoinstructions.

It is also very interesting to see how
pseudoinstructions are translated into real

instructions.

From XSPIM’s Text Segments Window:

[0x00400058] 0x000a0f02 srl $1, $10, 28 ; 28: rol $t2,%$t2,4
[0x0040005¢] 0x000a5100 s11 $10, $10, 4
[0x00400060] 0x01415025 or $10, $10, $1

[0x00400064] 0x3149000f andi $9, $10, 15 ; 29: and $t1,$t2,0xf
[0x00400068] 0x2921000a slti $1, $9, 10 ; 30: ble $t1,9,print
[0x0040006c] 0x14200002 bne $1, $0, 8 [print-0x0040006c]

[0x00400070] 0x21290007 addi $9, $9, 7 ; 31: add $t1,$t1,7
[0x00400074] 0x21290030 addi $9, $9, 48 ; 32: add $t1,$t1,48

e 31 is the same as register $at, which is
reserved for the assembler’s use

o _/

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 46

/ (Endiannessj \

The order in which we store the individual bytes

of a multi-byte value is somewhat arbitrary.
Consider 0x76543210 (a 32-bit, 4-byte value)
stored at address 0x10010000.

1. big endian: most significant byte (MSB) to
least significant byte (LSB)
0x10010000 0x76

0x10010001 0x54
0x10010002 0x32
0x10010003 0x10

2. little endian: LLSB to MSB
0x10010000 0x10

0x10010001 0x32
0x10010002 0xb54
0x10010003 0x76

e The MIPS, SPARC, Motorola 68xxx CPUs
are big endian.

K. The Intel x86 family is little endian. /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 47

Gonsider this simple program: \

How to run: spim -file ex4.endian.s, or use xspim

.text
.globl main
main:
1i $t0,0 # clear registers
1i $t1,0
1i $t2,0
1i $t3,0

lbu $t0,valuel # load byte-by-byte
lbu $t1,valuel+l
lbu $t2,valuel+2
1bu $t3,valuel+3

1i $v0,10
syscall # au revoir...

.data
valuel:
.word 0x76543210

From XSPIM’s Data Segments Window:

DATA
[0x10000000] . ..[0x1000fffc] 0x00000000
[0x1000fffc] 0x00000000

KEOXiOOiOOOO] 0x76543210 0x00000000 0x00000000 OxOOOOOOOO/

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 48

~

From XSPIM’s Data Segments Window:

DATA
[0x10000000] . ..[0x1000fffc] 0x00000000
[0x1000fffc] 0x00000000
[0x10010000] 0x76543210 0x00000000 0x00000000 0x00000000

We look at the contents of registers after all the
1bus.

On an Intel/x86 box (csu401.cs):

From XSPIM’s Register/Top Window:

General Registers

RO (r0) = 00000000 R8 (t0) = 00000010 R16 (s0) = 00000000 R24 (t8) = 00000000
R1 (at) = 10010000 R9 (t1) = 00000032 R17 (s1) = 00000000 R25 (t9) = 00000000
R2 (v0) = 00000004 R10 (t2) = 00000054 R18 (s2) = 00000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000076 R19 (s3) = 00000000 R27 (k1) = 00000000

On a Solaris 8/SPARC box (csu501.cs):

From XSPIM’s Register/Top Window:

General Registers

RO (r0) = 00000000 R8 (t0) = 00000076 R16 (s0) = 00000000 R24 (t8) = 00000000
R1 (at) = 10010000 R9 (t1) = 00000054 R17 (s1) = 00000000 R25 (t9) = 00000000
R2 (v0) = 00000004 R10 (t2) = 00000032 R18 (s2) = 00000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000010 R19 (s3) = 00000000 R27 (k1) = 00000000

Conclusion? Be careful of endianness and which

(nachine you use for your assignments! /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 49

4 N

Again, consider 0x76543210 (a 32-bit, 4-byte
value) stored at address 0x10010000.

Why does memory not look like this
(little-endian)?

0x10010000 0x01

0x10010001 0x23

0x10010002 0x45

0x10010003 0x67

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 50

4 N

[Arrays and array indexingj

There is no type system (e.g., C’s int, char) in
assembly language.

The machine is byte addressable, not integer
addressable.

The assembler provides data directives to help
layout data in the data segment, but the
programmer is responsible for manipulating
pointers and addresses according to the size of the

data item in an array.

For example, the assembler provides .word and
.byte data directives.

NOTE: On our systems,
sizeof (int) ==

sizeof (char) ==

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 51

////;How to run: spim -file exb.intarray.s, or use xspim _—\\\\

.text
.globl main
main:
1i $t0,0 # clear sum
la $t1,intarray # array of ints in memory
loop:
lw $t2, ($t1) # for each int
beq $t2,0xff,printsum
add $t0,$t0,$t2 # accumulate
add $t1,$t1,4 # **x**x next int
b loop
printsum:
1i $vO,1 # print_int
move $a0,$t0
syscall
1i $v0,4 # print_string
la $a0,newline
syscall
1i $v0,10
syscall # au revoir...
.data
intarray:
.word 0x01, 0x02, 0x03, 0x04, 0x05
.word Oxff # array terminator
newline:

\\\\» .asciiz "\n" _4////

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 52

For the array of integers:

From XSPIM’s Data Segments Window:

DATA
[0x10000000] ... [0x1000fffc] 0x00000000
[0x1000fffc] 0x00000000
[0x10010000] 0x00000001 0x00000002 0x00000003 0x00000004
[0x10010010] 0x00000005 0x000000ff 0x0000000a 0x00000000

unix-prompt’ spim -file ex5.intarray.s

SPIM Version 6.2 of January 11, 1999

Copyright 1990-1998 by James R. Larus (larus@Qcs.wisc.edu).
A1l Rights Reserved.

See the file README for a full copyright notice.

Loaded: ./trap.handler

15

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 53

////;How to run: spim -file ex6.bytearray.s, or use xspim—\\\\

.text
.globl main
main:
1i $t0,0 # clear sum
la $t1,bytearray # array of bytes in memory
loop:
1bu $t2, ($t1) # for each byte
beq $t2,0xff,printsum
add $t0,$t0,$t2 # accumulate
add $t1,$t1,1 # ****x next byte
b loop
printsum:
1i $vO,1 # print_int
move $a0,$t0
syscall
1i $v0,4 # print_string
la $a0,newline
syscall
1i $v0,10
syscall # au revoir...
.data
bytearray:
.byte 0x01, 0x02, 0x03, 0x04, 0x05
.byte Oxff # array terminator
newline:

\\\\> .asciiz "\n" _4////

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 54

4 N

For the array of bytes on an Intel x86 box:

From XSPIM’s Data Segments Window:

DATA
[0x10000000] ... [0x1000fffc] 0x00000000
[0x1000fffc] 0x00000000
[0x10010000] 0x04030201 0x000aff05 0x00000000 0x00000000
[0x10010010] ... [0x10020000] 0x00000000

NOTE: The little endianness of x86 makes the
data look “funny”!

unix-prompt}, spim -file ex5.intarray.s

SPIM Version 6.2 of January 11, 1999

Copyright 1990-1998 by James R. Larus (larusQcs.wisc.edu).
A1l Rights Reserved.

See the file README for a full copyright notice.

Loaded: ./trap.handler

15

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 55

4 N

[Array Indexing: Days in a month]

How to run: spim -file ex7.daysinmonth.s, or use xspim

.text
.globl main
main:
1i $v0,4 # print_string
la $a0,promptmonth
syscall
1i $v0,5 # read_int
syscall
move $s0,$v0 # save month (in $sX)
1i $v0,4 # print_string

la $a0,outphrase
syscall

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 56

éa R

sub $s0,$s0,1 # arrays start at index O
s11 $t1,$s0,2 # multiply by 4 wrt integer

lw $t2, month2days($t1) # table lookup
1i $v0,1 # print_int
move $a0,$t2
syscall
1i $v0,4 # print_string
la $a0,endline
syscall
1i $v0,10
syscall # au revoir...
.data
month2days:
Jan Feb Mar Apr May June

.word 31, 29, 31, 30, 31, 30

July Aug Sept Oct Nov Dec

.word 31, 31, 30, 31, 30, 31
promptmonth:

.asciiz "What month in year 2000 (1 to 12)7 "
outphrase:

.asciiz "In that month, there are "
endline:

.asciiz " days.\n"

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 57

unix-prompt} spim -file ex7.daysinmonth.s

SPIM Version 6.2 of January 11, 1999

Copyright 1990-1998 by James R. Larus (larus@cs.wisc.edu).
A1l Rights Reserved.

See the file README for a full copyright notice.

Loaded: ./trap.handler

What month in year 2000 (1 to 12)7 1

In that month, there are 31 days.

What month in year 2000 (1 to 12)7 2
In that month, there are 29 days.

What month in year 2000 (1 to 12)7 3
In that month, there are 31 days.

What month in year 2000 (1 to 12)7 6
In that month, there are 30 days.

What month in year 2000 (1 to 12)7 12
In that month, there are 31 days.

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 58

4 N

[Simple Subroutines: jal, jr $ra]

How to run: spim -file ex8.simple.sub.s, or use xspim
Based on the days-in-month example

.text
.globl main
main:

jal getinput # simple subroutine call

+*

move $s0,$v0 save month (in $sX)

sub $s0,$s0,1 # arrays start at index O
s11 $t1,$s0,2 # multiply by 4 wrt integer
lw $a0, month2days($tl) # table lookup

jal outputdays

1i $v0,10
syscall # au revoir...

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 59

a R

getinput: #---------------""--"""""""""""—"""——— -
1i $v0,4 # print_string
la $a0,promptmonth
syscall
1i $v0,5 # read_int
syscall
jr $ra # return to caller

outputdays: #-----——----—----—---————— oo

move $s0,$a0 # Save number of days
1i $v0,4 # print_string

la $a0,outphrase

syscall

move $a0,$s0 # Restore number of days
1i $v0,1 # print_int

syscall

1i $v0,4 # print_string

la $a0,endline # simple newline
syscall

jr $ra # return to caller

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 60

4 N

.data
month2days:
Jan Feb Mar Apr May June

.word 31, 29, 31, 30, 31, 30
July Aug Sept Oct Nov Dec

.word 31, 31, 30, 31, 30, 31
promptmonth:

.asciiz "What month in year 2000 (1 to 12)7 "
outphrase:

.asciiz "In that month, there are "
endline:
.asciiz " days.\n"

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 61

/ (Subroutines and the Stack]) \

Consider the C code:

int fact(int n)
{
if(n<1)
return(1);
else
return(n * fact(n - 1));

NOTE:

1. It 1s recursive.

How do we keep track of the different return
addresses for jr $ra?

2. It has a parameter n.

How do we pass an arbitrary number of
p
paralneters?

3. n 1s also a local variable

How do we allocate storage for local variables,

K one set for each recursive call? /

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 62

/Answer: Use the stack. \

How to run: spim -file ex9.factorial.s, or use xspim
Based on textbook page A-26 to A-29

.text
.globl main
main:

Handle callee-saved registers (except $sX, oops)
subu $sp,$sp,32 # Push stack frame, grows down
sw $ra,20($sp) # ...return address (20--23)
sw $fp,16($sp) # ...frame pointer (16--19)
addu $fp,$sp,28 # New frame pointer (28--31)

jal getinput # Get input from user, n
move $s0,$v0 # Save it

move $a0,3$v0 # Use it as parameter
jal fact # Compute n!

move $a0,$s0 # Value n

move $al,$v0 # Value n!

jal printans # Print them

Restore registers and stack frame
lw $ra,20($sp) # ...return address
lw $£fp,16($sp) # ...frame pointer
addu $sp,$sp,32 # Pop stack frame
jr $ra # Return to caller (trap.handler)

_ _

CMPUT 229 (Draft 2001) Chp.

3, Appendix A: Assembly Language 63

////;act:

Handle callee-saved
subu $sp,$sp,32 #
sw $ra,20($sp) #
sw $fp,16($sp) #
addu $fp,$sp,28 #

sw $a0,0($fp) #

1w $v0,0($fp) #
bgtz $v0,$L2 #
1i $vo,1 #
j $L1 #

$L2:
lw $v1,0($fp) #
subu $vO,$vi,1 #
move $a0,$v0 #
jal fact #
#
#
#

1w $v1,0($£fp)
mul $v0,$v0,$vi

$L1:

Restore registers
lw $ra,20($sp) #
lw $fp,16($sp) #
addu $sp,$sp,32 #

#
jr $ra #

registers

Push stack frame, grows down
...return address (20--23)
...frame pointer (16--19)
New frame pointer (28--31)

Save argument (n) (28--31)

Inside the function...

Load n

Branch if n > O
Return value 1

Clean-up stack

Load n (inefficient?)
Compute (n-1)

Argument for recursive call
Recurse.

Return value in $vO
Re-load n

Compute fact(n-1) * n

and stack frame

...return address
...frame pointer
Pop stack frame

Result is in $vO
Return to caller

~

_/

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 64

4 N

getinput:
1i $v0,4 # print_string
la $a0,promptnum
syscall
1li $v0,5 # read_int
syscall
Return value in $vO
jr $ra # return to caller

NOTE: Data segment between text segments

Be sure to start next text segment with .text
.data

promptnum:
.asciiz "Compute n! for what n? "

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 65

[N

.text
printans:
A simple subroutine, should save $sX but don’t
move $s0,$a0 # Save n for now
move $s1,%al # Save n! for now
move $s2,%ra # Save n! for now

la $a0, preans # Print answer header

1i $v0,4 # print_string
syscall
move $a0,$s0 # Restore n
1i $vO,1 # print_int
syscall
la $a0, postans # Print more of answer
1i $v0,4 # print_string
syscall
move $a0,$s1 # Restore n!
1i $vO,1 # print_int
syscall
la $a0, newline
1i $v0,4 # print_string
syscall
move $ra,$s2 # Restore return address
jr $ra
.data
preans: .asciiz "The factorial of "

postans: .asciiz " is "

newline: .asciiz "\n"

- _/

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 66

/ (Parameters and local Variables) \

int func(int a, int b, int c¢, int d, int e, int f)

{ /* Callee */
int i, j;
return O;

+

main()

{ /* Caller */

func(0, 1, 2, 3, 4, 5); /* Call-site */

main: subu $sp,$sp,4 # Push argument (int f)
1i $t0,5 # ..by value, 5
sw $t0,0($sp)

+=*
o
o
n
= p

subu $sp,$sp,4 argument (int e)
1i $t0,4 # ..by value, 4
sw $t0,0($sp)

1i $a3, 3 # Pass by value in reg: d = 3
1i $a2, 2 # Pass by value in reg: c = 2
1i $al, 1 # Pass by value in reg: b =1
1i $a0, O # Pass by value in reg: a =0
jal func

addu $sp,$sp,4 # Pop argument (int e)

\\\\» addu $sp,$sp,4 # Pop argument (int f) _4////

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 67

~

It can be simplified:

main: subu $sp,$sp,8 # Grow stack for 2 parameters
1i $t0,5 # Push argument by value: f =5
sw $t0,4($sp) # NOTE: the offset = 4
1i $t0,4 # Push argument by value: e = 4

sw $t0,0($sp)

1i $a3, 3 # Pass by value in reg: d = 3
1i $a2, 2 # Pass by value in reg: c = 2
1i $al, 1 # Pass by value in reg: b =1
1i $a0, O # Pass by value in reg: a =0
jal func

+*®

Caller cleans up arguments

+*

addu $sp,$sp,8 Pop arguments e and f

High Memory

Argument5: f=5

$sp ~ Argument 4: e=4

Low Memory

NOTE: The layout of the stack frame here (and
next slide) is different than the previous example,
but consistent with Figure A-11, pg. A-25.

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 68

(r)

func:

Entry code

Handle callee-saved registers
subu $sp,$sp,32 # Grow stack for 8 words
sw $ra,28($sp) # Save return address (28--31)
sw $fp,24($sp) # Save old frame pointer (24--27)
addu $fp,$sp,28 # New frame pointer

Save parameters to stack (can be optimized out

+*®

by always keeping variables in registers

and never calling other subroutine, $aX not saved)
sw $a0,8($sp) # Save argument a

sw $al,12($sp) # Save argument b

sw $a2,16($sp) # Save argument c

sw $a3,20($sp) # Save argument d

High Memory

Argument 5: f=5 8($fp) 36(3sp)
Argument 4: e =4 4($fp) 32($sp)
$fp Saved $ra 0($fp) 28(3sp)
Saved $fp 24($sp)
Arg/Local Vard = 3 20($sp)
Arg/Local Varc =2 16($sp)
Arg/Local Varb =1 12($sp)
Arg/Local Vara=0 8($sp)
Local variable i 4($sp)

\

$sp Local variable j 0($sp)

K Low Memory /

\

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 69

4 N

Note: Inside the code for func, the parameters
and local variables are all at addresses that are
relative to the stack pointer (i.e., $sp-relative
addressing)

1. int i is 4($sp)
2. int j is 0($sp)
int a is 8($sp)
int bis 12($sp)
int cis 16($sp)
int dis 20($sp)

int e is 32($sp) or 4($£fp)

T A

int f is 36($sp) or 8($fp)

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 70

4 N

The exit code is a lot simpler...

func:
...snip...
Exit code
Restore registers and stack frame
lw $ra,28($sp) # Restore return address (28--31)
lw $fp,24($sp) # Restore frame pointer (24--27)

addu $sp,$sp,32 # Shrink stack for 8 words

Assume return value is in $vO
jr $ra

High Memory

\i

Argument 5: f=5

$sp Argument 4: e=4

Low Memory

Look familiar?

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 71

4 R

[Concluding Remarks on Subroutinesj

e Although subroutine calls have overheads, it
is generally better to modularize your code

e Keep parameters and values in registers as

much as possible

e Avoid spilling and filling registers to the
stack, but it can be unavoidable since only

finite number of registers

e A solid understanding of stack frames and
activation records is important for Cmput 415
(Compilers), Cmput 425 (O-O Languages),
Java VM

e Compilers for high-level languages, such as C,
C++, Java, can optimize the above better

than humans
— inlining code

— register allocation

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 72

4 N

[C-style control ﬂow]

In various examples, we have already seen how to
implement if-then control flow and loops in
assembly.

A few quick examples to complete the picture:
1. if-then-else
2. for loop
3. while loop

4. switch and case

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 73

/ (if-then—elsej \

From pg. 124, textbook:

if(i==3j)
f =g+ h;
else f=g-h;

e Assume f is in $s0.
e Assume g is in $s1. Assume h is in $s2

e Assume i is in $s3. Assume j is in $s4

Test if condition: 77 i == j 77
bne $s3,$s4,Else # if false, goto Else

Do "if" part

add $s0,$s1,$s2 # f=g+h
j Exit # skip over "else" part
Else:
Do "else" part
sub $s0,$s1,$s2 #f=g-h
Exit:

2 _/

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 74

4 N

[f or loop]

/* for(init-top; test; bottom) */
for(i = 0; i < j; i++)
{

/* Loop body */

e Assume i is in $s0. Assume j is in $s1.

Init-Top:
Initialize loop at top
1i $s0, O #1i=20
Test:
Test exit condition for loop: ! (i< j)
bge $s0,$s1,Exit-For # 11! Dual of < is >= !!!
Loop body
Bottom:
Bottom: set up next iteration
addi $s0,$s0,1 # i++
j Test
Exit-For:

2 _/

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 75

4 N

[while loopj

while(workToDo)
{
/* Loop body */

e Assume workToDo is in $s0O.

While-Test:
Test exit condition for loop
beq $s0,$zero,Exit-While # Test "opposite"/dual

Loop body

Unconditionally go back to top/while-test
j While-Test
Exit-While:

_ _

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 76

4 N

[switch—case with jump table]

From pg. 129 of the textbook.

switch(k)

{
case 0: f =i + j; break; /* k = 0 */
case 1: f = g + h; break; /* k = 1 %/
case 2: f = g - h; break; /*x k = 2 %/
case 3: f =i - j; break; /*x k = 3 %/

}

e Assume f is in $s0.
e Assume g is in $s1. Assume h is in $s2.
e Assume i is in $s3. Assume j is in $s4.

e Assume k is in $s5. Assume $t2 holds 4.

CMPUT 229 (Draft 2001) Chp. 3, Appendix A: Assembly Language 77

[N

switch(k)

{
case 0: f =1 + j; break; /* k = 0 */
case 1: f = g + h; break; /* k = 1 %/
case 2: f = g - h; break; /*x k = 2 %/
case 3: f =1 - j; break; /* k = 3 */

}

Check the boundaries of values for k

slt $t3,$s5,%$zero # Isk <07
bne $t3,$zero,Exit-Switch # bne => true, leave
slt $t3,$s5,$t2 # Is k < 4 ($t2 =4) 7

beq $t3,8zero,Exit-Switch # beq => false, leave

sll $t7,%$s5,2 # kx4
add $t1,$t1,$t7 # $t1 = addr JmpTable [k]
1w $t0,0($t1) # Load addr from JmpTable
jr $t0 # Jump to correct code
LO: add $s0,$s3,$s4 # f =i+ j
j Exit-Switch
L1: add $s0,$s1,$s2 #f=g+h

j Exit-Switch

..etc...

Exit-Switch:

CMPUT 229 (Draft 2001) Chp. 4.5, App. B: Basic Digital Logic 78

/ [Basic Digital Logic]

Integrated circuits (i.e., chips) in modern
computers are made of digital circuits.

Some important physical components of digital
circuits are:
1. Logic gates
e implement boolean algebra/logic

e inputs and outputs are electrical signals

2. Wires

e connect combinations of gates

e conduct electricity

3. Latches and flip-flops
e used to temporarily hold a binary value

e actually a combination of gates (see
Appendix B)

4. Clock

e a periodic electrical pulse

K e important for latches and flip-flops

~

_/

CMPUT 229 (Draft 2001) Chp. 4.5, App. B: Basic Digital Logic 79

@ N

ates implement boolean logic: AND gate, OR

gate, invertor, multiplexor

Figure 4.8, pg. 231

1. ANDgate (c=a-b) n“ c=a-b

a ——»]
Cc
b —

2. ORgate(c=a+b)

o
1
o
+
o

=y Fol =Y le)
RN T (Y

3. Inverter (c = a)

Lo
o

0 1
1 0
4. Multiplexor d c
om0 c-a I
else c = b) 0 a
a—»0 1 b
c
b —{1

A multiplexor is really a “selector” gate.

How is a multiplexor implemented? Answer:

Using other gates.

N

/

CMPUT 229 (Draft 2001) Chp. 4.5, App. B: Basic Digital Logic 80

s D)

combination of gates and multiplexors allows a
digital circuit to be used for different purposes

(i.e., computation) based on the input to the

multiplexor (i.e., operation).

Result

CMPUT 229 (Draft 2001) Chp. 4.5, App. B: Basic Digital Logic 81

-~

Gates can also be combined to perform arithmetic

as well as boolean logic.

Together, such a circuit is called an arithmetic
logic unit (ALU).

Figure 4.14, pg. 234 (A 1-bit ALU)

Carryln

Result

N

CarryOut

CMPUT 229 (Draft 2001)

Chp. 4.5, App. B: Basic Digital Logic

-~

ALUs.

Bnegate

Y VY

A4
a0 —| Carryln
b0 —»{ ALUO
> Less
CarryOut

Figure 4.19, pg. 240

v VY Vv

a1l —| Carryln
b1 —»| ALU1
0 —| Less
CarryOut

v VY Vv

a2 —| Carryln
b2 —»| ALU2
0 —>| Less
CarryOut

Operation
Result0 o
L
Result1 L
—.D—Do—»Zero
—
Result2

a31 — Carryln
b31 —| ALU31
0 —>» Less

Result31

Set

> QOverflow

82

~

And 1-bit ALUs can be combined to form 32-bit

CMPUT 229 (Draft 2001) Chp. 5: Processor Datapath and Control 83

4 N

[The Processor: Datapath & Controlj

Recall that latches hold binary values.

Therefore, they are “memory” components, which
is what we need for registers, the program counter
(PC), and memory.

The value of latches can change with every clock
tick.

A high-level view of a CPU’s digital circuit is
(Figure 5.1, pg. 340) (next page).

Boxes are memory components. Lines are wires.

ALU is a combination of gates and wires.

_ _

CMPUT 229 (Draft 2001) Chp. 5: Processor Datapath and Control 84

4 ™

| Data
—>| Register #
PC Address Instruction = Regi sters >ALU Address
I nstruction Register #
nenory oot a
Register # menory .
Data

CMPUT 229 (Draft 2001) Chp. 5: Processor Datapath and Control 85

4 N

1. Immediate addressing

| op | rs | rt | Immediate

2. Register addressing

| op | rs | rt | rd | | functl Registers
[[Register

3. Base addressing

| op | rs | rt | Address | Memory
T

| Halfword Word

| Register |
[

{?

4. PC-relative addressing

| op | rs | rt | Address | Memory
l

| PC | él—)— Word
[

5. Pseudodirect addressing

| op | Address | Memory

1

| PC | é)—» Word

[|

Recall how instructions are encoded.

Fig. 3.17, pg. 152

N _/

CMPUT 229 (Draft 2001) Chp. 5: Processor Datapath and Control 86

4 N

| Data
—>| Register #
PC Address Instruction = Regi sters >ALU Address
I nstruction Register #
nenory oot a
Register # menory .

What datapaths are used for the following?

1. 1w $s1,4($s2)
e rt = sl, rs = s2, offset = 4
2. sw $s1,0($s2)
o rt = sl, rs = s2, offset = 0
3. add $s1,%$s2,$s3
e rd = sl, rs = s2, rt = 83, funct = 0x20

4. addi $s1,$s2,100

e rt = sl, rs = s2, imm = 100

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 87

/ [Exceptions and Interrupts] \

Skip ahead to Chapter 5.6, pg. 410.
See also Appendix A.7, pg. A-32.

Problem:

How should we handle abnormal or unpredictable
events?

Discussion:

We already use instructions like beq and s1t/bne
to change the flow of control for normal and
predictable events.

With MIPS, an exception is any unexpected
change in control flow.

What if the frequency of the events were low (but
important when they occur) (e.g., errors) or if the
events can occur at arbitrary times, not just

within certain parts of the program (e.g., key is

Kmessed) : /

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 88

4 N

Answer:

Modern CPUs use exceptions to handle
abnormal internal or external events because the

user:
1. does not want to constantly check for it
(e.g., arithmetic overflow)
e low frequency of these abnormal events
e There are too many abnormal events to

explicitly check for after each instruction.

2. does not know how to handle it

(e.g., illegal or undefined instruction)
e let the OS handle it
e improve level of abstraction
3. should not handle it (i.e., privileged for the
operating system)
e let the OS handle it (i.e., system call)

e for reasons of protection and security

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 89

4 N

Modern computers use interrupts to handle

unpredictable external events because the user:
1. does not want to constantly check for it
(e.g., key is pressed)
e relatively low frequency of these events
e can happen at any time
2. wants the event to be handled in a timely
fashion (e.g., disk drive has the desired data)

e want to avoid delay to avoid performance

loss

e want to avoid delay in handling in case
data can be lost

e can happen at any time

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 90

4 h

In many ways, handling an exception or interrupt

is like a subroutine call:
1. control flow is temporarily changed

2. control flow returns to original point when

done
but:

1. instead of a subroutine we have an exception
handler, supplied by the operating system.
For SPIM, the handler is at address

0x80000080

2. we have coprocessor 0 to manage
exception-related information, including the

exception program counter (EPC)
3. we have a cause register
4. we have a status register

5. we have rfe (in addition to jr) to return

from an exception

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 91

4 N

(Exceptions Revisited]

Subroutines: Expected changes in control flow

Exception Handler: Unexpected changes in
control flow

Exception Handl er

..... —_— . kt ext 0x80000080

top: \"
..... nfcO0 $ko, $13 # Cause register to kO
jal sub nfcO $ki, $14 # EPC to $ki

..... addi u $k1,%k1,4 | # Goto PC + 4
..... rfe
..... jr $ki

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 92

4 N

As part of exception handling, Coprocessor 0

must (see page A-32):

1. record the address of the offending instruction
e EPC, aka register $14
e NOTE: $14 is not the same as the user’s

register 14, which is why we use mfcO

2. save the state of the CPU so that it can be

restored with a rfe (restore from exception)

3. indicate the cause of the exception

e cause register, aka register $13

4. make available the means to mask interrupts

e status register, aka register $12

5. indicate the memory being accessed, if any,

when exception occurred

e BaddVAddr register, aka register $8

6. set to kernel mode, interrupts disabled

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 93

4 N

The Cause Register indicates why we are in the
handler (pg. A-33).

e exception code = 0 = INT (external
interrupt)

e exception code = 8 = SYSCALL (syscall
exception)

e exception code = 10 = RI (reserved

instruction exception)

e exception code = 12 = OVF (arithmetic

overflow)

15 10 5 2

Pending Exception
interrupts code

e can mask and shift the bits to get the
exception code

_ _/

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 94

4 N

Status Register:
Nesting exceptions and interrupts gets very tricky.

Among other things, an operating system would
use the status register to mask interrupts (i.e.,
temporarily turn off or ignore selected interrupts)

15 8 5 4 3 2 1 0
\ U U J
Interrupt ~ ~ ~

mask Old Previous Current
A A A
q&ex ‘&&‘Q\@ q&ex \'é}@\@ qfex \'é}@\@

ARy Q& X ARy

TETFTETFTETS

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 95

A key concept is the notion of a user state vs.

system state

Other names for system state include: supervisor
state, privileged state, OS state, kernel mode

A modern operating system provides protection
and security in this way

How are exceptions detected?

1. Interrupts from I/O devices: an electrical
signal to the CPU itself from the motherboard

2. Undefined instruction: CPU control does not
recognize the op code

3. Arithmetic overflow: ALU generates a signal

out

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 96

(Review) Some important uses of exceptions

include:
1. asking the operating system to perform some
action
e usually synchronous
e system call (syscall)

e trap

2. servicing an I/O device
e usually asynchronous
e keyboard is pressed

e timer interrupt for context switch

3. dealing with low-frequency errors
e usually synchronous

e arithmetic overflow

_ _

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 97

/ (trap : handler] \

The default exception handler is in file

trap.handler, which is usually loaded when you
start SPIM /XSPIM.

The default trap.handler:

1. prints out a simple message when an

exception occurs
2. 1gnores interrupts
You have to modify this file in order:

1. to redefine the actions taken when an

exception occurs

2. to handle interrupts

With SPIM, you can use your new exception
handler by running with;

spim -notrap -file your_filename

Consider an annotated version of the default

Ktrap .handler. /

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 98

Paul: This file contains the original trap.handler (no changes made
Paul: to kernel) and a main function, all in the same file.

Paul: Run with: spim -notrap -file trap.h.annotated

Define the exception handling code. This must go first!

.kdata
__ml_: .asciiz " Exception "
__m2_: .asciiz " occurred and ignored\n"
__e0_: .asciiz " [Interrupt] "
__el_: .asciiz ""
__e2_: .asciiz ""
__e3_: .asciiz ""
__e4_: .asciiz " [Unaligned address in inst/data fetch] "
__eb_: .asciiz " [Unaligned address in store] "
__eb_: .asciiz " [Bad address in text read] "
__eT7_: .asciiz " [Bad address in data/stack read] "
__e8_: .asciiz " [Error in syscall] "
__e9_: .asciiz " [Breakpoint] "
__el0_: .asciiz " [Reserved instruction] "
__ell : .asciiz ""
__el2_: .asciiz " [Arithmetic overflow] "
__el3_: .asciiz " [Inexact floating point result] "
__el4_: .asciiz " [Invalid floating point result] "

elb: .asciiz " [Divide by 0] "

__el6_: .asciiz " [Floating point overflow] "
__el7_: .asciiz " [Floating point underflow] "
Paul: __excp is an array of pointers

_-excp: .word __eO_,__el_,__e2 e3 ed e9

ell

_,__eb
eld

_,__eb
elb

el_,__
el6

e8_,__
el7_

-0 —— —_—

el3

-

el2

Y= -

.word __el0

—_ —— —_ —— —_3 —— —_ —— —_ —— —_ —— - ——

Paul: s1 and s2 are save locations for this non-re-entrant handler

sl: .word O
s2: .word O

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 99

.ktext 0x80000080

Paul: .set noat allows us to use register $at without assembler complaining

.set noat
Because we are running in the kernel, we can use $k0/$k1l without

saving their old values.

Paul: Since we could have had an exception in the middle of a

Paul: pseudo-instruction we have to save $at too.

move $k1 $at # Save $at

.set at

sw $v0 si # Not re-entrant and we can’t trust $sp
sw $a0 s2

mfcO $k0 $13 # Cause

Paul: A pending interrupt of level 0 would have pattern

Paul: 11 Bit positions

Paul: 1098 7654 3210

Paul:

Paul: 0100 0000 0000

Paul: 0x44 = 0000 0100 0100

Paul: Therefore, any interrupt would be greater than 0x44

sgt $v0 $k0 0x44 # ignore interrupt exceptions

Paul: This comment was changed on Nov. 29/00.

Paul: Note that you should NOT do a PC += 4 for an interrupt, but
Paul: that’s what this code (erroneously) does.

Paul: Branching to "ret" avoids clearing of Cause reg

bgtz $v0 ret

Paul: Next instruction is a NOP, for the branch delay slot

addu $0 $0 0

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 100

1i $v0 4 # syscall 4 (print_str)
la $a0 __mi_

syscall

1i $v0 1 # syscall 1 (print_int)
srl $a0 $k0 2 # shift Cause reg
syscall

1i $v0 4 # syscall 4 (print_str)

lw $a0 __excp($k0)

Paul: Unlike a real MIPS CPU, SPIM handles syscalls differently.

Paul: Normally, you would not see a syscall inside the exception handler.

syscall
Paul: 11 Bit positions
Paul: 1098 7654 3210
Paul:
Paul: 0x18 = 0000 0001 1000 => exception code = 0110
Paul: 0110 = 6 = IBUS = bus error on instruction fetch

bne $k0 0x18 ok_pc # Bad PC requires special checks
mfcO $a0, $14 # EPC

and $a0, $a0, 0x3 # Is EPC word-aligned?

beq $a0, 0, ok_pc

1i $v0 10 # Exit on really bad PC (out of text)
syscall
ok_pc:
1i $v0 4 # syscall 4 (print_str)
la $a0 __m2_
syscall
mtcO $0, $13 # Clear Cause register
ret: lw $v0 si
1w $a0 s2
mfcO $k0 $14 # EPC
.set noat
move $at $ki # Restore $at
.set at
rfe # Return from exception handler

addiu $k0 $k0 4 # Return to next instruction

N /

CMPUT 229 (Draft 2001) Chp. 5.6, A.7: Exceptions and Interrupts 101

KI‘he default trap.handler also contains the \
__start code that calls your main. We must
include our main in the same file if we use a
custom exception handler.

Standard startup code. Invoke the routine main with no arguments.

.text

.globl __start
__start:
1w $a0, 0($sp) # argc
addiu $al, $sp, 4 # argv
addiu $a2, $al, 4 # envp
s11 $v0, $al, 2
addu $a2, $a2, $vO
jal main
1i $v0 10
syscall # syscall 10 (exit)

Run with: spim -notrap -file trap.h.annotated
.globl main

main:
1i $vO, 4 # syscall 4 (print_str)
la $a0, allok
syscall

jr $ra

.data

allok: .asciiz "All is ok\n"

The above file is available at:

http://www.cs.ualberta.ca/ "paullu/

K C229/trap.h.annotated /

CMPUT 229 (Draft 2001)

Chp. 8: I/O Programming 102

-

_

~

[Input and Output]

CPU

Memory bus
100 to 133 MHz

Without peripherals for input and output (I/0),
a computer would not be very useful.

How would we program in C, play video games,
or surf the Web without I/O devices?

Memory

AGP

Bridge

33 or 66 MH:
1/O bus (PCI)

Disk]

Network | Video

The textbook lists input and output as 2 of the 5
classic components of a computer.

_/

CMPUT 229 (Draft 2001)

Chp. 8: I/O Programming

103

transfer) (Figure 8.2 with updates).

KI‘here are a many kinds of I/O devices, each With\
different speeds (e.g., bytes/second of data

Device Purpose Data rate
(KB/s)
Keyboard input 0.01
Mouse input 0.02
Voice input input 0.02
Voice output output 0.60
Laser printer output 100 to 200
Graphics display output 30,000 to
60,000
Network /LAN both 10,000
Magnetic disk storage 10,000

Qevices) :

Note that CPUs run at 800 MHz to 1.4 GHz
today (i.e., CPUs are much faster than I/O

_/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 104

4 N

A mouse (Figure 8.3):

+20inY) +20inY

—20in X +20in Y +20in X
Initial

—20in X position +20in X
of mouse

—20inY) —20inY

_20in X —20in Y +20 in X

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 105

4 N

Hard (magnetic) disk (Figure 8.4):

> Platters
\ Tracks

N\ = %@
\. J

==

Sectors

Track

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 106

4 N

To make 1/0O work, we need:

1. a way to connect the I/O devices to the

processor and memory

e E.g., commodity PCI I/O bus and bridge

to memory bus
2. a way for the CPU to control the devices and
transfer data
e E.g., I/O instructions

e LE.g.. coprocessors and direct memory
access (DMA)

e E.g., device registers: control and data

registers

3. a convenient application programmer’s
interface (API)

e E.g., read(), write(), printf (),

scanf () in Unix

e E.g., syscall in SPIM/XSPIM

_ _

CMPUT 229 (Draft 2001)

Chp. 8: I/O Programming

107

/ [Connecting I/0 DevicesJ

CPU

Memory bus
100 to 133 MHz

K may be slow.

Memory

Bridge

AGP

ﬁ

33 or 66 MH:

I/O bus SPCI)

Disk

Network

Video

may want higher performance.

1. Commodity I/O buses, like PCI, make it
cheaper to design and build I/O devices.

2. Memory bus can get faster independently.

3. Accelerated Graphics Port (AGP) for
graphics: some special-purpose applications

4. Moving data across 2 buses and a bridge chip

~

_/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 108

4 N

[Controlling I/0 Devices]

The CPU is “in command” of the computer.

Historically, the CPU controls I/O devices by
either:

1. a CPU with special-purpose instructions (e.g.,
QUTPUT D3,DISK)

2. memory-mapped I/O: I/O devices are
mapped to reserved portions of the address
space

Memory-mapped I/0 is the more common of the
two options these days.

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 109

~

/ [Memory-l\/lapped I/ O]

OXFFFFFFFF

OxFFFFO000

0x00000000

1. Selected addresses do not refer to RAM
memory. Instead, the addresses are mapped
to special “registers” on the 1/O device.

2. Regular data movement instructions (e.g., 1w,
sw) control the I/O device and transfer data.

3. The memory controller hardware (and 1/0
bus hardware) redirects accesses
(loads/stores) to these memory locations to

K the 1/0O device itself. /

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 110

-~

~

[Peripheral Registersj

e Peripheral devices are visible via collections
of “registers” accessible as “special” memory
locations.

e Unlike CPU registers, these “registers” are

not for storing or computing with data.

e Rather, the action and value of data moved
in and out of the “registers” have side
effects: initializing a device, starting or
stopping an I1/0O operation, changing the state
of the device, clicking a speaker, etc.

Compare this with the Status register in
MIPS exception handling and turning on/off

interrupts.

e The word “special” means that they are not
really memory locations and they do not
behave like ones.

_/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 111

4 N

Such a register may be in fact:

1. a data buffer storing an outgoing or incoming
character

To write an array of bytes, one may have to
write each byte to the same address.

2. a control register for selecting/changing the
parameters of the device

3. a command register (storing a value there
may result in a specific operation being
performed on the device)

4. an address register containing the address of a

memory buffer taking part in a data transfer

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 112

4 N

[Processor vs. I/O Speed Mismatch]

(Adapted from Dr. Patterson’s notes.)

A 1000 MHz (1 GHz) CPU can execute 1 billion
load /stores per second.

—> about 4,000,000 KB /s data rate (assuming
the buses are fast enough)

But, I/0O devices vary from 0.01 KB/s to 60,000
KB/s

—> CPU is much faster than I/O

Problems:

1. For input, the device may not be ready to

send as fast as CPU wants data

2. For output, the device may not able to
receive data as fast as CPU wants to send it

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 113

4 N

The CPU and I/O device do not share a common
clock, and the CPU is so much faster.

Therefore,
1. If the CPU sends data faster than the I/O
device can handle it, data could be lost

e i.e., writing to the device’s data register
before previous value is handled

2. If the CPU reads data faster than the I/0
device send handle it, data could be repeated

e i.e., reading from the device’s data register
before it changes to new value

What is the solution?

Flow control aka handshaking aka
synchronization

Literally, before starting to send/receive data, the
CPU checks if it is OK to send/receive so as to

not overwhelm the slower device.

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming

114

-~

Pseudo-code for synchronization:

for(all data)
{

send/receive next data item;

+

ready” or not.

Data is sent to/received from a data register.

Normally, such a while loop would result in an

infinite loop.

But, an external factor (i.e., the I/O device)

intervenes to allow the loop to exit.

This is a simple example of synchronization

topic in operating systems.

_

while(device not ready) { /* poll */ };

A control register indicates whether the “device is

(between CPU and peripheral), which is a major

~

_/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 115

4 N

SPIM/XSPIM only supports one memory-mapped

I/0O device: a character-based terminal

Figure A.15, pg. A-37:

Unused 1 1

Receiver control

(0xffff0000)
Interrupt—T T— Ready
enable

Unused 8
Receiver data
(0xffff0004)

Received byte
Unused 1 1

Transmitter contro
(0xffff0008)

In’cerrupt—T T— Ready
enable

Unused 8

Transmitter data
(0xffff000c)

Transmitted byte

Problem: Write a program to input a single
character and echo it (twice).

_ _/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming

116

~

-~

How to run: spim -mapped_io -file ex10.echoinput.s
or: xspim -mapped_io
.text
.globl main
main:
1i $t0,0xff£ff0000 # Base address for terminal
waitinput:
Polling loop to read input
1w $t1, 0($t0) # Recv control register
andi $t1,$t1,0x1 # Ready for reading?
beq $t1,$zero,waitinput # Branch if no
1w $t2,4($t0) # Yes, now get the byte
waitout:
Polling loop to wait for output to be ready
lw $t1, 8($t0) # Xmit control register
andi $t1,$t1,0x1 # Ready for writing?
beq $t1,$zero,waitout # Branch if no
sw $t2, 0xc($t0) # Yes, now send the byte
waitout2:
Second polling loop for output
1w $t1, 8($t0) # Xmit control register
andi $t1,$t1,0x1 # Ready for writing?
beq $t1,$zero,waitout2 # Branch if no
sw $t2, 0xc($t0) # Yes, now send the byte
j waitinput # Loop forever...

2

_/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 117

/VV hat happens if we don’t check for “ready for \
reading”? (Be quick with a Control-C.)

How to run: spim -mapped_io -file exll.echoinput.s

or: xspim -mapped_io
.text
.globl main
main:
1i $t0,0xff£ff0000 # Base address for terminal
waitinput:
Read the input whether ready or not
lw $t2,4($t0) # Yes, now get the byte
waitout:

Polling loop to wait for output to be ready
lw $t1, 8($t0) # Xmit control register
andi $t1,$t1,0x1 # Ready for writing?
beq $t1,$zero,waitout # Branch if no

sw $t2, 0xc($t0) # Yes, now send the byte

waitout2:
Second polling loop for output
lw $t1, 8($t0) # Xmit control register
andi $t1,$t1,0x1 # Ready for writing?
beq $t1,$zero,waitout2 # Branch if no

sw $t2, 0xc($t0) # Yes, now send the byte

\\\\» j waitinput # Loop forever... _4////

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 118

. N

hat happens if we don’t check for “read for

writing” on the second output?

How to run: spim -mapped_io -file exl12.echoinput.s

or: xspim -mapped_io
.text
.globl main

main:
1i $t0,0xff£ff0000 # Base address for terminal

waitinput:

Polling loop to read input

1w $t1, 0($t0) # Recv control register
andi $t1,$t1,0x1 # Ready for reading?
beq $t1,$zero,waitinput # Branch if no

1w $t2,4($t0) # Yes, now get the byte
waitout:
Polling loop to wait for output to be ready
lw $t1, 8($t0) # Xmit control register
andi $t1,$t1,0x1 # Ready for writing?

beq $t1,$zero,waitout # Branch if no
sw $t2, O0xc($t0) # Yes, now send the byte

Send output again, ready or not
sw $t2, 0xc($t0) # Yes, now send the byte

j waitinput # Loop forever...

N _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 119

4 N

We still have problems:

1. The CPU spends a lot of time in the

waitinput, waitout, and waitout2 loops.

2. When there is a lot of data to be transferred
to/from the device, the CPU is dedicated to
that task.

Both are a “waste” of CPU cycles which could be
used for something more useful, like computation.

What can we do?

1. Use interrupts to inform CPU when a device

is ready, or otherwise needs attention.

2. Use special hardware to move data to/from

device.

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 120

4 N

[I /O Strategies]

How do we actually transfer data in and out
of an I/O device?

The choice of strategy depends on:

1. capability of the hardware device

2. the length or complexity of the I/O operation
Our three main strategies:

1. Programmed I/O: uses polling; CPU is
dedicated to the task for the whole operation

2. Interrupt-driven I/0: CPU can do other
computation; I/O device will interrupt if it
needs attention

3. DMA (direct memory access): the I/0O
device can move data in and out of memory
without the CPU’s help; I/O device will
interrupt if it needs attention

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming

-~

[Programmed I/ OJ

Programmed I/O’s strength is simplicity.
Concurrency and (asynchronous) interrupt
handling are hard for anything but trivial
operations.

Even efficient for very small data transfers;

avoids interrupt latency.

Again, its weakness is that the CPU must
orchestrate the entire I/O operation;
inefficient for large data transfers.

A key feature of programmed I/0 is polling;:

repeated checking for a given condition or
event to occur (usually without some

indication that it might have occurred)

121

~

_/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 122

Recall that an interrupt is an externally triggered

[Interrupt-driven I/ O]

exception.

Interrupt-driven I/O allows the I/O programmer
to avoid polling, but it is more complicated and

has the overhead of interrupt latency and setup in
real life (but not SPIM).

There are three main parts:

1. Initialization; enable interrupts
e See the .globl __start part of
trap.handler
2. Main program (that gets interrupted)
e Whatever the program is supposed to be
doing
3. Interrupt handler
e The .ktext 0x80000080 part of

K trap.handler /

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 123

/ [Enabling Interrupts] \

Interrupts are disabled by default.

To enable interrupts under SPIM /XSPIM, one
must:

1. Enable “global” interrupts by setting bit 0 of
the Status register (Figure A-13, pg. A-33).

15 8 5 4 3 2

1 0
Interrupt N
mask oid P

_1
@
<
S.
1)
c

tm
Q
e
=
=
@
B
o+

2. Individually enable interrupts for each desired
I/0O device (Figure A.15, pg. A-37)

Unused 1 1

Receiver control
(0xffff0000)

Interrupt—T T— Ready
enable

Unused 8

Receiver data
(0xffff0004)
Received byte

Unused 1 1
Transmitter contro
(0xffff0008)

Interrup‘c—T T— Ready
enable

Unused 8
Transmitter data
(0xffff000c)

K Transmitted byte J

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 124

/ [Interrupt Handler] \

Recall that the interrupt handler is the same as

the exception handler. Therefore, the handler

must determine “why” it is being executed by

examining the Cause register (Figure A-14, pg.
A-33):

15 10 5 2

Pending Exception
interrupts code

1. If the an exception has occurred, the
Exception Code > 0 (See pg. A-33)

2. If an interrupt has occurred, the Exception
Code == 0 and (according to the textbook):

(a) If a keyboard (i.e., receiver) interrupt has
occurred, then Pending Interrupt bit 10 is
set.

(b) If a console/screen (i.e., transmitter)
interrupt has occurred, then Pending

\ Interrupt bit 11 is set. /

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 125

~

In general, there may be multiple devices sharing

the same interrupt priority level. Therefore, one
has to find out exactly which device of priority X
caused the interrupt:

1. A more sophisticated interrupt system may
have an interrupt device register which
uniquely identifies the I/O device.

2. SPIM/XSPIM is much simpler/less
intelligent: you have to check the Ready bits
of the Receiver Control register and the
Transmitter Control register (i.e., do a single
poll).

But, since SPIM /XSPIM only has 2 devices

with different priority levels, you can avoid
this check.

Even more generally, a real OS has to deal with
many different interrupts, of different priorities,
from different devices, and even nested interrupts.
Very difficult to debug!!

o _/

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 126

4 R

[Direct Memory Access (DMA) 1/ OJ

For complete I/O operations, the three I/0
strategies are used in combination.

Interrupt-driven I/O avoids polling for readiness,
but how is the data transfer handled?

Two main options:

1. Programmed I/0 (PIO)
e e.g., use PIO for both readiness and data

transfer

e Efficient for small amounts of data

2. Direct Memory Access (DMA)

e e.g., use interrupts for readiness and DMA

for data transfer
e Efficient for large amounts of data

e Requires extra hardware: a DMA

controller

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 127

4 N

(DMA Controllerj

The DMA controller is “smart” enough to move

data and arbitrate for access to various buses,
independently of the CPU.

Generally, it has one (or more) pairs of registers:
1. start address
2. end address

The DMA controller contains digital logic that is
capable of the executing the following pseudocode:

current = start;
while(current <= end)
{
move current to device;

current++;

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 128

4 N

The DMA controller can interrupt the CPU (if
enabled) when:

1. Ready to be used

2. Error condition has occurred
3. Device needs attention

4. When done a data transfer

— DMA controller has its own Status and

Cause registers

NOTE:
The DMA controller is NOT a general-purpose
CPU!

_ _

CMPUT 229 (Draft 2001)

Chp. 8: I/O Programming

129

-

Programmed I/0O requires multiple trips
across memory bus (wasting bandwidth)

DMA controllers have configuration, startup,

and interrupt overheads

Programmable controllers on I/O devices
(such as network interface cards) can help

reduce the frequency of interrupts.

Sometimes, these are called I/O Processors

(IOP)

CPU

Memory bus

100 to 133 MHz

Memory

Bridge

AGP

I/O bus (PCI)

33 or 66 MH:

Diski [Network

Video

~

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 130

4 N

Advantages of DMA:

1. allows CPU to do other computation

® concurrency

2. fewer bytes moved on memory bus than PIO

e data does not go through CPU’s registers

3. eliminate cache pollution

Disadvantages of DMA:
1. harder to program due to concurrency

2. contention for the memory bus

e between CPU and DMA (s)
3. DMA overheads

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 131

4 N

Again, the I/O strategies can be used in

combination:
Ready Data Transfer Done
Combo 1 || PIO PIO
Combo 2 || Interrupt | PIO
Combo 3 || PIO DMA Interrupt
Combo 4 || Interrupt | DMA Interrupt

e Combo 1 is good for “non-busy” devices and
small data transfers

e Combo 2 is good for “busy” devices and small
data transfers

e Combo 3 is good for “non-busy” devices and
large data transtfers

e Combo 4 is good for “busy” devices and large
data transfers

_ _

CMPUT 229 (Draft 2001) Chp. 8: I/O Programming 132

4 N

[Interrupt Masks]

(Re: Slide 124, Enabling Interrupts) Enabling
“global” interrupts requires 2 different steps:

15 8 5 4 3 2 1 0
Interrupt N
mask 0O1d Previous Current
L LS x
> S SR I~
F oS S8 £
%’Q@W@g%’g'@f%&@@f

1. Setting bit 0 of the Status register (Figure
A-13, pg. A-33).

2. Setting the appropriate Interrupt Mask (pg.
A-33)
(a) bit 8 for the keyboard
(b) bit 9 for the console

N _/

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 133

/ [Memory Hierarchy and Caches] \

A typical computer system has a variety of
different data storage “devices.”

Figure 7.1, pg. 542

Speed CPU Size Cost ($/bit)

Fastest Memory Smallest Highest
Memory

Slowest Memory Biggest Lowest

For example, in order of fastest to slowest (and
most expensive to cheapest), we have:

CPU registers = level 1 cache = level 2 cache
—> main memory — hard disk

But, we cannot afford to keep all data in CPU
registers.

Qherefore, we build a memory hierarchy. /

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy 134

Levels in the
memory hierarchy

KI‘hree important aspects of memory hierarchies:\

1. “The pyramid”: Inverse relationships between
size, cost, and speed (Figure 7.3, pg. 544)

CPU
|
Increasing distance
from the CPU in

access time

Level 2

AN

£

Leveln \
A 4

pg. 543)

Size of the memory at each level

2. Movement of data between levels (Figure 7.2,

Processor

I

I Data are transferred

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 135

/3. The principle of locality of reference: data \
access patterns can allow data to be reused in
the higher levels of the memory hierarchy

int al 1024 1, i, j;

j=0; I
for(i = 0; i < 1024; i++) Level 1 Increasing distance
ccess time
{ Levels in the Level 2
. . memory hierarc| hy
j+=alil;
Level

Size of the memory at each level

There are 2 main types of locality:

(a) Temporal locality (locality in time): if a
data item is used, it may be used again in
the “near future”

E.g., loop index variable, code for a loop

(b) Spatial locality (locality in (address)
space): if a data item is used, items in
neighbouring memory address locations
may also be used

K E.g., accessing array elements, instructioy

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 136

4 N

int al 1024 1, i, j;

j=0;
for(i = 0; i < 1024; i++)
{
j+=al i];
}

Note how variables i and j, together, exhibit

both temporal and spatial locality of reference.

What kind of locality can we expect (or not
expect) in typical data structures and algorithms?

1. stack

2. linked lists

3. C-style structures
4. mergesort

5. search a pointer-based tree

_ _

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 137

/VV hy the pyramid relationship? \

See Patterson’s graph of the Processor-Memory

Performance Gap, which grows at 50% / year.

—> We add small amounts of fast memory,

caches, between the processor and main memory

CPU
|
Increasing distance
from the CPU in

access time

AN

Size of the memory at each level

Levels in the Level 2
memory hierarchy

— if locality of reference is good, we move
frequently used data into caches and access them

at faster speeds than main memory.

—> even if “fast” memory is small, we get most
of the speed benefits at lower cost

— help close the Processor-Memory

Qerformance Gap /

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy

KI‘he basic algorithm for caches is:

{

}

data memory-reference-with-cache(address)

/* Invariant: Data is somewhere in memory hierarchy */

if(data is not in cache) /* Miss */
{
/* Miss penalty */
if(cache is full)
eject some data to make room
move data from next lower level

/* Invariant: Data is now in cache */

if(read access) /* Hit, if not a miss */
{
return(data item at address)
}
else if(write access)
{
store data in memory hierarchy
return NULL;
}

Let miss_rate = (1 — hit_rate)

Then, Effective access time =
Qt_cost X hit_rate + miss_penalty(1 — hit_rate)

138

~

_/

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 139

4 N

[Cache Organization and Mapping)

e Problem: Main memory is larger than cache
memory. Yet, every byte of main memory has
to have a possible storage location in cache.

Main memory ———— Mapping —————— Cache Memory
(e.g., 256 bytes) (e.g., 16 bytes)

e Solution: A mapping (or hashing) function
from an address in main memory to a

location in cache memory.

e How is cache memory organized to support
an efficient mapping? What is the
mapping/hashing function?

_ _

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy

140

-~

[Fully Associative Cachej

e Conceptually the easiest to understand, but are
(often) the slowest organization in practice (e.g.,

high cache_access_cost)

e Fully associative mapping function = each line
of cache can hold any data item from main

memory.

e A tag indicates what data is in a given cache line.

Mai n menory Block size =1
00 AB 3 Tag (8 bits)
00 = 0000 0000 O1 44 :(i .e., Address) Data
01 = 0000 0001 02 3 0| 00000110 12
06 = 0000 0110 03 1| 00000000 AB
FF = 1111 1111 04 2 | 00000001 44
05 3| 11111111 34
06 12 3 4
07 5
08 6
| | 7
| | 8
3 3 9
| | A
| | B
| | ' C
3 3 D
| | E
| o F
S

~

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 141

4 N

00
01
02
03
04
05
06
07
08

e To reduce the tag storage overhead and to move
data to and from main memory more efficiently,

we can group bytes of data into blocks.

Blocks make it possible to exploit spatial locality.
e A cache line is always the same size as a block.

e For block size 1, there are 128 tag bits (= 8 x 16).
For block size 2, there are 56 tag bits (= 7 x 8).

Mai n menory Block size = 1 Block size = 2
AB | Tag (8 bits) | | Tag (7 bits) Dat a |
44 :(i.e., Addr ess) Data ! | (bi nary) Byte 0 Byte 1 i
| 0 | 00000110 12 10| 0000011 12 |
' 1| 00000000 AB 1] 0000000 AB 44 |
' 2| 00000001 44 C 2| 1 34 |
3| 11111111 34 i3 |
12 4 4
5 5
| 6 6
: : 7 g |
| | 8 o |
3 3 i 9 l 3 Tag Byt e i
| | A o 7 bits |1 bif
| | e |
| | ' D ' 00 = 0000 0000
| | | £ ' 01 = 0000 0001
1 1 ' E ' 06 = 0000 0110
| | | ' FF = 1111 1111
I |

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 142

/ [2—way Set- Associative Cachej \

e Searching tags can be slow. We can reduce the
number of tags to be searched by grouping cache
lines into sets. Then, we only search the tags in a
specific set. Sets are like buckets in a hash table.

Mai n nmenory Set Tag (5 bits)
(bi nary) (bi nary) Byte 0 Byte 1
00 AB 00 00000 AB 44
01 44
02
03 01
04
05
06 12 10
07
08
11 00000 12
11111 34
Tag Set Byte

5 bits [bitgl bit|

00 = 0000 0000
01 = 0000 0001
06 = 0000 0110
FF FF = 1111 1111

e If the set size is one (i.e., 1-way), then it is called

K a direct-mapped cache. /

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy

143

/ [D irect-Mapped Cache]

Figure 7.5, pg. 546

The addresses are expressed in binary. Assume
block size of 1.

Cache

000
001
010
011
100
101
110
111

~

00001 00101 01001 01101 10001 10101 11001 11101

Memory

All addresses that end in 001 map to the same
line in the cache.

All addresses that end in 101 map to the same

\line in the cache.

_/

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy

144

-~

(Direct-l\/[apped Cache: Template]

Address is 8 bits (0 to 255)

3 bits 1 bit

Li ne Byt e

Byte O Byte 1

4 bits

Tag

Li ne Tag
0 = 000
1 = 001
2 = 010
3 =011
4 = 100
5 =101
6 = 110
7 = 111

e e e e e e e = e e m—

~

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy

145

-~

[2-Way Set- Associative: Template]

Address is 8 bits (0 to 255)
5 bits 2 bits 1 bit
Tag Set Byt e

Set Tag : Byte 0 Byte 1 :

| |

0 = 00 | |
|

| |

| |

| |

1 =01 | |
|

| |

| |

| |

2 = 10 ! !
|

| |

| |

| |

3 =11 ! !

| |

| |

Li
Li

Li
Li

Li
Li

Li
Li

ne

ne 1

ne

ne 1

ne

ne 1

ne

ne 1

~

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 146

4 N

[Example 1: Cache]

Given an address space of 8 bits (0 to 255), a
block size of 2 bytes, and a cache capable of
holding 16 bytes (plus tag bits):
1. For a direct-mapped cache, how many lines are
there in the cache? How many bits are required for

the Line field? How many bits are in the Tag field?

How many tag bits are required for the entire cache?

2. For a 2-way set-associative cache, how many sets
are there in the cache? How many lines in each set?
How many bits are required for the Set field? How
many bits are in the Tag field? How many tag bits are

required for the entire cache?

Now, what is the cache behaviour for the
following address reference patterns:

1. 10, 20, 26, 36, 10, 20, 10 (Temporal locality)
2. 1,2, 3,4, 8,9, 10 (Spatial locality)

o _/

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 147

/ Example 1: Cache (Answers) \

Direct Mapped 2-way Set Associative
1. 8 bit address space 1. 8 bit address space
2. 16 bytes in cache 2. 16 bytes in cache
3. 2 bytes per block 3. 2 bytes per block
4. (3) = 1 bit for Byte 4. (3) = 1 bit for Byte
5. (2), (3) = 8 lines 5. (2),(3),2-way = 4 sets of 2
6. (5) = 3 bits for Line 6. (5) = 2 bits for Set
7. (4),(6) = 4 bits for Tag 7. (4),(6) = 5 bits for Tag
8. (5),(7) = 32 bits for tags | 8. (5),(7) = 40 bits for tags
Address is 8 bits (0 to 255)
4bits 3bits 1bit
‘ Tag ‘ Li ne ‘Byte‘
%) Address is 8 bits (0 to 255)
Li ne Tag r_éyze_(_)_éy?e_I_: 5 bits 2 bits 1 bit
O=000‘ ‘:‘ ‘ ‘: ‘ Tag ‘ Set ‘Byte‘
N S I B —
: : Set Tag :_ _B_yt_e_O_ _B_yt_e_l_ _:
S s i —1 .
I I 0 =00 : : i ne
3 = 011 | K | K | et
! : ! "'Line 0
4 = 100 | ! \ K 1=o01 : | Line 1
52101‘ ‘:‘ ‘ ‘: : :LineO
: ! 2 =10 : : Line 1
TN e H : :
I : ~ : : Line 0O
7 =111 | | \ K sou . | Line 1

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy

148

Example 1: Cache (Answers)
Reference Pattern: 10, 20, 26, 36, 10, 20, 10
(Temporal locality)
Addr. Direct Mapped 2-way Set Assoc.
1. 10 10 = 000010104, 10 = 0000101045
Check Line 5 = 1019, Check Set 1 = 019
Tag = 00009 — Miss Tag = 000019—> Miss
Use Line 0 of Set 1
2. 20 20 = 000101005 20 = 000101009
Check Line 2 = 0109, Check Set 2 = 109
Tag = 00019— Miss Tag = 000109—> Miss
Use Line 0 of Set 2
3. 26 26 = 000110109 26 = 000110109
Check Line 5 = 1014, Check Set 1 = 019
Tag = 00019=— Replace Tag = 000119=—> Miss
Use Line 1 of Set 1
4. 36 36 = 001001005 36 = 001001009
Check Line 2 = 0109, Check Set 2 = 109
Tag = 0010o—> Replace Tag = 001009— Miss
Use Line 1 of Set 2
5. 10 10 = 000010109 10 = 000010109
Check Line 5 = 10194, Check Set 1 = 019
Tag = 00009=— Replace Tag = 000019—> Hit (Line 0)
6. 20 20 = 000101009 20 = 000101009
Check Line 2 = 0109, Check Set 2 = 109
Tag = 00019=— Replace Tag = 000109—> Hit (Line 0)
7. 10 10 = 000010109 10 = 0000101045
Check Line 5 = 1019, Check Set 1 = 019
Tag = 00009— Hit Tag = 000019— Hit (Line 0)
6 misses/replaces, 1 hit 4 misses, 3 hits

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy

Reference Pattern: 1, 2, 3, 4, 8, 9, 10

(Spatial locality)

Addr.

Direct Mapped

2-way Set Assoc.

1 = 000000015,
Check Line 0 = 0009,
Tag = 00009— Miss

1 = 000000014

Check Set 0 = 009
Tag = 000009=— Miss
Use Line 0 of Set O

2 = 000000109
Check Line 1 = 0019,
Tag = 000090— Miss

2 = 000000109

Check Set 1 = 019
Tag = 0000090—> Miss
Use Line 0 of Set 1

3 = 000000114
Check Line 1 = 0019,
Tag = 0000o— Hit
Byte 1

3 = 000000119

Check Set 1 = 019
Tag = 0000050 =— Hit
Line O, Byte 1

4 = 000001009
Check Line 2 = 0109,
Tag = 00009—> Miss

4 = 000001009

Check Set 2 = 109
Tag = 000009=— Miss
Use Line 0 of Set 2

8 = 000010009
Check Line 4 = 1009,
Tag = 00009=— Miss

8 = 000010009

Check Set 0 = 009
Tag = 000019=— Miss
Use Line 1 of Set O

9 = 000010014
Check Line 4 = 1009,
Tag = 00009 — Hit
Byte 1

9 = 000010019

Check Set 0 = 009
Tag = 000015 — Hit
Line 1 of Set O

10 = 000010109
Check Line 5 = 1019,
Tag = 000090— Miss

10 = 000010109
Check Set 1 = 019
Tag = 000019o—> Miss
Use Line 1 of Set 1

5 misses, 2 hits

5 misses, 2 hits

149

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy

-~

[Example 2: Cache]

Given an address space of 16 bits (0 to 65,535), a
block size of 4 bytes, and a cache capable of

holding 1,024 bytes (plus tag bits):

1. For a direct-mapped cache, how many lines are

there in the cache? How many bits are required for
the Line field? How many bits are in the Tag field?

How many tag bits are required for the entire cache?

For a 2-way set-associative cache, how many sets
are there in the cache? How many lines in each set?
How many bits are required for the Set field? How
many bits are in the Tag field? How many tag bits are

required for the entire cache?

. For a 8-way set-associative cache, how many sets

are there in the cache? How many lines in each set?
How many bits are required for the Set field? How
many bits are in the Tag field? How many tag bits are

required for the entire cache?

150

~

_/

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 151

4 N

[Example 2: Cache (Answers)]

Given an address space of 16 bits (0 to 65,535), a block size of
4 bytes, and a cache capable of holding 1,024 bytes (plus tag
bits). NOTE: 2 bits are required for the Byte field.
1. For a direct-mapped cache

(a) There are 256 lines (= 1024/4)

(b) 8 bits are required for the Line field (2% = 256)

(c) 6 bits are in the Tag field (= 16 — 2 — 8)

(d) 1,536 tag bits are required (= 256 X 6)

2. For a 2-way set-associative cache
(a) There are 128 sets (= (1024/4)/2)
(b) There are 2 lines in each set (i.e., 2-way)
(c) 7 bits are required for the Set field (27 = 128)
(d) 7 bits are in the Tag field (=16 — 2 — 7)
(e) 1,792 tag bits are required (= 128 X 2 X 7)

3. For a 8-way set-associative cache
(a) There are 32 sets (= (1024/4)/8)
(b) There are 8 lines in each set (i.e., 8-way)
(c) 5 bits are required for the Set field (2° = 32)
(d) 9 bits are in the Tag field (= 16 — 2 — 5)
(e) 2,304 tag bits are required (= 32 X 8 X 9)

o _/

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 152

4 N

(Other Cache Issues]

See Chapter 7.5.

1. Block replacement policy: Which block of
data do we evict from the cache (i.e., replace)
so that a new block of data can be brought
into the cache?

Basic idea: If we have to evict a block, choose
the one that will most likely not be used

again.
(a) Least Recently Used (LRU)

@ further exploits locality and working set
principles
© hard to implement in hardware

(b) Approximation of LRU

@ easier to implement in hardware

(¢c) Random

@ easier to implement in hardware

_ _

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 153

4 N

2. Write strategy: When we write data into
the cache, when do we update main memory?

(a) Write-through (perhaps with write buffer)

e update main memory on every write

@ lower miss penalty; faster to evict a block

from cache

© consumes memory bandwidth

for each write

(b) Write-back (also called copy-back)

e update main memory on block replacement

@ reduce traffic between cache and main
memory; writes are faster
© miss penalty higher since block must be

written-back

_ _

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy 154

each

15%

12%

9%

Miss rate

6%

3%

0%

/3. Cache Associativity: How many lines in \

set?

The extremes are 1-way (i.e., direct mapped)
and n lines (i.e., fully associative).

Figure 7.29, pg. 604

One-way Two-way Four-way

Associativity = 1 KB
m 2 KB
e 8 KB

— larger caches are better (no surprise)

— higher associativity better, with
\ diminishing returns

Eight-way

<+ 16 KB
¢ 32 KB
= 64 KB
= 128 KB

_/

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 155

4 N

4. Split instruction and data caches: fetch
instructions from instruction cache; loads and

stores go to data cache

@ can simultaneously (i.e., in parallel) fetch
next instruction while completing a load or

store

© one of the two caches can be underutilized
if code for loop is small, or working set is

small
e primary cache is often split

e secondary cache is often unified

CMPUT 229 (Draft 2001) Chp. 7: Memory Hierarchy 156

/ (The Three C’s of Cache Missesj \

1. Compulsory miss: caused by first access.
Also known as cold-start or first-reference

miss.
e would still exist in a cache of infinite size
Possible solution: prefetching
2. Conflict misses: different blocks map to the

same line or set, resulting in frequent block

replacements
e impossible in a fully-associative cache
Possible solution: increase associativity
3. Capacity miss: cache is too small to hold
working set.

e Even if there is locality of reference, if the
working set is, say, 64 K and the cache is
32 K, there will be capacity misses.

e possible in a fully-associative cache

K Possible solution: increase size of cache /

CMPUT 229 (Draft 2001)

Chp. 7: Memory Hierarchy

157

-

[Performance Gap “Tax”]

performance gap.

Taken from Dr. Patterson’s notes, Spring 1998.

Caches have no inherent value. They exist solely

to try to reduce the processor-memory

~

(including L2 cache
on second die)

Processor % area, % transistors
(=~ cost) | (= power)
Alpha 21164 37% 7%
StrongArm SA110 61% 94%
Pentium Pro 64% 88%

hierarchy.

Qerformance. Be aware!

As long as processors continue to be faster than

memory, we will need caches and a memory

Hand and compiler optimizations to improve
cache locality can have a huge impact on

_/

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 158

e Notes cribbed from Dr. Gburzynski with

additions.

hp 4.8: Floating point arithmeticj

e See the textbook, Chapter 4.8

Sometimes we call integer numbers in 2’s

complement notation “fixed-point” numbers.

The “decimal point” is located to the right of the
least significant digit (and the fractional part is

assumed to be zero).

00000001 -> 00000001. = 1.0

11111110 -> 11111110. = -2.0
since

00000010 -> 00000010. = 2.0

In some application we need REAL (fractional
numbers) whose magnitude and range is not very
large. Such numbers can be represented in
fixed-point notation. i.e., partition the bits for

Qefore and after the fractional point. /

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 159

4 N

For example,

16875 = 1x294+1%x2714+0%x2724+1%x273+1%x2~4

00000001.1011 -> 1.6875 (a)
11111110.0101 -> -1.6875 = ~“(a) + 1

Thus,
00000001.1000 -> 1.5
+ 11111110.0101 -> -1.6875

11111111.1101 -> -0.1875 (b)
since
00000000.0011 -> 0.1875 = “(b) + 1

0.1875 = 0x294+0x2 1 4+0x272+1x234+1x274

The location of the point is irrelevant from the
viewpoint of addition and subtraction.

For multiplication/division, the point must be
shifted appropriately.

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 160

4 N

A typical application of fixed-point real numbers

is in banking where people have to deal with
dollars and cents.

The fixed-point notation has its limitations. In
many scientific or engineering calculations one has
to deal with very small and very large values, e.g.,
the size of the atomic nucleus (1071°m) and the
size of the visible universe (10%°m).

To represent all numbers from this range with a
satisfying accuracy would require a large number
of bits, most of which would be wasted (contain
zeros) and there would only be a few significant
digits:

0000---0000.0000: - ‘nnnnnnnn
nnnnnnnn- - -0000.0000- - -0000

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 161

Real numbers (whose magnitude can be very

large or very small) are commonly represented in

floating-point notation.

The representation of a number consists of two

integer (fixed-point) parts or fields:

MANTISSA specifying the significant digits of
the number in a position-less

fashion;

EXPONENT specifying the location of the point,

i.e., the magnitude of the number.

The number reads as:

b X m

where b is some fixed base (typically a power of 2).

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 162

4 N

Different flavours of the generic floating-point
notation (as introduced above) are characterised

by the following parameters:

e the number of bits used to represent the

mantissa;

e the number of bits used to represent the

exponent;
e the base b;

e the representation of the mantissa (2’s
complement, sign-magnitude, the location of
the point);

e the representation of the exponent.

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 163

/Most issues related to floating point numbers cah
be illustrated assuming that both the exponent

and mantissa are decimal numbers and that
b= 10.

Below we have a few sample numbers:

1012 x 1
100 x 1995
1073 x —22384 (= —22.384)

All the above representations assume that the
(decimal) point of the mantissa is located after
the rightmost digit. Of course, this doesn’t have
to be the case, e.g.:

1013 x .1
10% x .1995
102 x —.22384

or

1019 % 10.00
102 x 19.95
109 x —22.384

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 164

4 N

Notably, unless we impose additional rules,

floating-point numbers don’t have unique
representations, e.g.:

102 x 1995
10~ x 19950
1019 x 19950000000000

all denote the same number.

We say that a floating point number is
NORMALISED, if the most significant digit of its

mantissa 1S nonzero.

Of course, on a computer we have some definite
number of (binary) positions for representing the
mantissa, so the above definition makes sense.

Zero has to be treated in a special way.

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 165

/IEEE Floating Point Format (32-bit): \

31 30 23 22 0
S E M

A nonzero number is computed as:

— 15 x 2E-127 » 1. M

where E is an unsigned integer number.

The mantissa is always normalised with the
(binary) point located after the first digit (thus
its value is between 1 (inclusively) and 2
(exclusively).

As the most significant bit of the mantissa is
always 1, there is no need to represent it; thus, it
doesn’t appear in M.

The 127 is the exponent bias. Two values of
exponent E are reserved: 0 — to represent the

Qumber zero, and 255 — to represent infinity. /

CMPUT 229 (Draft 2001)

Chp 4.8: Floating point numbers

166

-

Recall,

* 11111111

_

15 x 2BE-127 o 1 M

0 01111111 00000000000000000000000

= —10 x 21277127 » 1.0

=1x2"%x1.0=1.0

1 01111111 00000000000000000000000

= —1' x 21277127 % 1.0

— —1x29%x1.0=-1.0

0 10000000 00000000000000000000000

— —10 % 2128-127 5 10

=1x2'x1.0=20

* 00000000 00000000000000000000000
* 11111111 00000000000000000000000

...any non O pattern...

Let us have a look at a few simple numbers:

1

-1

2.

+/-
+/-
NaN

~

.0

.0

0

0

inf

_/

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 167

4 N

How to represent 1995.57

In fixed-point notation the number looks like:
11111001011.1

When we turn it into 1.11110010111, we have to
multiply it by 2'° to get the original value.

By simply moving the decimal point, it is easy to
see that the number will be represented as:

0 10001001 11110010111000000000000

The hard (but instructive way) is to use the

equation:

—15 x 2127 » 1. M

= —10 x 21377127 » 1.948730468...
=1 x 219 x 1.948730468... = 1995.5

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 168

What is the largest number (in decimal) that

[Floating point extremes]

can be represented in 32-bit IEEE floating point?
O 11111110 11111111111111111111111

= —10 % 2254-127 5 1 11111111111111111111111,
=1 x 2127 x ((224 — 1) x 2723)
— 912723 (224 ~1)
— 9104 (224 —1)
= 3.402823466 x 1038

The exponent can be a maximum of 254. It
cannot be 255 (11111111) because that is
reserved to represent +/-inf and NaN.

Note that a number with n 1’s in the binary form
is equal to 2" — 1 (e.g., 28 — 1 = 11111111).
Thus, 224 — 1 is a binary number with 24 ones.

Lastly, the 2723 simply corrects the fractional

Kpoint from the mantissa (i.e., 23 bits) /

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 169

4 N

What is the smallest positive number (in
decimal) that can be represented in 32-bit IEEE
floating point?

0 00000001 00000000000000000000000
= —10 x 217127 » 1.0
=27126 % 1.0
= 1.175494351 x 10738
The exponent can be a minimum of 1. It cannot

be 0 because that is reserved to represent +/-0

and denormalized numbers.

So, between 1.175494351 x 10732 and
3.402823466 x 10°® we can store a range from the
size of the atomic nucleus (1071°m) to the size of
the visible universe (10%°m).

But, numbers that cannot be represented exactly
typically have only on 6 or so significant digits.
This has serious implications.

o _/

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 170

[Cautionary tale]

Clearly, since real numbers (in mathematics) can
have an infinite number digits in the fractional
part, it is impossible to represent all real numbers
using a finite number of bits.

With a finite number of bits, some numbers can
be represented exactly (e.g. 1.5) and other
numbers can only be approximated.

This is true even if they fall into the range of

possible values for a floating point format.

Typically, for 32-bit IEEE the smallest detectable
difference between two floating point numbers is
(about) 3 x 1078, This is called the machine

accuracy.

_ _

CMPUT 229 (Draft 2001)

Chp 4.8: Floating point numbers 171

Gonsider:

#

{

}
T

a
b

include <stdio.h>

float a = (1 + 3E-9
float ¢ = (1 + 3E-7
float e = (1 + 3E-5

printf("a=lg, b=lg,
a, b, ¢, d, e, f

if(a == b) printf(
else printf(

if(b == ¢) printf(

else printf("b != c\n");
if(£ == 1.000322) printf("f correct\n");

else printf("f incorrect\n");

return(0);

gcc main.c; a.out

= ¢

\\f‘incorrect

); float b = (1 + 3E-8);
); float d = b + 0.0005;
); float f = 1.000322;

c=hg, d=kg, e=kg, f=lkg\n",
) ;

Ng == b\n");
ng 1= b\n") :
b == c\n");

int main(int argc, char ** argv)

a=1l, b=1, c=1, d=1.0005, e=1.00003, £=1.00032

~

(Pentium MMX, Linux 2.0)

_/

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 172

4 N

e a==b=—that 1 +3x 1077 is
indistinguishable from 1+ 3 x 107°

eb !=cbutb =1, ¢ = 1 =— that band ¢
are different, but output shows them to be
the same

e f incorrect — that either 1.00032 cannot
be exactly represented, or there are some
compiler, or other issues here. Or the
“obvious” behaviour is not correct. Frankly,
I’'m not sure, but I’'m troubled!

Lessons? Understand the limitations...

1. of computer floating point and the specific

format implemented by your CPU
(e.g., IEEE? mostly IEEE?)

2. of your particular compiler and libraries

3. of computations using floating point
(i.e., round-off error)

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 173

4 N

All of these things and more are part of the field

of numerical analysis and scientific computation.

There is a popular series of books called
“Numerical Recipes”, with editions for C,

Fortran, etc.

Read http://www.colorado.edu/ITS/docs/
scientific/fortran/numrec.html to see why

you should use that resource with caution.

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 174

4 N

Back to the program...

The IEEE standard defines two higher-precision

formats:

DOUBLE (64 bits):

Exponent size = 11 bits (exponent bias = 1023)
Mantissa size = 52 bits

QUAD (128 bits):

Exponent size = 15 bits (exponent bias = 16383)

Mantissa size = 112 bits

In both cases, the interpretation of exponent and
mantissa is the same as for the 16-bit format (but
the ranges are different).

_ _

CMPUT 229 (Draft 2001) Chp 4.8: Floating point numbers 175

/ [MIPS Floating Point] \

The MIPS architecture supports floating point

arithmetic through co-processor 1 or FPU, which
usually on the same die/chip as the CPU.

1. 32 single-precision floating-point registers:
$£f0 — $£31. The registers can be paired for

double-precision numbers.
2. Special loads and stores: 1lwcl, swcil

3. Special arithmetic instructions:
add.s, sub.s, mul.s (single-precision),

add.d, sub.d, mul.d (double-precision)

For example (from page 288):

float x, y, z;
zZ =X +Yy;

lwcl $£4,x($sp) # Load 32-bit FP into $f4
lwcl $£6,y($sp) # Load 32-bit FP into $f4
add.s $£f2,$f4,8f6 # $f2 = $f4 + $f6, single precision
swcl $£2,z($sp) # Store 32-bit FP from $£2

2 _/

