
Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes

Processes and Threads
(Chapter 2, Tanenbaum)

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 1

What is a process?
A process is a program in execution. The components of
a process are: the program to be executed, the data on
which the program will execute, the resources required
by the program—such as memory and file(s)—and the
status of the execution.

– CPU registers (general purpose, floating-point)

Is a process the same as a program? No!, it is both more
and less.
• more—a program is just part of a process context.

 tar can be executed by two different people—same program (shared
code) as part of different processes.

• less—a program may invoke several processes.
 cc invokes cpp, cc1, cc2, as, and ld.

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 2

Programming: uni- versus multi-

Some systems allow execution of only one process at a
time (e.g., early personal computers).

They are called uniprogramming systems.

Others allow more than one process, i.e., concurrent
execution of many processes. They are called multi-
programming (NOT multiprocessing!) systems.

In a multiprogramming system, the CPU switches
automatically from process to process running each for
tens or hundreds of milliseconds. In reality, the CPU is
actually running one and only one process at a time.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 3

Execution model

Over years, operating system designers evolved a model
that makes concurrency easier to deal with. In this
model, each runnable software on the computer—often
components of the operating system itself—is organized
into a number of (sequential) processes, each viewed as
a block of code with a pointer showing the next
instruction to be executed.

How can several processes share one CPU? Operating
system takes care of this by making sure:

– each process gets a chance to run—fair scheduling.
– they do not modify each other’s state—protection.

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 4

Process states
There are a number of states that can be attributed to a process:
indeed, the operation of a multiprogramming system can be
described by a state transition diagram on the process states. The
states of a process include:
•New—a process being created but not yet included in the pool of

executable processes (resource acquisition).
•Ready—processes that are prepared to execute when given the

opportunity.
•Active—the process that is currently being executed by the

CPU.
•Blocked—a process that cannot execute until some event occurs.
•Stopped—a special case of blocked where the process is

suspended by the operator or the user.
•Exiting—a process that is about to be removed from the pool of

executable processes (resource release).

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 5

Process state diagram

new

ready active exiting

stopped

blocked

create
tim e-out

dispatch

event or
resource

wait

suspendresum e

event
occurs or
resource
available

kill

exit

kill

error

external
internal

state transition

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 6

Process description

The operating system must know specific information
about processes in order to manage and control them.
Such information is usually grouped into two categories:
• process state information

– E.g., CPU registers (general purpose and special
purpose), program counter.

• process control information
– E.g., scheduling priority, resources held, access

privileges, memory allocated, accounting.

This collection of process information is kept in and
access through a process control block (PCB).

Information in both groups are OS dependent.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 7

Process scheduling

The objective of multiprogramming is to have some user
process running at all times. The OS keeps the CPU
busy with productive work by dynamically selecting
(scheduling) the next user process to become active.

The (re-)scheduling is performed by a module, called
the dispatcher. A dispatcher usually only executes the
following primitive pseudo-code:

loop forever {
 run the process for a while.
 stop process and save its state.
 load state of another process.
 }

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 8

Dispatcher at work

process
1

process
2

process
n

CPU

Ready Queue

Operating
System

dispatcher

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 9

Control of the CPU

The CPU can only do one thing at a time. While a user
process is running, dispatcher cannot run, thus the
operating system may lose control.

How does the dispatcher regain control (of the CPU)?
• Trust the process to wake up the dispatcher when done

(sleeping beauty approach).

• Provide a mechanism to wake up the dispatcher (alarm
clock).

The problem with the first approach is that sometimes
processes loop indefinitely. Therefore, the alarm clock
interrupt approach is better.

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 10

Context switch

When an event occurs, the operating system saves the
state of the active process and restores the state of the
interrupt service routine (ISR). This mechanism is
called a Context Switch.
What must get saved? Everything that the next process
could or will damage. For example:

– Program counter (PC)
– Program status word (PSW)
– File access pointer(s)
– Memory (perhaps?)

While saving the state, the operating system should
mask (disable) all interrupts. Why?

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) 11

*Implementation of Processes
(1)

Fields of a process table entry

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 12

Memory: to save or NOT to save

Here are the possibilities:
• Save all memory onto disk.

Could be very time-consuming. E.g., assume data
transfers to disk at 1MB/sec. How long does saving a
4MB process take?

• Don't save memory; trust next process.
This is the approach taken by PCs and MACs.

• Isolate (protect) memory from next process.
This is memory management, to be covered later.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 13

Context switch implementation

The mechanism of context switching is the most
important part of an operating system, and needs
special care during the implementation, because:
• It is tricky.

Saving the state of a user process is problematic
because the operating system must execute code to
save the state without changing the process’ current
state!

• Machine dependent.
Thanks to technology; each CPU provides some special
support to ease the implementation.

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 14

Creating a new process

There are two practical ways of creating a new process:
• Build one from scratch:

– Load code and data into memory.
– Create (empty) a dynamic memory workspace (heap).
– Create and initialize the process control block.
– Make process known to dispatcher.

• Clone an existing one:
– Stop current process and save its state.
– Make a copy of code, data, dynamic memory

workspace and process control block.
– Make process known to dispatcher.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 15

Process creation mechanisms

Who creates the processes and how they are supported?
Every operating system has a mechanism to create processes.

For example, in UNIX, the fork() system call is used to
create processes. fork() creates an identical copy of the
calling process. After the fork(), the parent continues
running concurrently with its child competing equally for
the CPU.

On the other hand, in MS-DOS, the LOAD_AND_EXEC system
call creates a child process. This call suspends the parent
until the child has finished execution, so the parent and
child do not run concurrently.

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 16

Process creation: UNIX example

before fork()

after fork()

child
resumes

here

parent
resumes

here

if (fork())
{

}
else
{

}

/* parent */
/* code */

/* child */
/* code */

if (fork())
{

}
else
{

}

/* parent */
/* code */

/* child */
/* code */

if (fork())
{

}
else
{

}

/* parent */
/* code */

/* child */
/* code */

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 17

if (fork())
{

}
else
{
 exec(…)
}

A typical use of fork()

if (fork())
{

}
else
{
 exec(…)
}

before fork()

after fork() after exec()

if (fork())
{

}
else
{
 exec(…)
}

parent
resumes

here

child
resumes

here

child
resumes

here

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 18

UNIX system initialization

bootstrap
swapper

init

process 0

process 1

getty login SHELL

fork

fork
exec exec

..

.

wait until all
children exit

as many as
available
terminals

wait until
init exits system shutdown

user
commands

fork

exit

user
environment

exit

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 19

A UNIX process context

STACK

HEAP

DATA

TEXT

process
control
block

process
context

context
switchable

in kernel

stack: local variables

data: constants and static
 variables

heap: dynamic variables

text : executable code

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 20

Process termination

A process enters the exiting state for one of the
following reasons:
• normal completion: A process executes a system call for

termination (e.g., in UNIX exit() is called).

• abnormal termination:
– programming errors
· run time
· I/O

– user intervention

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 21

Threads

Unit of execution (unit of dispatching) and a collection
of resources, with which the unit of execution is
associated, characterize the notion of a process.

A thread is the abstraction of a unit of execution. It is
also referred to as a light-weight process (LWP).

As a basic unit of CPU utilization, a thread consists of
an instruction pointer (also referred to as the PC or
instruction counter), CPU register set and a stack. A
thread shares its code and data, as well as system
resources and other OS related information, with its
peer group (other threads of the same process).

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 22

Threads: an example

A good example of an application that could make use
of threads is a file server on a local area network (LAN).

A ‘‘controller’’ thread accepts file service requests and
spawns a ‘‘worker’’ thread for each request, therefore
may handle many requests concurrently. When a
worker thread finishes servicing a request, it is
destroyed.

process
A

process
B

file servercontroller
thread

worker
threads

clients

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 23

Threads versus processes
• A thread operates in much the same way as a process:

– can be one of the several states;
– executes sequentially (within a process and shares the CPU);
– can issue system calls.

• Creating a thread is less expensive.

• Switching to a thread within a process is cheaper than
switching between threads of different processes.

• Threads within a process share resources (including the
same memory address space) conveniently and efficiently
compared to separate processes.

• Threads within a process are NOT independent and are
NOT protected against each other.

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 24

Threads versus processes cont.

STACK

DATA

a traditional process a multi-threaded process (task)

STACK STACK STACK

TEXT
a thread

DATA

TEXT

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) 25

*The Thread Model (2)

Items shared by all threads in a process

Items private to each thread

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Processes 26

Thread implementations
• User level:

 implemented as a set of library functions; cannot be
scheduled independently; each thread gets partial time
quantum of a process; a system call by a thread blocks
the entire set of threads of a process; less costly
(thread) operations

• Kernel level:
 implemented as system calls; can be scheduled directly

by the OS; independent operation of threads in a single
process; more expensive (thread) operations.

• Hybrid approach:
 combines the advantages of the above two; e.g., Solaris

threads.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) 27

Fly in a bottle

A traditional
UNIX process

A modern
UNIX process

Copyright © ‹footer› Processes ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) 28

*Thread Usage (1)

A word processor with three threads

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) 29

*Thread Usage (2)

A multithreaded Web server

