
Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling

Scheduling
(Chapter 2.5, Tanenbaum)

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 1

Introduction
In multiprogramming systems, where there is more
than one process runnable (i.e., ready), the operating
system must decide which one to run next. The decision
is made by the part of the operating system called the
scheduler, using a scheduling algorithm or scheduling
discipline.
• In the beginning—there was no need for scheduling,

since the users of computers lined up in front of the
computer room or gave their job to an operator.

• Batch processing—the jobs were executed in first come
first served manner.

• Multiprogramming—life became complicated!
The scheduler is concerned with deciding policy, not
providing a mechanism. The dispatcher is the
mechanism.

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) 2

*Policy versus Mechanism

Separate what is allowed to be done with how it is
done
• a process knows which of its children threads are

important and need priority

Scheduling algorithm parameterized
• mechanism in the kernel

Parameters filled in by user processes
• policy set by user process

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 3

The basics
Scheduling refers to a set of policies and mechanisms to
control the order of work to be performed by a computer
system. Of all the resources of a computer system that
are scheduled before use, the CPU is the far most
important.

But, other criteria may be important too (e.g., memory).

Multiprogramming is the (efficient) scheduling of the
CPU. The basic idea is to keep the CPU busy as much
as possible by executing a (user) process until it must
wait for an event and then switch to another process.

Processes alternate between consuming CPU cycles
(CPU-burst) and performing I/O (I/O-burst).

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 4

Types of scheduling
In general, (job) scheduling is performed in three stages:
short-, medium-, and long-term. The activity frequency
of these stages are implied by their names.

Long-term (job) scheduling is done when a new process
is created. It initiates processes and so controls the
degree of multi-programming (number of processes in
memory).
e.g., job admission control.

Medium-term scheduling involves suspending or
resuming processes by swapping (rolling) them out of or
in to memory.

Short-term (process or CPU) scheduling occurs most
frequently and decides which process to execute next.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 5

Life cycle of a typical process

Long
Term

Scheduling

Short
Term

Scheduling

Medium
Term

Scheduling
active blocked

process
arrives

swapped

process
exits

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 6

Long- & medium-term scheduling

Acting as the primary resource allocator, the long-term
scheduler admits more jobs when the resource
utilization is low or blocks the incoming (batch) jobs
from entering the ready queue otherwise.

When the main memory becomes over-committed, the
medium-term scheduler releases the memory of a
suspended (blocked or stopped) process by swapping
(rolling) it out.

In summary, both schedulers control the level of
multiprogramming and avoid (as much as possible)
overloading the system by many processes and cause
‘‘thrashing’’ (more on this later).

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 7

Short-term scheduling

Short-term scheduler, also known as the process or
CPU scheduler, controls the CPU sharing among the
‘‘ready’’ processes. The selection of a process to execute
next is done by the short-term scheduler. Usually, a
new process is selected under the following
circumstances:
• When a process must wait for an event.

• When an event occurs (e.g., I/O completed, quantum
expired).

• When a process terminates.

The short-term scheduler must be fast!

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 8

Short-term scheduling criteria

The goal of short-term scheduling is to optimize the
system performance (e.g., throughput), and yet provide
responsive service (e.g., latency). In order to achieve
this goal, the following set of criteria is used:
• CPU utilization

• I/O device throughput

• Total service time (e.g., turnaround time)

• Responsiveness (e.g., for keystroke)

• Fairness

• Deadlines (e.g., for real-time systems)

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 9

Scheduler design
A typical scheduler is designed to select one or more primary
performance criteria and rank them in order of importance.
One problem in selecting a set of performance criteria is that
they often conflict with each other. For example, increased
processor utilization is usually achieved by increasing the
number of active processes, but then response time
deteriorates. So, the design of a scheduler usually involves a
careful balance of all requirements and constraints (i.e.,
trade-offs)

The following is only a small subset of possible
characteristics:

 I/O throughput, CPU utilization, response time
(batch or interactive), urgency of fast response,
priority, maximum time allowed, total time
required.

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 10

Scheduling policies

In general, scheduling policies may be preemptive or
non-preemptive.

In a non-preemptive pure multiprogramming system,
the short-term scheduler lets the current process run
until it blocks, waiting for an event or a resource, or it
terminates.

Preemptive policies, on the other hand, force the
currently active process to release the CPU on certain
events, such as a clock interrupt, some I/O interrupts,
or a system call.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 11

Scheduling algorithms

Non-preemptive

• First-Come-First-Served
(FCFS)

• Shortest Job first (SJF)

Good for ‘‘background’’ batch
jobs.

Preemptive

• Round-Robin (RR)

• Priority

Good for ‘‘foreground’’
interactive jobs.

The following are some common scheduling algorithms:

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 12

First-Come-First-Served (FCFS)

FCFS, also known as First-In-First-Out (FIFO), is the
simplest scheduling policy. Arriving jobs are inserted
into the tail (rear) of the ready queue and the process to
be executed next is removed from the head (front) of the
queue.

FCFS performs better for long jobs. Relative importance
of jobs measured only by arrival time (poor choice). A
long CPU-bound job may hog the CPU and may force
shorter (or I/O-bound) jobs to wait prolonged periods.
This in turn may lead to a lengthy queue of ready jobs,
and thence to the ‘‘convoy effect.’’

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 13

An example—FCFS

time
5 10 1

5
20 25

10

3

1

4D

C

B

A

process

process service turnaround waiting
 t im e ts t im e t t t im e tw

 A 10 10 0
 B 1 11 10
 C 3 14 11
 D 4 18 14

AVERAGE 13.25 8.75

 tt/tw = 1.51 tt/ts = 5.29

Short jobs suffer!

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 14

Shortest Job First (SJF)

SJF policy selects the job with the shortest (expected)
processing time first. Shorter jobs are always executed
before long jobs.

One major difficulty with SJF is the need to know or
estimate the processing time of each job (can only
predict the future!)

Also, long running jobs may starve for the CPU when
there is a steady supply of short jobs.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 15

An example—SJF

time
5 10 1

5
20 25

10

3

1

4D

C

B

A

process

process service turnaround waiting
 t im e ts t im e t t t im e tw

 A 10 18 8
 B 1 1 0
 C 3 4 1
 D 4 8 4

AVERAGE 7.75 3.25

tt/tw = 2.38 tt/ts = 1.53

Better for short jobs!

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 16

Round-Robin (RR)

RR reduces the penalty that short jobs suffer with
FCFS by preempting running jobs periodically. The
CPU suspends the current job when the reserved
quantum (time-slice) is exhausted. The job is then put
at the end of the ready queue if not yet completed.

The critical issue with the RR policy is the length of the
quantum. If it is too short, then the CPU will be
spending more time on context switching. Otherwise,
interactive processes will suffer.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 17

An example—RR

time
5 10 1

5
20 25

D

C

B

A

process

process service turnaround waiting
 t im e ts t im e t t t im e tw

 A 10 18 8
 B 1 2 1
 C 3 9 6
 D 4 12 8

AVERAGE 10.25 5.75

tt/tw = 1.78 tt/ts = 2.45

61

1

1

1

1 1 1

1

1

1

1 1

Quantum = 1

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 18

Priority-based

Each process is assigned a priority (e.g., a number). The
ready list contains an entry for each process ordered by
its priority. The process at the beginning of the list
(highest priority) is picked first.

A variation of this scheme allows preemption of the
current process when a higher priority process arrives.

Another variation of the policy adds an aging scheme
where the priority of a process increases as it remains
in the ready queue; hence, will eventually execute to
completion.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 19

An example—Priority

5 10 1
5

20 25

process priority service turnaround waiting
 t im e ts t im e t t t im e tw

 A 4 10 18 8
 B 3 1 8 7
 C 2 3 7 4
 D 1 4 4 0

AVERAGE 9.25 4.75

tt/tw = 1.98 tt/ts = 3.28

time

10

3

1

4D

C

B

A

process

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 20

Comparison of scheduling policies
Unfortunately, the performance of scheduling policies
vary substantially depending on the characteristics of
the jobs entering the system (job mix), thus it is not
practical to make definitive comparisons. The results
depend on the specific workload.

For example, FCFS performs better for ‘‘long’’ processes
and tends to favor CPU-bound jobs. Whereas SJF is
risky as long processes may suffer from CPU
starvation. Furthermore, FCFS is not suitable for
‘‘interactive’’ jobs, and similarly, RR is not suitable for
long ‘‘batch’’ jobs.

The (processing) overhead of FCFS is negligible, but it
is moderate in RR and can be high(er) for SJF.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 21

Other policies

As discussed earlier, the previous policies cannot
efficiently handle a mixed collection of jobs (e.g., batch,
interactive, and CPU-bound). So, other schemes were
developed:
• Multi-level queue scheduling

• Multi-level feedback queue scheduling

Ken Thompson says: A good interactive system is the
best compromise. Why?

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 22

Multi-level queue

Multi-Level Queue (MLQ) scheme solves the mix job
problem by maintaining separate ‘‘ready’’ queues for
each type of job class and apply different scheduling
algorithms to each.

highest
priority

lowest
priority

system processes

interactive processes

batch processes

prior it y-based

Round-Robin

FCFS

primary CPU
scheduling

CPU

job classes

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 23

Multi-level feedback queue

This is a variation of MLQ where processes (jobs) are
not permanently assigned to a queue when they enter
the system. In this approach, if a process exhausts its
time quantum (i.e., it is CPU-bound), it is moved to
another queue with a longer time quantum and a lower
priority. The last level usually uses FCFS algorithm in
this scheme.

Quantum = 2

Quantum = 8

FCFS

primary CPU
scheduling

CPU

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 24

Real-time computing

The typical Unix system is a “best effort” system,
not real time.

A real-time (R-T) system controls or monitors external
events that have their own timing requirements, thus a
R-T operating system should be tailored to respond
these activities. Examples of R-T applications include
control of laboratory experiments, process control,
robotics, video games, and telecommunications.

An OS designed to support batch, interactive, or time-
sharing is different from that for a R-T. One basic
difference is the way external events are handled.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 25

Real-time tasks
A process (usually referred to as a task in R-T systems)
that controls or reacts to an event in a R-T system is
associated with a deadline specifying either a start
time or a completion time. Depending on its deadline,
a process can be classified as one of the following:
• Hard real-time

– must meet the deadlines (time-critical).
– often, an external factor determines the deadlines

• Soft real-time
– meeting a deadline is desirable (better performance).

Compare real-time tasks vs. scheduling an entire workload.

Copyright © ‹footer› Scheduling ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Scheduling 26

Multiprocessor scheduling
• thread scheduling

• load sharing/balancing

• gang scheduling

• dedicated processor assignment

• dynamic scheduling

• thread placement

• cache affinity scheduling

