
Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks

Deadlocks
(Chapter 3, Tanenbaum)

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 1

What is a deadlock?

Deadlock is defined as the permanent blocking of a set
of processes that compete for system resources,
including database records or communication lines.

Unlike other problems in multiprogramming systems,
there is no efficient solution to the deadlock problem in
the general case.

Deadlock prevention, by design, is the “best” solution.

Deadlock occurs when a set of processes are in a wait
state, because each process is waiting for a resource
that is held by some other waiting process. Therefore,
all deadlocks involve conflicting resource needs by two
or more processes.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 2

Classification of resources—I

Two general categories of resources can be
distinguished:
• Reusable: something that can be safely used by one

process at a time and is not depleted by that use.
Processes obtain resources that they later release for
reuse by others.
E.g., CPU, memory, specific I/O devices, or files.

• Consumable: these can be created and destroyed. When
a resource is acquired by a process, the resource ceases to
exist.
E.g., interrupts, signals, or messages.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 3

Classification of resources—II

One other taxonomy again identifies two types of
resources:
• Preemptable: these can be taken away from the process

owning it with no ill effects (needs save/restore).
E.g., memory or CPU.

• Non-preemptable: cannot be taken away from its
current owner without causing the computation to
fail.
E.g., printer or floppy disk.

Deadlocks occur when sharing reusable and
non-preemptable resources.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 4

Conditions for deadlock

Four conditions that must hold for a deadlock to be
possible:

1. Mutual exclusion: processes require exclusive
control of its resources (not sharing).

2. Hold and wait: process may wait for a resource
while holding others.

3. No preemption: process will not give up a resource
until it is finished with it. Also, processes are
irreversible: unable to reset to an earlier state
where resources not held.

4. Circular wait: each process in the chain holds a
resource requested by another

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 5

An example

back-up not possible
no rollback

refuses to share intersection
mutual exclusion

will not give-up intersection
no preemption

holds the intersection
hold and wait

Circular
wait

C1

C2

C3

C4 C3

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 6

Discussion
If any one of the necessary conditions is prevented a deadlock need
not occur. For example:
• Systems with only simultaneously shared resources cannot

deadlock.
· Negates mutual exclusion.

• Systems that abort processes which request a resource that is in
use.

· Negates hold and wait.
• Preemptions may be possible if a process does not use its

resources until it has acquired all it needs.
· Negates no preemption.

• Transaction processing systems provide checkpoints so that
processes may back out of a transaction.

· Negates irreversible process.
• Systems that prevent, detect, or avoid cycles.

· Negates circular wait. Often, the preferred solution.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 7

Resource allocation graphs

Set of Processes P = {P1, P2, …, Pn}
Set of Resources R = {R1, R2, …, Rm}
 Some resources come in multiple units.

Rj
has 2 units

Pi Rj Resource Rj has been allocated to Pi

Process Pi waits for (has requested) Rj Pi Rj

P1 R2 P2 R4 P3 R3

P1 P2 P3

R3

Blocked

Blocked
Active
Blocked
Deadlock

R1

R5Deadlock

R2

R4

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 8

Cycle is necessary, but ...

P1

P4

P3

P2
R1

R2

Blocked

Active

Blocked

Active

cycle

Multiple resource unit case:
No Deadlock—yet!

Because, either P2 or P4 could relinquish a resource
allowing P1 or P3 (which are currently blocked) to
continue. P2 is still executing, even if P4 requests R1.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 9

… a knot is required

Cycle is a necessary condition for a deadlock. But when
dealing with multiple unit resources—not sufficient.

A knot must exist—a cycle with no non-cycle outgoing path
from any involved node.

At the moment assume that:

• a process halts as soon as it waits for one resource, and

• processes can wait for only one resource at a time.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 10

Further requests

P1

P4

P3

P2
R1

R2

(b) If P2 requests R2: Deadlock—Cycle—Knot.
 No active processes to release resources.

(a)

(b)

P1 R2 P3 R2 P4 R1 P2 R2

(a) If P4 requests R1 no deadlock since P2 may
 release R1, allowing P4 to complete.

P1 R2 P3 R2 P4 R1 P2OK

Not OK

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 11

Strategies for deadlocks

In general, four strategies are used for dealing with
deadlocks:
• Ignore: stick your head in the sand and pretend there is

no problem at all.
• Prevent: design a system in such a way that the

possibility of deadlock is excluded a priori
(e.g., compile-time/statically, by design)

• Avoid: make a decision dynamically checking whether
the request will, if granted, potentially lead to a deadlock
or not
(e.g., run-time/dynamically, before it happens)

• Detect: let the deadlock occur and detect when it
happens, and take some action to recover after the fact
(e.g., run-time/dynamically, after it happens)

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 12

Ostrich algorithm!

Different people react to this strategy in different ways:
• Mathematicians: find deadlock totally unacceptable, and

say that it must be prevented at all costs.
• Engineers: ask how serious it is, and do not want to pay

a penalty in performance and convenience.

The UNIX approach is just to ignore the problem on the
assumption that most users would prefer an occasional
deadlock, to a rule restricting user access to only one
resource at a time.

The problem is that the prevention price is high, mostly
in terms of putting inconvenient restrictions on
processes.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 13

Deadlock prevention

The strategy of deadlock prevention is to design a
system in such a way that the possibility of deadlock is
excluded a priori. Methods for preventing deadlock are
of two classes:
• indirect methods prevent the occurrence of one of the

necessary conditions listed earlier.

• direct methods prevent the occurrence of a circular
wait condition.

Deadlock prevention strategies are very conservative;
they solve the problem of deadlock by limiting access to
resources and by imposing restrictions on processes.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 14

More on deadlock prevention
• Mutual exclusion

– In general, this condition cannot be disallowed.

• Hold-and-wait
– The hold and-wait condition can be prevented by requiring that a

process request all its required resources at one time, and blocking
the process until all requests can be granted simultaneously.

• No preemption
– One solution is that if a process holding certain resources is denied

a further request, that process must release its unused resources
and request them again, together with the additional resource.

• Circular Wait
– The circular wait condition can be prevented by defining a linear

ordering of resource types (e.g. Directed Acyclic Graph). If a process
has been allocated resources of type R, then it may subsequently
request only those resources of types following R in the ordering.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 15

Deadlock avoidance

Deadlock avoidance, allows the necessary conditions but
makes judicious choices to ensure that a deadlock-free
system remains free from deadlock. With deadlock
avoidance, a decision is made dynamically whether the
current resource allocation request will, if granted,
potentially lead to a deadlock. Deadlock avoidance thus
requires knowledge of future requests for process resources.

Ways to avoid deadlock by careful resource allocation:

•Resource trajectories.

•Safe/unsafe states.

•Dijkstra’s Banker's algorithm.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 16

Banker’s algorithm—definitions

Assume N Processes {Pi}
 M Resources {Rj}

 Availability vector Availj, units of each resource
(initialized to maximum, changes dynamically).
Let [Maxij] be an N x M matrix.

Maxij= L means Process Pi will request at most
L units of Rj.

 [Holdij] Units of Rj currently held by Pi

 [Needij] Remaining need by Pi for units of Rj

Needij = Maxij - Holdij, for all i & j

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 17

At any instance, Pi posts its request for resources in vector REQj

(i.e., no hold-and-wait)
Step 1: verify that a process matches its needs.

if REQj > Needi abort—error, impossible

Step 2: check if the requested amount is available.
if REQj > Availj goto Step 1—Pi must wait

Step 3: provisional allocation (i.e., guess and check)
Availj = Availj - REQj
Holdij = Holdij + REQj
Needij = Needij - REQj
if isSafe() then grant resources—system is safe
 else cancel allocation; goto Step 1—Pi must wait

Banker’s Algorithm—resource request

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 18

Banker’s Algorithm—isSafe

Find out whether the system is in a safe state.
Work and Finish are two temporary vectors.
Step 1: initialize.

Workj = Availj for all j; Finishi = false for all i.

Step 2: find a process Pi such that
Finishi = false and Needij ≤ Workj, for all j
if no such process, goto Step 4.

Step 3: Workj = Workj + Holdij (i.e., pretend it finishes and
Finishi = true frees up the resources)
goto Step 2.

Step 4: if Finishi = true for all i
 then return true—yes, the system is safe
 else return false—no, the system is NOT safe

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 19

Banker’s algorithm—what is safe?

Safe with respect to some resource allocation.

•very safe
 NEEDi <= AVAIL for all Processes Pi.

 Processes can run to completion in any order.

•safe (but take care)
 NEEDi > AVAIL for some Pi
 NEEDi <= AVAIL for at least one Pi such that

 There is at least one correct order in which the processes
may complete their use of resources.

•unsafe (deadlock inevitable)
 NEEDi > AVAIL for some Pi
 NEEDi <= AVAIL for at least one Pi

 But some processes cannot complete successfully.

•deadlock
 NEEDi > AVAIL for all Pi

 Processes are already blocked or will become so as they
request a resource.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 20

Example—safe allocation

Assume P1 acquires one unit. Very safe? No! Need2 > 2

Safe? Let us see with the safe/unsafe algorithm...

i = 1; does P1 agree with Step 2? No.
i = 2; does P2 agree with Step 2? No.
i = 3; does P3 agree with Step 2? Yes. Work = Work+Hold3; Finish3 = T
i = 1; does P1 agree with Step 2? Yes. Work = Work+Hold1; Finish1 = T
i = 2; does P2 agree with Step 2? Yes. Work = Work+Hold2; Finish2 = T

For simplicity, assume that all the resources are identical.

No more (unfinished) Pi , therefore safe.

Max Hold Need Finish

P1 5 2 3 F
P2 4 1 3 F
P3 2 1 1 F

 Avail Work

 2 2/ 3 / 2 / 1

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 21

Example—safe allocation

Max Hold Need Finish

P1 5 2 3 F
P2 4 1 3 F
P3 2 1 1 F

 Avail Work

 2 2

Assume P1 acquires one unit.

P1 P2 P3

R

/ 3 / 2 / 1

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 22

Example—safe allocation cont.

P3 can acquire the last unit and finish. Then, P3 frees up resources.

P1 P2 P3

R

Max Hold Need Finish

P1 5 3 2 F
P2 4 1 3 F
P3 2 1 1 F

 Avail Work

 1 1/

/ 2 / 0

0

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 23

Example—safe allocation cont.

Then, P1 can acquire two more units and finish.

P1 P2 P3

R

Max Hold Need Finish

P1 5 5 0 F
P2 4 1 3 F
P3 2 0 0 T

 Avail Work

 2 2/ 0

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 24

Example—safe allocation cont.

Finally, P2 can acquire three more units and finish.

P1 P2 P3

R

Max Hold Need Finish

P1 5 0 0 T
P2 4 1 3 F
P3 2 0 0 T

 Avail Work

 5 5/ 2
/ 4 / 0

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 25

Example—unsafe allocation

Assume P2 acquires one unit.
As before, P3 can finish and release its resources.

BUT...

i = 1; does P1 agree with Step 2? No.
i = 2; does P2 agree with Step 2? No.
i = 3; does P3 agree with Step 2? Yes. Work = Work+Hold2; Finish2 = T

Any more unfinished Pi? Yes.
P1 and P2 cannot finish. Therefore unsafe.

Max Hold Need Finish

P1 5 2 3 F
P2 5 1 4 F
P3 2 1 1 F

 Avail Work

 2 2/ 1
/ 3

/ 2
NOTE: New
numbers here!

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 26

Example—unsafe allocation cont.

Max Hold Need Finish

P1 5 2 3 F
P2 5 2 3 F
P3 2 0 0 T

Avail Work

 2 2

P1 P2

R

NOW...

P3

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 27

Deadlock detection
This technique does not attempt to prevent deadlocks;
instead, it lets them occur. The system detects when this
happens, and then takes some action to recover after the fact
(i.e., is reactive). With deadlock detection, requested
resources are granted to processes whenever possible.
Periodically, the operating system performs an algorithm
that allows it to detect the circular wait condition.

A check for deadlock can be made as frequently as resource
request, or less frequently, depending on how likely it is for a
deadlock to occur. Checking at each resource request has two
advantages: It leads to early detection, and the algorithm is
relatively simple because it is based on incremental changes
to the state of the system. On the other hand, such frequent
checks consume considerable processor time.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 28

Recovering from deadlocks
Once the deadlock algorithm has successfully detected a
deadlock, some strategy is needed for recovery. There are
various ways:
• Recovery through Preemption

 In some cases, it may be possible to temporarily take a resource
away from its current owner and give it to another.

• Recovery through Rollback
 If it is known that deadlocks are likely, one can arrange to have

processes checkpointed periodically. For example, can undo
transactions, thus free locks on database records. This often
requires extra software functionality.

• Recovery through Termination
 The most trivial way to break a deadlock is to kill one or more

processes. One possibility is to kill a process in the cycle.
Warning! Irrecoverable losses or erroneous results may occur, even if
this is the least advanced process.

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 29

Summary of strategies

Principle Resource Allocation
Strategy

Different Schemes Major
Advantages

Major
 Disadvantages

DETECTION • Very liberal; grant
resources as
requested.

• Invoke periodically
to test for deadlock.

• Never delays process initiation.
• Facilitates on-line handling.

• Inherent preemption losses.

PREVENTION • Conservative; under-
commits resources.

• Requesting all
resources at once.

• Preemption

• Resource ordering

• Works well for processes with
single burst of activity.

• No preemption is needed.

• Convenient when applied to
resources whose state can be
saved and restored easily.

• Feasible to enforce via compile-
time checks.

• Needs no run-time
computation.

• Inefficient.
• Delays process initiation.

• Preempts more often then
necessary.

• Subject to cyclic restart.

• Preempts without immediate
use.

• Disallows incremental resource
requests.

AVOIDANCE • Selects midway
between that of
detection and
prevention.

• Manipulate to find
at least one safe
path.

• No preemption necessary. • Future resource requirements
must be known.

• Processes can be blocked for
long periods.

Copyright © ‹footer› Deadlocks ‹#›

 Copyright © 1996–2005 Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Deadlocks 30

Other issues

Two-phase Locking
 Although both avoidance and prevention are not very promising in

general, many excellent special-purpose algorithms are known. The
best data base algorithm is known as two-phase locking (covered in
detail in another course).

Non-resource Deadlocks
 Deadlocks can also occur in other situations, where no single resource

is involved. E.g., two processes exchanging messages, where both are
listening and waiting for the other to send a message.

Starvation
 A problem closely related to deadlock is starvation. In a dynamic

system, requests for resources happen all the time. The key is to make
a decision about who gets which resources when. This decision
sometimes may lead to some processes never receiving service, though
they are not deadlocked!

