
  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory

Virtual Memory
(Chapter 4, Tanenbaum)

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 1

Introduction

So far, we separated the programmer’s view of memory
from that of the operating system using a mapping
mechanism. This allows the OS to move user programs
around and simplifies sharing of memory between them.

However, we also assumed that a user program had to
be loaded completely into the memory before it could
run.

Problem: Waste of memory, because a program only
needs a small amount of memory at any given time.

Solution: Virtual memory; a program can run with
only some of its virtual address space in main memory.



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 2

Principles of operation
The basic idea with virtual memory is to create an illusion of
memory that is as large as a disk (in gigabytes) and as fast
as memory (in nanoseconds).
The key principle is locality of reference, which recognizes
that a significant percentage of memory accesses in a
running program are made to a subset of its pages. Or
simply put, a running program only needs access to a portion
of its virtual address space at a given time.
With virtual memory, a logical (virtual) address
translates to:

– Main memory (small but fast), or
– Paging device (large but slow), or
– None (not allocated, not used, free.)

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 3

A virtual view

Virtual Address Space
(logical)

Main Memory (physical)

Paging Device Backing Storage

Free



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 4

Virtual memory

Virtual memory (sub-)system can be implemented as an
extension of paged or segmented memory management
or sometimes as a combination of both.

In this scheme, the operating system has the ability to
execute a program which is only partially loaded in
memory.

Note: the idea was originally explored earlier in
“overlays”. However now, with virtual memory, the
fragmentation and its management is done by the
operating system.

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 5

Missing pages

What happens when an executing program references an
address that is not in main memory? Here, both hardware
(H/W) and software (S/W) cooperate and solve the problem:
• The page table is extended with an extra bit, present.

Initially, all the present bits are cleared (H/W and S/W).
• While doing the address translation, the MMU checks to

see if this bit is set. Access to a page whose present bit is
not set causes a special hardware trap, called page fault
(H/W).

• When a page fault occurs the operating system brings the
page into memory, sets the corresponding present bit, and
restarts the execution of the instruction (S/W).

Most likely, the page carrying the address will be on the
paging device, but possibly does not exist at all!



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 6

Multi-level paging—revisited

Page 
Number

Page 
Offset

P1 P2

To frames
or

disk

1
3

57

Frame
57

Top-level
Page Table

Second-level
Page Tables

840
840

...

1

0
0
0

0

Present bit

Note: This example barely illustrates the present
bit. The technique can be applied to any 
non-contiguous memory allocation schemes.

Paging Device

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 7

Page fault handling—by picture

0
1

1

Program’s
Logical 
Address
Space

Main
Memory

Paging
Device

Operating 
System

Page
Table

Reference
Page
fault

Page is on
Paging Device

Find an empty
frame and bring in

the missing page

Update the
page table

Restart
execution

Address
invalid

Segmentation
fault



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 8

Page fault handling—by words

When a page fault occurs, the system:
• marks the current process as blocked (waiting for a page),
• finds an empty frame or make a frame empty in main

memory,
• determines the location of the requested page on paging

device,
• performs an I/O operation to fetch the page to main

memory,
• triggers a “page fetched’’ event (e.g., special form of I/O

completion interrupt) to wake up the process.
Since the fourth (and occasionally the second) step involves
I/O operations, it makes sense to perform this operation with
a special system process (e.g., in UNIX, pager process.)

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 9

Additional hardware support

Despite the similarities between paging or
segmentation and virtual memory, there is a small but
an important problem that requires additional
hardware support. Consider the following M68030
instruction:
 DBEQ    D0, Next ; Decrement and Branch if Equal

Which can be micro-coded as:
 Fetch (instruction); decrement D0;

 if D0 is zero, set PC to “Next” else increment PC.

What if the instruction itself and the address Next are
on two different pages and the latter page was not in
memory? Page fault... From where and how to restart
the instruction? (Hint: D0 is already decremented.)



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 10

Possible support

The moral of the previous example is that if we want to
have complex instructions and virtual memory, we need
to have additional support from the hardware, such as:
• Partial effects of the faulted instruction are undone and

the instruction is restarted after servicing the fault (VAX-
11/780)

• The instruction resumes from the point of the fault (IBM-
370)

• Before executing an instruction make sure that all
referenced addresses are available in the memory (for
some instructions, CPU generates all page faults!)

In practice, some or all of the above approaches are
combined.

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 11

Basic policies

The hardware only provides the basic capabilities for
virtual memory. The operating system, on the other
hand, must make several decisions:
• Allocation—how much real memory to allocate to each

(ready) program?

• Fetching—when to bring the pages into main memory?

• Placement—where in the memory the fetched page should
be loaded?

• Replacement—what page should be removed from main
memory?



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 12

Allocation policy
In general, the allocation policy deals with conflicting
requirements:
• The fewer the frames allocated for a program, the higher

the page fault rate.
• The fewer the frames allocated for a program, the more

programs can reside in memory; thus, decreasing the need
of swapping.

• Allocating additional frames to a program beyond a
certain number results in little or only moderate gain in
performance.

The number of allocated pages (also known as resident
set size) can be fixed or can be variable during the
execution of a program.

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 13

Fetch policy
• Demand paging

– Start a program with no pages loaded; wait until it
references a page; then load the page (this is the most
common approach used in paging systems.)

• Request paging
– Similar to overlays, let the user identify which pages

are needed (not practical, leads to over estimation and
also user may not know what to ask for.)

• Pre-paging
– Start with one or a few pages pre-loaded. As pages are

referenced, bring in other (not yet referenced) pages too.
Opposite to fetching, the cleaning policy deals with
determining when a modified (dirty) page should be
written back to the paging device.



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 14

Placement policy

This policy usually follows the rules about paging and
segmentation discussed earlier.
Given the matching sizes of a page and a frame,
placement with paging is straightforward.
Segmentation requires more careful placement,
especially when not combined with paging. Placement
in pure segmentation is an important issue and must
consider “free” memory management policies.

With the recent developments in non-uniform memory
access (NUMA) distributed memory multiprocessor
systems, placement does become a major concern.

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 15

Replacement policy

The most studied area of the memory management is
the replacement policy or victim selection to satisfy a
page fault:

• FIFO—the frames are treated as a circular list; the
oldest (longest resident) page is replaced.

• LRU—the frame whose contents have not been used
for the longest time is replaced.

• OPT—the page that will not be referenced again for
the longest time is replaced (prediction of the future;
purely theoretical, but useful for comparison.)

• Random—a frame is selected at random.



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 16

More on replacement policy
• Replacement scope:

– Global—select a victim among all processes.
– Local—select a page from the faulted process.

• Frame locking—frames that belong to resident
kernel, or are used for critical purposes, may be
locked for improved performance.

• Page buffering—victim frames are grouped into two
categories: those that hold unmodified (clean) pages
and modified (dirty) pages (VAX/VMS uses this
approach.)

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 17

1

0

1

1
00

1

1

0

1 1

        algorithm
All the frames, along with a used
bit, are kept in a circular queue. A
pointer indicates which page was
just replaced. When a frame is
needed, the pointer is advanced to
the first frame with a zero used
bit. As the pointer advances, it
clears the used bits. Once a victim
is found, the page is replaced and
the frame is marked as used (i.e.,
its used bit is set to one.)

The hardware, on the other hand,
sets the used bit each time an
address in the page is referenced.

0

This is one way to implement
the 2nd chance algorithm.

next

la
st

0



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 18

Clock algorithm—some details

Some systems also use a “dirty bit” (memory has been
modified) to give preference to dirty pages.

Why? It is more expensive to victimize a dirty page.

Problem: code pages are clean, but…

If the clock hand is moving
• fast    then not enough memory (thrashing is possible!)

• slow   then not many page faults (system is lightly loaded)

BSD UNIX (e.g., SunOS up to release 4.1.4) uses clock
algorithm. vmstat command gives some details about
virtual memory.

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 19

Thrashing

The number of processes that are in the memory determines
the multiprogramming (MP) level. The effectiveness of
virtual memory management is closely related to the MP
level.
When there are just a few processes in memory, the
possibility of processes being blocked and thus swapped out
is higher.
When there are far too many processes (i.e., memory is over-
committed), the resident set of each process is smaller. This
leads to higher page fault frequency, causing the system to
exhibit a behavior known as thrashing. In other words, the
system is spending its time moving pages in and out of
memory and hardly doing anything useful.



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 20

Thrashing                                  cont.

The only way to eliminate thrashing
is to reduce the multiprogramming
level by suspending one or more
process(es). Victim process(es) can
be the:
• lowest priority process
• faulting process
• newest process
• process with the smallest

resident set
• process with the largest resident

set

1.0

Multiprogramming Level

P
ro

ce
ss

or
 U

ti
li

za
ti

on

Optimum performance

Student analogy to thrashing: Too many courses!
Solution? Drop one or two…Well, it is too late now!

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 21

Working sets
The working set of a program is the set of pages that are
accessed by the last Δ memory references at a given
time t and denoted by W(t,Δ).

Example (Δ=10):

26157777516234123444434344413234443444233312334

Denning’s Working Set Principle states that:
• A program should run iff its working set is in memory.
• A page may not be victimized if it is a member of the

current working set of any runnable (not blocked) program.

t0
t1

t2 t3

W(t0, Δ) = {1,2,5,6,7} W(t1, Δ) = {1,2,3,4,6} W(t2, Δ) = {3,4} W(t3, Δ) = {2,3,4}



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 22

Working sets                              cont.

One problem with the working set approach is that the
information about each working set (one per process)
must constantly be gathered (i.e., what pages have been
accesses in the last Δ seconds?)

A solution (along with the clock algorithm):
• Maintain idle time value (amount of CPU time received by

the process since last access to the page)
• Every once in a while (e.g., every few seconds), scan all

pages of a process. For each used bit on, clear page’s idle
time; otherwise, add process’ CPU time since the last scan
to idle time. Turn off all the used bits.

• The collection of pages with the lowest idle time is the
working set.

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 23

Page-fault frequency
Dealing with the details of working
sets usually incurs high overhead.
Instead, an algorithm known as
page-fault frequency, can be used to
monitor thrashing. The page fault
rate is defined as

P = 1 / T

where, T is the critical inter-page
fault time. When the process runs
below the lower bound, a frame is
taken away from it (i.e., its resident
set size is reduced). Similarly, an
additional frame is assigned to a
process which runs above its upper
bound.

Number of frames allocated

P
ag

e 
F

au
lt

 R
at

e

N

Upper bound

Lower bound



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 24

Current trends
• Larger physical memory

– page replacement is less important
– less hardware support for replacement policies
– larger page sizes
· better TLB coverage
· smaller page tables, fewer pages to manage

• Larger address spaces
– sparse address spaces
– single (combined) address space (part for the OS part

for the user processes)

• File systems using virtual memory
– memory mapped files
– file caching with VM

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 25

A case study—paging in BSD UNIX

Page fault handling is separated from page replacement.

Page fault also occurs when there is plenty of memory
available. Instead of loading a program for execution,
the system simply builds its logical address space with
all pages marked as invalid.

Program’s image (code and data) is fetched into memory
in response to page faults.

Dynamic data and stack are allocated as the program
uses them.

Consequently, in many cases, the system does not have
to look for a victim page when there is a page fault.



  

Copyright ©1996 ‹footer› Virtual Memory ‹#›

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 26

Paging in BSD UNIX                                 cont.

The BSD paging system was first implemented on the
VAX with no used bit.

Page faults are serviced by a special system function,
pagein, which executes in the context of the faulting
process, with kernel privileges.

pagein attempts to get a free frame from the free-
frame list maintained by the kernel. It the list is empty,
the process blocks waiting for free memory.

The “free memory” event is raised by a system process,
called the page daemon, (pager) when it reclaims some
frames.

 Copyright © 1996–2005  Eskicioglu and Marsland (and Prentice-Hall and Paul Lu) Virtual Memory 27

Paging in BSD UNIX                                 cont.

The page daemon remains dormant until the number of
free frames drops a certain threshold value (e.g., 5% of
the total number of frames.)

When the page daemon is awakened, it executes a
variation of the clock algorithm.

When the page daemon cannot catch-up with memory
demands (thrashing!), the system starts swapping some
processes out.


