
2/24/09

1

Paul Lu

Associate Professor

Dept. of Computing Science
University of Alberta

Edmonton, Alberta, Canada

paullu@cs.ualberta.ca

2/24/09 Copyright 2009 Paul Lu 1

Intended Audience, Introduction
!!Beginner-to-intermediate parallel programmers

!! Advanced programmers might find this too basic

!!Main ideas apply to shared-memory programming or

distributed-memory programming

!! Pthreads, OpenMP

!! MPI

!! In fact, many of these ideas also apply to sequential

programming

2/24/09 Copyright 2009 Paul Lu 2

2/24/09

2

Overview
!!Don’t

!! …optimize pre-maturely

!! …guess about bottlenecks. Benchmark. Measure.
Consider Amdahl’s Law and program phases.

!! …focus on granularity and high-overhead operations
(e.g., I/O and memory-to-memory copies)

!!Do

!! …write test programs to learn new ideas

!! …work with the system: compilers, libraries,
debuggers, tools

!! …tap all available experts

2/24/09 Copyright 2009 Paul Lu 3

Do: Write test programs
!!When learning how to use Pthreads, OpenMP, MPI,

etc., write lots of small test programs to learn new
concepts

!! Trying to learn a new idea within a 5,000+ line
application is difficult

!! Some new concepts (e.g., non-blocking sends in MPI,
synchronization) are very different

!! If working from an example, do not modify the code
before it is working correctly

!!When debugging for correctness, consider forking
your code and simplifying it to triangulate the bug

2/24/09 Copyright 2009 Paul Lu 4

2/24/09

3

Don’t optimize pre-maturely
!!As with sequential programming, do not optimize

code until you know it will be a bottleneck

!! Focus on “the 20% of the code where you spend 80%

of your time”

!!Be clear, instead of being clever

!!When it comes time to optimize, clear, modular,

well-factored code will be easier to work with

2/24/09 Copyright 2009 Paul Lu 5

Don’t guess about bottlenecks
!!Use intuition to come up with ideas, but measure

performance to prove or disprove your hypothesis

!! Don’t give in to “that section of the code must be the

problem…”

!!See later discussion about Amdahl’s Law and tools

2/24/09 Copyright 2009 Paul Lu 6

2/24/09

4

Aside: Top 3 Lessons of

Computer Performance
1.! Granularity is king

!! I/O of any kind, including messages, will hurt

performance

2.! Optimize for the common case

3.! Advanced: Avoid copying data (e.g., memory-to-

memory) if at all possible

2/24/09 Copyright 2009 Paul Lu 7

Aside: Amdahl’s Law
!!Many programs naturally break down into phases:

read I/O, compute, communicate, compute, write I/O

!! Often, these phases are delimited by barrier

synchronizations

!!Do a scalability test (i.e., speedup or problem-size

tests) and record the size (i.e., in seconds/minutes)

of each phase

!!Focus on the phases that do not speed-up linearly

!!When debugging or optimizing add phases or

barriers to narrow your focus

2/24/09 Copyright 2009 Paul Lu 8

2/24/09

5

Do: Work with the system
!!Do not try to out-smart the compiler

!! Especially with vector and new/old SIMD code, the

compilers will be important

!!Try different compilers

!! gcc is not always the best choice

!! Try the Intel compilers, Portland Group, etc.

!!Consider standard libraries (e.g., FFTW, BLAS)

!!Explore performance analysis tools

2/24/09 Copyright 2009 Paul Lu 9

Do: Tap all experts
!! Learn to ask questions of your local experts

!! Administrators and technical staff

!! Find/build a community of application users

!! Learn to ask good questions

!!Use Google and Wikipedia

2/24/09 Copyright 2009 Paul Lu 10

2/24/09

6

Do: Use a debugger, etc.
!!Find the best debugger for your system. Learn to

use it.

!! TotalView

!! Learn a few performance monitoring tools

2/24/09 Copyright 2009 Paul Lu 11

Concluding Remarks
!!Don’t

!! …optimize pre-maturely

!! …guess about bottlenecks. Benchmark. Measure.
Consider Amdahl’s Law and program phases.

!! …focus on granularity and high-overhead operations
(e.g., I/O and memory-to-memory copies)

!!Do

!! …write test programs to learn new ideas

!! …work with the system: compilers, libraries,
debuggers, tools

!! …tap all available experts

2/24/09 Copyright 2009 Paul Lu 12

