Trigger Scripts For
Extensible File
Systems

Cameron Macdonell

Overview

m The Scruf Framework

s Examples of Extended File Systems
m Experiments

= Concluding Remarks

Scruf - SCRiptable User-level File system

m Scruf executes a user script as a user-level
process whenever a file operation occurs in the
directory (CWD) containing the script

m Scruf passes the name of the file being accessed as
a parameter ($1) to the script

m Locates a script based on its name - .on.open for
example

m Allows extension without changing the
applications

Cameron Macdonell

The Scruf Framework: A Diagram

User-level .on.open .on.read .on.write ...

Unmodifed

Application L

User-Level
Daemon

| 1

/proc/scruf

v l

Scruf-VFS
>
e

Kernel

open() read() write() ...

Cameron Macdonell

Example Extended File
Systems

m We have built five sample extended file systems:

s Scruf-CVS

m Backs up files with open-close semantics
m Scruf-Trace

m Logs all file operations
m Scruf-Crypt

m Transparent access to encrypted files
m Scruf-Compress

m Transparent access to compressed files
m Scruf-Trellis

= Remote Data Access

m Average 40 lines of code

Cameron Macdonell

Andrew100

400

350

300

250

Time (s200
150

100

50 21.7%

0) :

2 4 5

Phase Number

Cameron Macdonell

6.2%

mext2
m Scruf-Trac

0% 13%

Build of the Linux Kernel

450 3.2%
400
350
300
, 250 mext2
Time (5200 m Scruf-Trac
150
100—
=
0] :

make dep make
bzlmage

Build Stag

Cameron Macdonell

Running Scruf with No
Scripts

m Measures the overhead of the framework

m Applications should not be hindered if no extensions
are used

m Framework is in place,the daemon is running,
there are no scripts in the hierarchy

m What operations are involved?
= |PC to user-level
m Search for, and attempted inheritance of, Scripts
m Filters are setup in kernel

m The highest overhead noted is 0.91%
m Overheads are a function of the scripts

Cameron Macdonell

Concluding Remarks

m Scruf is simple, effective and flexible
m Useful extensions can be implemented
quickly
m Trigger scripts average 40 lines of code
m Applications do not need to be modified

m Performance
= Negligible overhead from the framework

m Asynchronous and Persistent Scripts can
improve performance when they can be used

Cameron Macdonell

rhanks*

Cameron Macdonell

Making Life Easier

= Inheritance
m Simplifies installation and removal of scripts

m With inheritance, trigger scripts are inherited
into lower directories

/usr

7 =

alberta bin

.on.read .on.write

/ \\ lInherits

paullu

thesis

Cameron Macdonell

Making Life Easier
m Filtering

m Keeps track of which directory contain which
scripts

m Eliminates unnecessary IPC

User-Level / CWD

.on.read .on.open
A A

DX DX

T Filtered, no IPC
read write
open

Kernel / Scruf-VFS

Cameron Macdonell

Making Life Easier

= Inheritance
m Simplifies installation and removal of scripts

m With inheritance, trigger scripts are inherited
into lower directories

/usr .on.read .on.write

/usr/home .on.open

‘ inherits

/usr/home/cam i

Cameron Macdonell

Sync v. Async Scripts

Daemon fork() exec() Script

Synchronous Script

SCRUF_API ARGS ..

computes

SCRUF API NOOP

<
<

return to kernel

— V

Daemon =) el Script i

Asynchronous Script

SCRUF API ARGS ..

<7
return to kernel

computes

Cameron Macdonell

Scruf-Trellis

m With development
Scruf-Trellis should
aTrellis beat its equivalent

mscp; bzig = Overlapped copying
and compression

50 MB 100 MB
Size of Fil

Cameron Macdonell

Making Life Easier

s Symbolic Links

[cam@sunset ~/test]$ 1ls -al

total 16

drwx—-S-—— 2 cam grad 4096 Aug :48 .

drwxr-sr-x cam grad 4096 Aug :48 ..

lrwxXrwxrwx cam grad 8 Aug :47 .on.lseek -> .on.open
cam grad 43 Aug :46 .on.open

lrwxrwxrwx cam grad 8 Aug :47 .on.read -> .on.open

1lrwXrwxrwx cam grad 8 Aug :47 .on.release -> .on.open

lrwxrwxrwx cam grad 8 Aug :47 .on.write -> .on.open

—rW——————— 1 cam fefiar-Yol 951 Aug :48 anyfile

[cam@sunset ~/test]$ cat .on.open

#!1/bin/sh

echo $2 >> /usr/scovil3/logfile
[cam@sunset ~/test]$

Cameron Macdonell

The Scruf Framework: At User-Level

s Run when their corresponding file
operation occurs

s Can perform two actions
1) Interposed Action
m File operation continues as normal

2) Redirection Action

m Redirect Scruf-VFS to a different file
m Currently, can only come from .on.open

Cameron Macdonell

Back to Our Example

m For our purpose instead of storing editor
preferences, we want to store an executable
command

m cvs commit filename

m Important: we don’t want to have to re-write
every application to run the script

m Solution: Have the file system look for and
execute the scripts when certain file operations
(i.e., open) occur

Cameron Macdonell

VFS Trigger Scripts

m Allows extension of five file operations
m open, read, write, seek, release
m release is like close
m Extends these operations by running specially-
named, user-defined scripts in the CWD when
they occur
B open —*.on.open

m read ——.on.read

m Passes data describing the operation to the

script
m /usr/home/cam/myfile.c,read,0,4096,2024,14:24:37.215

Cameron Macdonell

Path Trigger Scripts

m Explicitly invoked in a pathname
mtrellis:scp:sunset:~/myfile.c

m Assume path before colon is an
executable

m [ext following colon is passed on the
command line to the path script

m Equivalent to

[cam]$S trellis scp:sunset:~/myfile.c

Cameron Macdonell

The Scruf Framework

= Three main components:

1) A kernel module, called Scruf-VFS

= A modified ext2 module

s Communicates to user-level when file operations occur
2) A user-level daemon

m Searches for and executes the scripts
3) The trigger scripts

m Specially named files which encapsulate the functionality
which extend the file system’s operation

s What does not change?
m The applications!

Cameron Macdonell

The Scruf Framework: At User-Level

m The Daemon

= A multiplexor in a one-to-many environment
m One: Scruf-VFES in the kernel
m Communicate with the daemon via /proc file system
m Many: The Trigger Scripts
= Communicate with the daemon via pipe IPC

m Locates and runs scripts, if they exist

[cam@sunset ~/test]$ 1ls -al
total 16
drwx--S—--— 2 cam grad 4096 Aug 15 14:48 .
drwxr-sr-x 69 cam grad 4096 Aug 15 14:48 ..
1 cam grad 43 Aug 15 14:46 .on.open
1 cam grad 951 Aug 15 14:48 anyfile

[cam@sunset ~/test]$

Cameron Macdonell

Trigger Scripts

m General Operation

m Receive data describing file operation

m Receive data two ways

s Command line and pipe IPC (stdin, stdout)
m usr/alberta/myfile.c,read,0,4096,1665,16:41:30.716

m Perform computation
m Compression, encryption, write to log file, ...

m BReturn an code to the daemon which is the
passed to the kernel

Cameron Macdonell

Scruf-Trace

m Helps understand file I/O patterns in
applications

m Used to trace the file 1/O in gcc

m Traces all opens, reads, writes, Iseeks and
releases

m Can log thousands of file ops per second

m Each trigger file is 64 lines of compiled C
code

Cameron Macdonell

Scruf-Trace

camfz_d.g -1 g7el
camfs_impl .1 -7 100525
camfz_d.c -1 G560

camfz_impl.c 21184

Makefile :l 636
camfs_header.h —] 2057
camfz_impl .o -7 1d42dd
camfz_d.i -1 7560
canfs_d -7 31095
camfs_impl .z -7 45763
camfz_d.o 4053
_w 1 1 1 |

| i | i |
[ir4 252 S0 75 100%

file position

read access (top bard) write accessz Chottom bar) no access

Cameron Macdonell

Scruf-Trace

camfs_d.z

camfz_impl.i -

camfs_d.c

1
I
|
!
i
J

|
Makefile :
canfs_impl.c

camfz_header .h

canfs_impl.o

camfz_d.i

il

camfz_impl.s

camfs_d.o

'
I
I
1
[
I
1
i
camfz_d :
I
1
I
I
I
I
]
I

—_t =

14 :15:00 14:15:05 14:15:10 14:15:15 14:15:20 14:15:25
real tine {HH:HH:55)

| reads Ctop bar) [writes (bottom bar

Cameron Macdonell

The Scruf Framework: In the kernel

m Underneath is exactly like ext2
m Storage and access of files does not change

m When no trigger scripts are present, Scruf
behaves just like ext2

m An ext2 partition can be mounted as a
Scruf partition without reformatting

m Changes are restricted to a Linux kernel
loadable module

= No patching, recompilation or rebooting

Cameron Macdonell

Making Life Easier

= Four mechanisms which make trigger
scripts easier to user and more efficient
= Symbolic links
m Persistence
= Inheritance
= Filtering

Cameron Macdonell

Motivating Example

= File Back-up

m For software development, paper writing
m Revisions are created using versioning software like CVS
m They are recovered in case of lost data, or to “start fresh”

m Encapsulate the command into a script

#!/bin/sh
cvs commit $1

= Then we need the system to run the script every time
a file is opened (or closed).

Cameron Macdonell

What are Trigger Scripts?

m [rigger scripts are executable scripts
which extend file system functionality

m [hey are regular user-level programs
which can be implemented in any
language
m C, Python, Perl, etc.

m Supported by the Scruf framework

= But, why would anyone want to extend the
file system?

Cameron Macdonell

Similar Idea: RC files

m A similar idea already exists with RC files

m Editors such as Vim and Emacs have thousands
of options
m i.e., colors, spacing, syntax highlighting

= No user would tolerate inputting these options
every time they open a file in the editor

m Instead, the save their preferences in a file, with a
predefined name (.vimrc, .emacs) that the application
looks for and reads when it is started.

Cameron Macdonell

Making Life Easier

m Persistent Scripts
m Scripts that do not exit after handling a single
file operation

m Remains running for subsequent operations
m Saves startup overhead
m Scruf-Trace logs 2,300 access/second

m Daemon keeps a pipe open between itself
and each persistent script

Cameron Macdonell

Experiments

m Scruf-Trace was run on two benchmarks

= Andrew100

m Based on the well-known Modified Andrew
Benchmark(MAB)

= Five stages
m mkdir, cp, 1ls -1, wc & grep, gcc

m MAB is too small on modern system
= Andrew100 performs MAB 100 times

= Build of the Linux Kernel
m A full compilation of the 2.4.18 kernel

Cameron Macdonell

Testing Path Scripts

m Path scripts are a second type of trigger script
= Explicitly named and executed

m Scruf-Trellis
m Remote data access
m Compare

[cam]$ bzip2 -c trellis:scp:sunset:/usr/cam/mymail
> /dev/null

[cam]$ scp sunset:/usr/cam/mymail tmp ; bzip2 -c tmp
> /dev/null

m Tested on 50 MB and 100 MB files
m Written in 30 lines of Python code

Cameron Macdonell

Trigger Script API

m Scripts interact with the Daemon via API
= Language-independent, using ASCII strings

m Examples:

m Behaviour Codes
[] SCRUF_API_ASYNC, SCRUF_API_PERSIST

m Return Codes
u SCRUF_API_NOOP, SCRUF_API_RELOAD

m Control Codes
m SCRUF_API ARGS, SCRUF API KILL

Cameron Macdonell

Making Life Easier

= Asynchronous Scripts
= Non-blocking scripts

= Daemon does not wait for a return code from
the script

m Assumes interposed action and returns
SCRUF_API NOOP to kernel

m Daemon is not blocked waiting for a return
values, instead returns immediately to kernel
and retrieves next operation

m Most useful with persistent scripts

Cameron Macdonell

