
Java Threaded Programming

Zhuang Guo

Paul Lu

Constructing threads

! Use constructors in the Thread class:

– Thread()

Start/stop a thread

! Call start() method

! Then, a new thread will be started to execute
run().

! Method isAlive() returns true when run() is
executing.

! Static method Thread.currentThread() returns
the current running thread.

! A thread stops when the run() method returns.

Put a thread to sleep

! Call sleep(long millis) or sleep(long millis, int

nanos)

! A sleeping thread can be interrupted. When

that happens, an InterruptedException object is

thrown.

! Therefore, always sandwich sleep(long millis)

in a try-catch block.

Wait a thread to stop

! Use methods:

– join()

Synchronization Mechanisms

! Java uses synchronized methods or synchronized

statements to wrap critical code sections.

! Each critical code section is monitor-guarded. A lock is

acquired and released when enter or exit a critical code

section.

! In Java, each object has a lock. Class is also an object.

! Use static method Thread.holdsLock(Object o) to check if

the current thread holds the object’s lock.

Synchronization mechanisms cont’d

! Synchronized statements

 synchronized(object A){

 // At entrance, acquire A’s lock

 //Thread.holdsLock(A) returns true.

 // Execute statements…

 …

 // At exit, release A’s lock

}

Synchronization mechanisms cont’d

! Synchronized non-static methods of object A:

synchronized void method(…){

// At entrance, acquire A’s lock

//Thread.holdsLock(A) returns true.

 execute method statements.

 …..

 // At exit, release A’s lock.

}

Synchronization mechanisms cont’d

! Synchronized static methods of object A:

synchronized static void method(…){

// At entrance, acquire A’s class lock

 execute method statements.

 …..

 // At exit, release A’s class lock.

}

Thread scheduling

! Java multithreading is preemptive.

! Use getPriority() and setPriority(int priority).

Their effects varies across different platforms.

! Use yield() to let other threads of equal priority

to execute.

Wait/notify()

! Method wait() waits until being notified or
interrupted.

! Method wait(long millis) only waits for a
specified amount of time.

! Method notify() notifies one waiting thread.

! Method notifyAll() notifies all waiting threads.

! Note: acquire the object’s lock first before issue
wait/notify on the object.

Thread interruption

! Interrupt a thread using the interrupt() method.

! When interrupted, an InterruptedException
object is thrown, and the sleeping/waiting
thread resumes execution.

! Method isInterrupted() returns true when a
thread is interrupted.

! Static method interrupted() also returns true
when interrupted, but it also clears the flag.

Thread groups

! Each thread belongs to one thread group.

! Each thread group contains threads and other thread

groups.

! The root thread group is the system group.

! Thread’s method activeCount() and

enumerate(Thread[] theArray) returns the number of

active threads in the calling thread’s group or subgroup

and lists these active threads.

Thread groups cont’d

! ThreadGroup’s activeGroupCount() method

returns the estimated number of active thread

groups.

! A thread’s maximal priority in a thread group can

be set by method setMaxPriority(int priority).

! ThreadGroup’s interrupt() interrupt all the threads

in the group and subgroups.

Timer

! Use Timer and TimerTask to schedule the

execution of one task at a specified time.

! A thread is associated with a Timer object.

! Methods in Timer:

– One time execution:

void schedule(TimerTask task, Date time)

– Mutliple times:

void schedule(TimerTask task, Date firstTime, long interval)

One more thing

! Do not call deprecated methods in Thread,

such as suspend(), resume(), because they

can lock up your program and damage objects.

Thread local variable cont’d

! A ThreadLocal field should be declared static,

since it makes no sense to let each thread to

have its own copy.

! The InheritableThreadLocal class allows a

child thread to inherit the thread local variable

of each parent.

Thread local variables

! The ThreadLocal class allows each thread to

have its own thread-local storage.

! ThreadLocal class has three major methods:

– Object get(): gets the thread’s local value.

– Object intialValue(): returns a thread local variable’s

initial value. This method’s default implementation

returns null, so it must be subclassed.

– void set(Object value): set the thread’s local value.

