
1/15/04 Ptrace

System Call Tracing using ptrace

1/15/04 Ptrace

Introduction

! Synopsis1

#include <sys/ptrace.h>

long int ptrace(enum __ptrace_request request, pid_t pid,

 void * addr, void * data)

! Description2

 The ptrace system call provides a means by which a parent
process may observe and control the execution of another
process, and examine and change its core image and registers. It
is primarily used to implement breakpoint debugging and system
call tracing.

 * (1), (2) from ptrace man page

1/15/04 Ptrace

Introduction

! More on Description

 long int ptrace(enum __ptrace_request request, pid_t pid,

void * addr, void * data)

 request: The value request determines what action needs to perform

 pid: The PID of the process to be traced

 addr: The address in the USER SPACE of the traced process

 (1) to where the data may be written when instructed to do so, or

 (2) from where a word is read and returned as the result of the

 ptrace system call

1/15/04 Ptrace

Select of ptrace Request
(extracted from ptrace Man Page)

! PTRACE_TRACEME

Called when the child is to be traced by the parent, used only in the child process.
Any signal (except SIGKILL) delivered to the process causes it to stop and the
parent can be notified using wait. Subsequent calls to exec (if successful) by this
process will cause a SIGTRAP to be sent to it.

! PTRACE_SYSCALL

Restart the stopped child and arranges the child to be stopped at the next ENTRY to
or EXIT from a system call. From the parent’s perspective, the child will appear to
have been stopped by a SIGTRAP.

! PTRACE_PEEKDATA

Reads a word at the location addr in the child’s memory, returning it as the result of
the ptrace system call.

! PTRACE_POKEDATA

Copies a word from location data in the parent’s memory to location addr in the
child’s memory.

! PTRACE_GETREGS (More OS or Architecture Dependant)

Read general purpose registers of the child process into the location data in the
parent.

1/15/04

execve(…)

If Successful,
Stopped by SIGTRAP

System Call Tracing

Parent Childp = fork()

ptrace(PTRACE_ME,…)wait(&status)

ptrace(PTRACE_SYSCALL, p,…)

SIGCHLD

wait(&status)

ptrace(PTRACE_SYSCALL, p,…)

processing, if needed

processing, if needed

wait(&status)

SIGCHLD

SIGCHLD

ptrace(PTRACE_SYSCALL, p,…)

Sys Call Entry,
Stopped by SIGTRAP

Restart

Restart

System Call

Sys Call Exit,
Stopped by SIGTRAP

Restart

1/15/04 Ptrace

Case Study
Modify the path parameter of the open system call

! Step by step
1. Use PTRACE_SYSCALL request to trace into the entry to a

system call in the child process.

2. Use PTRACE_GETREGS request to get the general purpose (gp)

registers of the child process.

3. Retrieve the system call number from the gp register to make
sure it is an open system call.

4. Retrieve the address of the path parameter from the gp

register and use PTRACE_PEEKDATA request to get the path at
location addr of the child’s memory.

5. Modify the path and use PTRACE_POKEDATA to write the path
(data) back to the location addr of the child’s memory.

6. Restart the stopped child process.

1/15/04 Ptrace

Implementation Detail

! System Call convention

As with the Unix convention, for a system call, before the interruption is raised

to transfer the call into kernel mode, the function number is placed in general
purpose register EAX and the parameters are passed into EBX, ECX, EDX, ESI,
EDI and EBP. For example, the open system call has a function number 5 and
it has up to three parameters: path, flags and mode. The assembly routine
may be simplified as:

open:

mov eax, 5

mov ebx, path

mov ecx, flags

mov edx, mode

int 80h // system call entry, transfer to kernel

 By checking the register value of the child process before system call entry,
we are able to get the system call number. Furthermore, we can retrieve and
modify the system call parameters.

calling stack frame

1/15/04 Ptrace

Implementation Detail

! User Register Struct

 #include <linux/user.h>

 struct user_regs_struct

 {

 long ebx, ecx, edx, esi, edi, ebp, eax ;

 unsigned short ds, __ds, es, __es;

 unsigned short fs, __fs, gs, __gs;

 long orig_eax, eip;

 unsigned short cs, __cs;

 long eflags, esp;

 unsigned short ss, __ss;

 }

System Call Number

Address of Path

1/15/04 Ptrace

Implementation Detail

! Sample Code – Start up the tracing
…

p = fork();

if (p == -1) {

 exit(-1);

}else if (p == 0) { /* In Child */

 ptrace(PTRACE_TRACEME, 0, 0, 0);

 /* Execute the given process */

 argv[argc] = 0;

 execvp(argv[1], argv+1);

 /* The success of execve will cause a SIGTRAP to be sent to this child process. */

}

/* In parent */

/* Wait for execve to finish*/

wait(&status);

/* Start to trace system calls */

ptrace(PTRACE_SYSCALL, p, 0, 0);

…

1/15/04 Ptrace

Implementation Detail

! Sample Code – Get open system call parameters
…

/* Start to trace system calls */

ptrace(PTRACE_SYSCALL, p, 0, 0);

/* Wait until the entry to a sys call */

wait(&status);

/* Check the GP register and get the system call number*/

int syscall;

struct user_regs_struct u_in; /* #include <linux/user.h> */

ptrace(PTRACE_GETREGS, p, 0, &u_in);

syscall = u_in.orig_eax;

if(syscall == __NR_open) {

 printf("%s", syscall_names[syscall-1]); /* System call name */

 printf("%08lx ", u_in.ebx); /* Address of the path */

 printf("%08lx ", u_in.ecx); /* Flag */

 printf("%08lx\n “, u_in.edx); /* Mode */

}

…

1/15/04 Ptrace

Questions?

