Chapter 9

Security

9.1 The security environment

9.2 Basics of cryptography

9.3 User authentication

9.4 Attacks from inside the system
9.5 Attacks from outside the system
9.6 Protection mechanisms

9.7 Trusted systems

The Security Environment
Threats

Goal

Threat

Data confidentiality

Exposure of data

Data integrity

Tampering with data

System availability

Denial of service

Security goals and threats

Intruders

Common Categories

1. Casual prying by nontechnical users
2. Snooping by insiders

3. Determined attempt to make money
4

Commercial or military espionage

Accidental Data Loss

Common Causes
1. Acts of God
- fires, floods, wars
2. Hardware or software errors
- CPU malfunction, bad disk, program bugs

3. Human errors
- data entry, wrong tape mounted

Basics of Cryptography

. — Encryption key K — Decryption key
C = E(P, Kg) P=D(C, Kp)
P — E D
Ciphertext
Plaintext in . . Plaintext out
Encryption Decryption
algorithm algorithm
L J L J
N N
Encryption Decryption

Relationship between the plaintext and the ciphertext

Secret-Key Cryptography

* Monoalphabetic substitution
— each letter replaced by different letter

» Given the encryption key,
— easy to find decryption key

» Secret-key crypto called symmetric-key crypto

Public-Key Cryptography

 All users pick a public key/private key pair
— publish the public key
— private key not published

» Public key is the encryption key
— private key 1s the decryption key

One-Way Functions

* Function such that given formula for f(x)
— easy to evaluate y = f(x)

* But giveny
— computationally infeasible to find x

Digital Signatures

Document
compressed Hash value
to a hash run through D
Original | value Original
document — D(Hash) document
Signature
(@) Yock { |_D(Hash)

(b)

« Computing a signature block
« What the receiver gets

User Authentication

Basic Principles. Authentication must identify:
1. Something the user knows

2. Something the user has

3. Something the user is

This 1s done before user can use the system

Authentication Using Passwords

LOGIN: ken LOGIN: carol

PASSWORD: FooBar INVALID LOGIN NAME

SUCCESSFUL LOGIN LOGIN:

(a) (b)

LOGIN: carol
PASSWORD: Idunno
INVALID LOGIN
LOGIN:

(c)
(a) A successful login
(b) Login rejected after name entered
(c) Login rejected after name and password typed |,

Authentication Using Passwords

LBL> telnet elxsi

ELXSI AT LBL

LOGIN: root

PASSWORD: root

INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest

PASSWORD: guest

INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp

PASSWORD: uucp

WELCOME TO THE ELXSI COMPUTER AT LBL

* How a cracker broke into LBL
— a U.S. Dept. of Energy research lab

12

Authentication Using Passwords

Bobbie, 4238, e(Dog4238)

Tony, 2918, e(6%%TaeFF2918)
Laura, 6902, e(Shakespeare6902)
Mark, 1694, e(XaB@Bwcz1694)
Deborah, 1092, e(LordByron,1092)

Salt Password

The use of salt to defeat precomputation of
encrypted passwords

13

Authentication Using a Physical Object

Remote
computer

[
1]

1. Challenge sent to smart card

3

2. Smart & 3. Response sent back
card e >
computes \
response Srnart

card
reader

e Magnetic cards
— magnetic stripe cards

— chip cards: stored value cards, smart cards

14

Authentication Using Biometrics

A device for measuring finger length.

15

Countermeasures

Limiting times when someone can log in

Automatic callback at number prespecified

Limited number of login tries

A database of all logins

Simple login name/password as a trap
— security personnel notified when attacker bites

16

Operating System Security

Trojan Horses

* Free program made available to unsuspecting user
— Actually contains code to do harm

 Place altered version of utility program on victim's
computer

— trick user into running that program

17

Login Spoofing
Login: ¢ Login: g
(a) (b)

(a) Correct login screen
(b) Phony login screen

18

Logic Bombs

« Company programmer writes program
— potential to do harm

— OK as long as he/she enters password daily

— ff programmer fired, no password and bomb explodes

Trap Doors

while (TRUE) { while (TRUE) {
printf("login: "); printf("login: ");
get_string(name); get_string(name);
disable_echoing(); disable_echoing();
printf("password: "); printf("password: ");
get_string(password); get_string(password);
enable_echoing(); enable_echoing();
v = check_validity(name, password); v = check_validity(name, password);
if (v) break; if (v || strcmp(name, "zzzzz") == 0) break;
} }
execute_shell(name); execute_shell(name);

(a) (b)

(a) Normal code.
(b) Code with a trapdoor inserted

19

20

Virtual address space

Buffer Overflow

Virtual address space

OxFFFF...

Main’s
local
variables

Stack —>
pointer

Program

(@)

Virtual address space

} Stack

Main’s
local
variables

Return addr mes~

SP —

A'slocal gx3
variables {BY

Buffer B

Program

(b)

Main’s
local
variables

Return addr

SP —

A’s local
variables

XX
1B
KO}
(o

Program

(c)

* (a) Situation when main program 1s running
* (b) After program A called
* (¢) Buffer overflow shown in gray

Generic Security Attacks

Typical attacks

21

Request memory, disk space, tapes and just read

Try illegal system calls
Start a login and hit DEL, RUBOUT, or BREAK
Try modifying complex OS structures

Try to do specified DO NOTs
Convince a system programmer to add a trap door

Beg admin's sec’y to help a poor user who forgot password

22

Famous Security Flaws

First page |
(in memory) F
A . Page B A
A boundary A A
A A A
Second page) A A A
(not in memory) A A A
A A
(a) (b) (c)

The TENEX — password problem

23

Design Principles for Security

AN

System design should be public

Default should be n access

Check for current authority

Give each process least privilege possible

Protection mechanism should be
simple
uniform

in lowest layers of system

Scheme should be psychologically acceptable

24

Network Security

 External threat
— code transmitted to target machine
— code executed there, doing damage
* Goals of virus writer
— quickly spreading virus
— difficult to detect
— hard to get rid of
* Virus = program can reproduce itself
— attach its code to another program
— additionally, do harm

Virus Damage Scenarios

Blackmail

Denial of service as long as virus runs

Permanently damage hardware

Target a competitor's computer
— do harm
— espionage

Intra-corporate dirty tricks

— sabotage another corporate officer's files

25

26

How Viruses Work (1)

* Virus written in assembly language

e Inserted into another program

—use tool called a “dropper”

* Virus dormant until program executed

— then 1nfects other programs

— eventually executes its “payload”

27
#include <sys/types.h> /* standard POSIX headers */
#include <sys/stat.h>
#include <dirent.h>
#include <fcntl.h>
. #include <unistd.h>
RCCUI'SIV@ struct stat sbuf; /= for Istat call to see if file is sym link */
search(char *dir_name)
procedure { /* recursively search for executables */
DIR *dirp; /* pointer to an open directory stream */
that ﬁnds struct dirent *dp; /* pointer to a directory entry */
executable dirp = opendir(dir_name); /* open this directory */
fl if (dirp == NULL) return; /* dir could not be opened; forget it */
while (TRUE) {
1 es On a dp = readdir(dirp); /* read next directory entry */
UNIX if (dp == NULL) { /* NULL means we are done */
chdir (".."); /* go back to parent directory */
break; /* exit loop */
system) | | -
if (dp->d_name[0] == ") continue; /* skip the . and .. directories */
Istat(dp->d_name, &sbuf); /* is entry a symbolic link? */
if (S_ISLNK(sbuf.st_mode)) continue; /* skip symbolic links */
if (chdir(dp->d_name) == 0) { /* if chdir succeeds, it must be a dir */
. search("."); /* yes, enter and search it */
Virus COUld } else { /* no (file), infect it */

infect them all

if (access(dp->d_name,X_OK) == 0) /* if executable, infect it */
infect(dp->d_name);
}

closedir(dirp); /* dir processed; close and return */

How Viruses Work (3)

Virus
Executable Virys)
program —
Executable —Virs
roaram Executable
prog program Virus
Starting (Virus Mg
address = C
Header < Header Header Header
(a) (b) (c) (d)

An executable program
With a virus at the front
With the virus at the end

With a virus spread over free space within program
29

How Viruses Work (4)

Operating Operating Operating
system system system
Virus Virus Virus
Sys call traps Sys call traps Sys call traps
Disk vector Disk vector Disk vector
Clock vector Clock vector Clock vector
Printer vector Printer vector Printer vector

(a) (b) (c)

After virus has captured interrupt, trap vectors
After OS has retaken printer interrupt vector

After virus has noticed loss of printer interrupt vector
and recaptured it 30

How Viruses Spread

 Virus placed where likely to be copied

* When copied

— infects programs on hard drive, floppy

— may try to spread over LAN

* Attach to innocent looking email

— when it runs, use mailing list to replicate

Antivirus and Anti-Antivirus Techniques

File is longer

Virus

Executable
program

Executable
program

Original size

Original size

Original size

7722
Unused
Decompressor|
Compressor
Virus Encryptor
Decompressor Key
Compressor Decryptor Decryptor
Compressed Compressed Compressed

executable
program

executable
program

executable
program

Header

Header

Header

Header

Header

(@)

(b)

(a) A program

(b) Infected program

©

()

(c) Compressed infected program
(d) Encrypted virus
(e) Compressed virus with encrypted compression code

(e)

4
}Encrypted

31

32

Antivirus and Anti-Antivirus Techniques

MOV A,Rf1
ADD B,R1
ADD C,R1
SUB #4,R1
MOV R1,X

All of these examples do the same thing

MOV A,R1
NOP
ADD B,R1
NOP
ADD C,R1
NOP
SUB #4,R1
NOP
MOV R1,X

(b)

MOV A,R1
ADD #0,R1
ADD B,R1
OR R1,R1
ADD C,R1
SHL #0,R1
SUB #4,R1
JMP .+1

MOV R1,X

()

MOV A,R1
OR R1,R1
ADD B,R1
MOV R1,R5
ADD C,R1
SHL R1,0
SUB #4,R1
ADD R5,R5
MOV R1,X
MOV R5,Y

(d)

Examples of a polymorphic virus

MOV A,R1
TST R1
ADD C,R1
MOV R1,R5
ADD B,R1
CMP R2,R5
SUB #4,R1
JMP .+1
MOV R1,X
MOV R5,Y

(e)

33

Antivirus and Anti-Antivirus Techniques

Integrity checkers

Virus avoidance

— good OS
— install only shrink-wrapped software
— use antivirus software
— do not click on attachments to email

— frequent backups
Recovery from virus attack

Behavioral checkers

— halt computer, reboot from safe disk, run antivirus

34

The Internet Worm

* Consisted of two programs
— bootstrap to upload worm

— the worm 1itself

 Worm first hid its existence
» Next replicated itself on new machines

35

Mobile Code (1) Sandboxing

Virual
address
in MB

256
224 Ref Mon.|< Reference MOV R1, St
192 monitor for SHR #24, S1
checking CMP S1, S2
160 system TRAPNE
JMP (R1)
128
96
Data 2 } A
1 pplet 2
64 Code 2
32
Data 1
o Coda 1 } Applet 1
(a) (b)

(a) Memory divided into 1-MB sandboxes

(b) One way of checking an instruction for validity
36

Mobile Code (2)

Virtual address space

OxFFFFFFFF
|~ Untrusted applet
-~
Sandbox -
Interpreter . % % 03 Trusted applet
Web browser
0]

Applets can be interpreted by a Web browser

Mobile Code (3)

Software vendor . User
Signature generation Signature verification
Applet H = hash(Applet) Applet H1 = hash(Applet)
Signature Signature = encrypt(H) Signature H2 = decrypt(Signature)

A
A

Accept Applet if H1 = H2

@ Internet)

How code signing works

Java Security (1)

« A type safe language

— compiler rejects attempts to misuse variable

e Checks include ...
1. Attempts to forge pointers

2. Violation of access restrictions on private class
members

3. Misuse of variables by type
4. Generation of stack over/underflows

5. Illegal conversion of variables to another type

Java Security (2)

URL Signer | Object Action
www.taxprep.com | TaxPrep | /usr/susan/1040.xls | Read

¥ Jusr/tmp/* Read, Write
www.microsoft.com | Microsoft | /usr/susan/Office/~ | Read, Write, Delete

Examples of specified protection with JDK 1.2

39

40

Protection Mechanisms

Protection Domains (1)

Domain 1 Domain 2 Domain 3

File1[R] File3[R]
Filed[RWX]

File5[RW]

FileB[RWX]

File2[RW] Plotter2[W]

Examples of three protection domains

Protection Domains (2)

Object
File1 File2 File3 Filed File5 File6 Printer1 Plotter2
Domain
Read

Tl Read | e

Read
2 Read | Write e Write

E Write
Xecute
Read
3 Write Write Write
Execute

A protection matrix

Protection Domains (3)

Object
File1 File2 File3 Filed4 File5 File6 Printer1 Plotter2 Domain1 Domain2 Domain3
main
Read
1 Read Write Enter
Read
2 Read | Write \F/‘Veft‘d Write
Execute e
Read
3 Write Write Write
Execute

A protection matrix with domains as objects

43

Access Control Lists (1)

Owner

Process
. User
space

i [B B ACL
File —|F1]| ,IA.RW, B.Al _—

>

A:R: BRW: CR | Kernel

space
| B:RWX; C:RX|

JL

Use of access control lists of manage file access

44

Access Control Lists (2)

File Access control list
Password tana, sysadm: RW
Pigeon_data | bill, pigfan: RW; tana, pigfan: RW; ...

Two access control lists

Capabilities (1)

Process lH :
I I I
1 [} [}
1 1 1

Owner

2

F3

El|H|E
—

F1:R

F1:R

F2:R

F2:RW

F3:RWX

F2:R

F3:RX

C-list

45

User
space

Kernel
space

Each process has a capability list

46

Capabilities (2)

» Cryptographically-protected capability

Server Object Rights f(Objects, Rights, Check)

e Generic Rights
Copy capability
Copy object
Remove capability

L=

Destroy object

Trusted Systems
Trusted Computing Base

User process

CD/ \ User
space

All system calls go through the
reference monitor for security checking

2

Reference monitor

\ Kernel
Trusted computing base space

Operating system kernel

A reference monitor

Formal Models of Secure Systems

Objects Objects
Compiler Mailbox 7 Secret Compiler Mailbox 7 Secret
Eric [_Fead Eric | _Read
Execute Execute
Read Read Read Read
FEnry Execute | Write ey Execute | Write
Read Read Read Read
Robert Execute Write Robert Execute Read Write
(a) (b)
(a) An authorized state
(b) An unauthorized state
49
Security level
s > ===~ > 5
4 i (:P
Legend f #
Process Obiject : :
—" "\ ------- >
T B oy S S e
Read A A
; i
1 1
1
1
O @ |
_______ > —————— 1
Write 2 Y !
1

] N

-

The Bell-La Padula multilevel security model

50

Multilevel Security (2)
The Biba Model

* Principles to guarantee integrity of data

1. Simple integrity principle

e process can write only objects at its security level or lower

2. The integrity * property

* process can read only objects at its security level or higher

Orange Book Security (1)

Criterion D|C1 C2 | B1 B2 B3| Al
Security policy

Discretionary access control X X - - X -
Object reuse X R T Y
Labels X X - | >
Label integrity X - = | =
Exportation of labeled information X - - | -
Labeling human readable output X e
Mandatory access control X X - | >
Subject sensitivity labels X - | -
Device labels X - | -
Accountability

Identification and authentication X X X - -5 | -
Audit X X X X -
Trusted path X X

* Symbol X means new requirements

* Symbol -> requirements from next lower category
apply here also

Orange Book Security (2)

Assurance
System architecture X X X X X —
System integrity X - | - = = | -
Security testing X X X X X X
Design specification and verification X X X X
Covert channel analysis X X X
Trusted facility management X X -
Configuration management X — X
Trusted recovery X -
Trusted distribution X
Documentation
Security features user’s guide X e e e T T
Trusted facility manual X X X X X -
Test documentation X - | > X — X
Design documentation X — X X X X
53
Covert Channels (1)

Client Server Collaborator Encapsulated server

/ [/ /

y 4 4

T
z
~ o ,\
Kernel Kernel = Covert
channel
(a) (b)

Client, server and
collaborator processes

Encapsulated server can
still leak to collaborator via
covert channels

54

Covert Channels (2)

Sorver—> ONON® O O
?‘:fr:;'::ﬁﬁ? ja;] B |[] jg; [] E] e

11 11 0 1 0 1 0 0 <— Bit stream sent
\

wen—0 O O O O O O O

—_

A covert channel using file locking

55

Covert Channels (3)

 Pictures appear the same

 Picture on right has text of 5 Shakespeare plays

— encrypted, inserted into low order bits of color values

Hamlet, Macbeth, Julius Caesar

Zebras Merchant of Venice, King Lear
56

