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The Problem: Overload in the Internet

Overload is an inevitable aspect of systems connected to the Internet
• (Approximately) infinite user populations
• Large correllation of user demand (e.g., flash crowds)
• Peak load can be orders of magnitude greater than average

Modern Internet services as highly dynamic
• Web servers do much more than serve up static pages
• e.g., server-side scripts (CGI, PHP), SSL, database access
• Requests have highly unpredictable CPU, memory, and I/O demands
• Makes overload very difficult to predict and manage

Some high-profile (and low-profile) examples of overload
• CNN on Sept. 11th: 30,000 hits/sec, down for 2.5 hours
• E*Trade failure to execute trades during overload
• Final Fantasy XI launch in Japan: All servers down for 2 days
• Slashdot effect: daily frustration to nerds everywhere
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Outline

• Traditional approaches to overload

• The Staged Event-Driven Architecture

• Adaptive overload control in SEDA

• Service differentiation and degradation

• Performance evaluation under massive load spikes

• Conclusions
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Common approaches to overload control

Prior work on bounding system performance metrics such as:
• CPU utilization, memory, network bandwidth

. No connection to user-perceived performance

• Instead, we focus on 90th percentile response time

. Meaningful to users, closely tied to SLAs

Overload management often based on static resource limits
• e.g., Fixed limits on number of clients or CPU utilization
• Can underutilize resources (if limits set too low)
• or lead to oversaturation (if limits too high)

Static page loads or simple performance models
• e.g., Assume linear overhead in size of Web page
• Can’t account for dynamic services (scripts, SSL, etc.)

Many techniques studied only under simulation
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The Staged Event Driven Architecture (SEDA)
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Decompose service into stages separated by queues
• Each stage performs a subset of request processing
• Stages use light-weight event-driven concurrency internally
• Each stage embodies a set of states from FSM
• Queues make load management explicit

Event Handler

Thread Pool

Dynamic Resource Control

Stages contain a thread pool to drive execution
• Small number of threads per stage
• Dynamically adjust thread pool sizes

Apps don’t allocate, schedule, or manage threads
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Exposing overload to applications

Accept

Reject

?

Overload is explicit in the programming model
• Every stage is subject to admission control policy
• e.g., Thresholding, rate control, credit-based flow control

. Enqueue failure is an overload signal

• Block on full queue→ backpressure
• Drop rejected events→ load shedding

. Can also degrade service, redirect request, etc.

foreach (request in batch) {
// Process request...

try {
next_stage.enqueue(req);

} catch (rejectedException e) {
// Must respond to enqueue failure!
// e.g., send error, degrade service, etc.

}
}
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Alternatives for Overload Control

Basic idea: Apply admission control to each stage
• Expensive stages throttled more aggressively

Reject request (e.g., Error message or “Please wait...”)
• Social engineering possible: fake or confusing error message

Redirect request to another server (e.g., HTTP redirect)
• Can couple with front-end load balancing across server farm

Degrade service (e.g., reduce image quality or service complexity)

→

Deliver differentiated service
• Give some users better service; don’t reject users with a full shopping cart!
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Feedback-driven response time control
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Adaptive admission control at each stage
• 90th %tile RT target supplied by administrator
• Measure stage latency and throttle incoming event rate to meet target

Additive-increase/Multiplicative-decrease controller design
• Slight overshoot in input rate can lead to large response time spikes!
• Clamp down quickly on input rate when over target
• Increase incoming rate slowly when below target
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Arashi: A Web-based e-mail service

Yahoo Mail clone - “real world” service
• Dynamic page generation, SSL
• New Python-based Web scripting language
• Mail stored in back-end MySQL database

Realistic client load generator
• Traces taken from departmental IMAP server
• Markov chain model of user behavior

Overload control applied to each request type separately:

...
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read
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admission control

(some stages not shown)

degrade service,
send error page, etc.
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Overload prevention during a load spike
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Sudden spike of 1000 users hitting Arashi service
• 7 request types, handled by separate stages with overload controller
• 90th %tile response time target: 1 second
• Rejected requests cause clients to pause for 5 sec

Overload controller has no knowledge of the service!
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Overload control with scaling load
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Service Differentiation
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Differentiate users into multiple classes
• Give certain users higher priority than others
• Based on IP address, cookie, header field, etc.

Multiclass admission controller design
• Gather RT distributions for each class, compare to target

. If RT below target, increase rate for this class

. If RT above target, reduce rate of lower priority classes
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Service differentiation at work
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Two classes of users with a 10 second response time target
• 128 users in each class
• High priority requests suffer fewer rejections
• Without differentiation, both classes treated equally
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Service degradation
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Degrade fidelity of service in response to overload
• Artifical benchmark: Stage crunches numbers with a varying “quality level”
• Stage performs AIMD control on service quality under overload
• Enable/disable admission controller based on response time and quality
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Related Overload Management Techniques

Dynamic listen queue thresholding [Voigt, Cherkasova, Kant]
• Threshold or token-bucket rate limiting of incoming SYN queues
• Problem: Dropping or limiting TCP connections is bad for clients!

Specialized scheduling techniques [Crovella, Harchol-Balter]
• e.g., Shortest-connection-first or Shortest-remaining-processing-time
• Often assumes 1-to-1 mapping of client request to server process

Class-based service differentiation [Bhoj, Voigt, Reumann]
• Kernel- and user-level techniques for classifying user requests
• Sometimes requires pushing application logic into kernel
• Adjust connection/request acceptance rate per class

. No feedback - static assignment acceptance rates

We argue that overload management should be an application design
primitive and not simply tacked onto existing systems
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Control theoretic resource management

Increasing amount of theoretical and applied work in this area
• Control theory for physical systems with (sometimes) well-understood behaviors
• Capture model of system behavior under varying load
• Design controllers using standard techniques (e.g., pole placement)

. e.g., PID control of Internet service parameters [Diao, Hellerstein]

. Feedback-driven scheduling [Stankovic, Abdelzaher, Steere]

Accurate system models difficult to derive
• Capturing realistic models is difficult

. Highly dependent on test loads

• Model parameters change over time

. Upgrading hardware, introducing new functionality, bit-rot

Much control theory based on linear assumptions
• Real software systems highly nonlinear
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Future Work

Automatic profiling, modeling, and tuning of overload controller
• Capture traces of stage performance vs. traffic and load mix
• Offline or online tuning of admission control parameters
• Use learning algorithms?

Extend local overload controller to global actions
• Adjust “front door” admission rate based on back-end bottleneck
• Prioritize stages that release resources
• Use global information, e.g., memory availability, to help

Further explore tradeoff between request rejection and degradation
• How to build general-purpose degradation into a service?
• Tie in with complex set of service level agreements
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Summary

SEDA programming model exposes overload to the application
• Break event-driven application into stages connected with queues
• Queues can reject new requests - overload signal

Adaptive overload control at each stage
• Attempt to meet 90th-percentile response time target
• Adjust admission rate of each stage’s queue
• Differentiated service using multiple admission controllers

Extensive evaluation in realistic overload setting
• Arashi service with highly dynamic behavior
• Realistic client load generator
• Evaluated overload control, service differentiation, and service degradation

For more information, software, and papers:

http://www.cs.berkeley.edu/~mdw/proj/seda/

Matt Welsh, Intel Research Berkeley 18



Backup slides follow
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Adaptive overload control algorithm

Monitor response time for each request in system
• Tag with current time on entry to service
• Gather distribution of accumulated response times at each stage

Controller adjusts admission rate of requests using token bucket
• Controller invoked after N requests processed or timeout
• EWMA filter used on 90th-percentile RT estimate
• Calculates error between current RT estimate and target
• If err > errd, token bucket reduced by multiplicative factor: adjd.
• If err < erri, token bucket increased by additive factor: −(err− ci)adji.

Parameters determined through extensive experimentation
• N = 100, timeout = 1 sec
• EWMA filter = 0.7
• erri = -0.5, errd = 0
• adji = 2.0, adjd = 1.2
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Response Time Controller Operation
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Adjust incoming token bucket using AIMD control
• Target response time 1 second
• Sample response times of requests through stage
• After 100 samples or 1 second:

. Sort measurements and measure 90th percentile

. If 90th RT < 0.9× target RT, add f(err) to rate

. If 90th RT > target RT, divide rate by 1.2
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Overload control by request type
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Without response time control
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Two classes of users without overload control enabled
• 128 users in each class
• Terrible response time performance
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Without service differentation
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Two classes of users with a 10 second response time target
• 128 users in each class
• No differentiation between classes of users
• High-priority users see same loss rate as low priority
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SEDA Scales Well with Increasing Load
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4-way Pentium III 500 MHz, Gigabit Ethernet, 2 GB RAM, Linux 2.2.14, IBM JDK 1.3

• SEDA throughput 10% higher than Apache and Flash (which are in C!)

. But higher efficiency was not really the goal!

• Apache accepts only 150 clients at once - no overload despite thread model

. But as we will see, this penalizes many clients
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Max Response Time vs. Apache and Flash
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• Apache and Flash are very unfair when overloaded

. Long response times due to exponential backoff in TCP SYN retransmit

• Not accepting connections is the wrong approach to overload management
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User-level vs. kernel-level resource
management

SEDA is a user-level solution: no kernel changes
• Runs on commodity systems (Linux, Solaris, BSD, Win2k, etc.)
• In contrast to extensive work on specialized OS, schedulers, etc.
• Explore resource control on top of imperfect OS interface
• “Grey box” approach - infer properties of underlying system from observed behavior

What would a SEDA-based “dream OS” look like?
• Scalable I/O primitives: remove emphasis on blocking ops
• SEDA stage-aware scheduling algorithm?
• Greater exposure of performance monitors and knobs
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Scalable concurrency and I/O interfaces

Threads don’t scale, but are the wrong interface anyway
• Too coarse-grained: Don’t reflect internal structure of a service
• Little control over thread behavior (priorities, kill -9)

I/O interfaces typically don’t scale
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Distributed programming models and protocols

HTTP pushes overload into the network
• Relies on TCP connection backoff rather than more explicit mechanisms
• Simultaneous connections, progressive download, and out-of-order requests compli-

cate matters
• Protocol design should consider service availability

Distributed computing models generally do not express overload
• CORBA, RPC, RMI, .NET all based on RPC with “generic” error conditions
• On error, should app fail, retry, or invoke an alternate function?
• Single bottleneck in large distributed system causes cascading failure in network

bottleneck

web service
browser

storage service

etc.
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Playing dodgeball with the kernel

OS resource management abstractions often inadequate
• Resource virtualization hides overload from applications
• e.g., malloc() returns NULL when no memory
• Forces system designers to focus only on “capacity planning”

Internet services require careful control over resource usage
• e.g., Avoid exhausting physical memory to avoid paging
• Back off on processing “heavyweight” requests when saturated

SEDA approach: Application-level monitoring & throttling
• Service performance monitored at a per-stage level

. Request throughput, service rate, latency distributions

• Staged model permits careful control over resource consumption

. Throttle number of threads, admission control on each stage

• Cruder than kernel modifications, but very effective (and clean!)
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