Adaptive Overload Control for Busy Internet Servers

Matt Welsh Intel Research and Harvard University

> David Culler Intel Research and U.C. Berkeley

The Problem: Overload in the Internet

Overload is an inevitable aspect of systems connected to the Internet

- (Approximately) infinite user populations
- Large correllation of user demand (e.g., flash crowds)
- Peak load can be orders of magnitude greater than average

Modern Internet services as highly dynamic

- Web servers do much more than serve up static pages
- e.g., server-side scripts (CGI, PHP), SSL, database access
- Requests have highly unpredictable CPU, memory, and I/O demands
- Makes overload very difficult to predict and manage

Some high-profile (and low-profile) examples of overload

- CNN on Sept. 11th: 30,000 hits/sec, down for 2.5 hours
- E*Trade failure to execute trades during overload
- Final Fantasy XI launch in Japan: All servers down for 2 days
- Slashdot effect: daily frustration to nerds everywhere

Outline

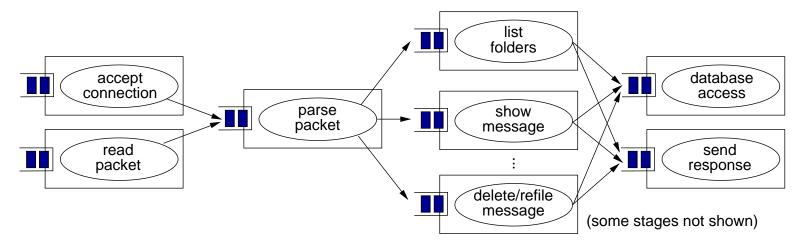
- Traditional approaches to overload
- The Staged Event-Driven Architecture
- Adaptive overload control in SEDA
- Service differentiation and degradation
- Performance evaluation under massive load spikes
- Conclusions

Common approaches to overload control

Prior work on bounding **system** performance metrics such as:

- CPU utilization, memory, network bandwidth
 - ▷ No connection to user-perceived performance
- Instead, we focus on 90th percentile response time
 - ▶ Meaningful to users, closely tied to SLAs

Overload management often based on static resource limits

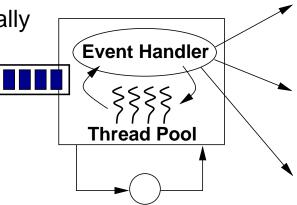

- e.g., Fixed limits on number of clients or CPU utilization
- Can underutilize resources (if limits set too low)
- or lead to oversaturation (if limits too high)

Static page loads or simple performance models

- e.g., Assume linear overhead in size of Web page
- Can't account for dynamic services (scripts, SSL, etc.)

Many techniques studied only under simulation

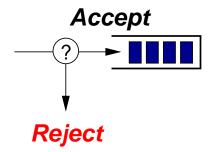
The Staged Event Driven Architecture (SEDA)


Decompose service into *stages* separated by *queues*

- Each stage performs a subset of request processing
- Stages use light-weight event-driven concurrency internally
- Each stage embodies a set of states from FSM
- Queues make load management explicit

- Small number of threads per stage
- Dynamically adjust thread pool sizes

Apps don't allocate, schedule, or manage threads


Dynamic Resource Control

Exposing overload to applications

Overload is explicit in the programming model

- Every stage is subject to *admission control policy*
- e.g., Thresholding, rate control, credit-based flow control
 - Enqueue failure is an overload signal
- Block on full queue \rightarrow backpressure
- Drop rejected events \rightarrow load shedding
 - ▷ Can also degrade service, redirect request, etc.

```
foreach (request in batch) {
   // Process request...
   try {
      next_stage.enqueue(req);
   } catch (rejectedException e) {
      // Must respond to enqueue failure!
      // e.g., send error, degrade service, etc.
   }
}
```


Alternatives for Overload Control

Basic idea: Apply admission control to each stage

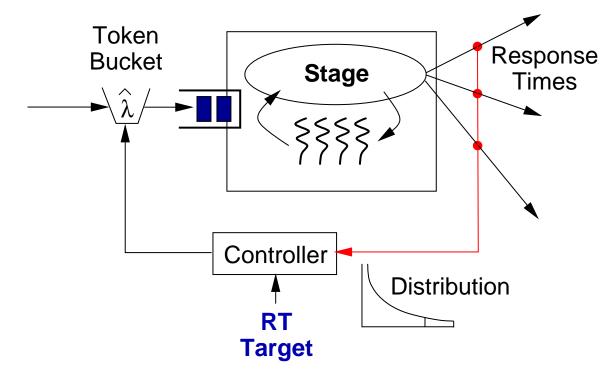
• Expensive stages throttled more aggressively

Reject request (e.g., Error message or "Please wait...")

Social engineering possible: fake or confusing error message

Redirect request to another server (e.g., HTTP redirect)

• Can couple with front-end load balancing across server farm


Degrade service (e.g., reduce image quality or service complexity)

Deliver differentiated service

• Give some users better service; don't reject users with a full shopping cart!

Feedback-driven response time control

Adaptive admission control at each stage

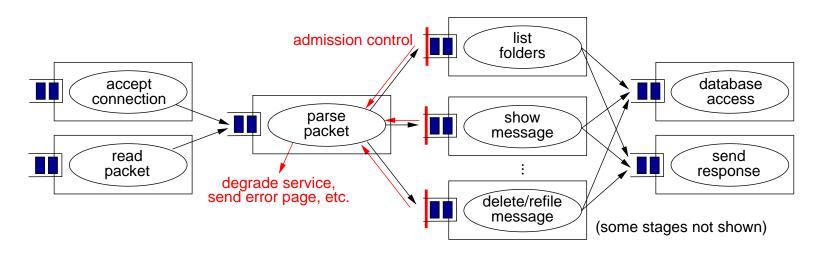
- 90th %tile RT target supplied by administrator
- Measure stage latency and throttle incoming event rate to meet target

Additive-increase/Multiplicative-decrease controller design

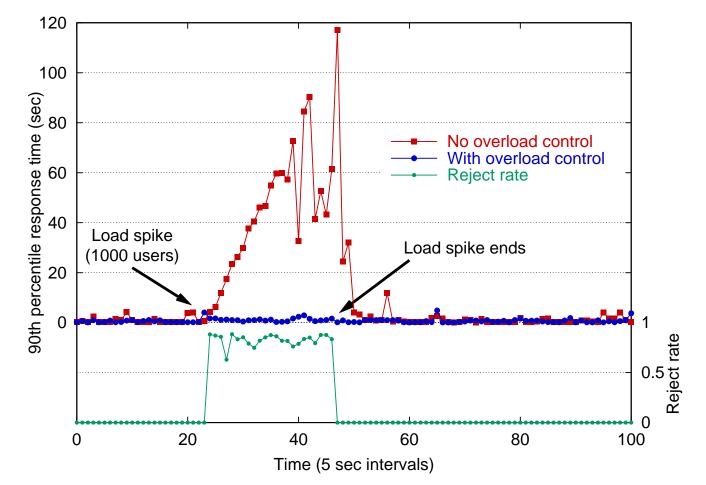
- Slight overshoot in input rate can lead to large response time spikes!
- Clamp down quickly on input rate when over target
- Increase incoming rate slowly when below target

Arashi: A Web-based e-mail service

Yahoo Mail clone - "real world" service


- Dynamic page generation, SSL
- New Python-based Web scripting language
- Mail stored in back-end MySQL database

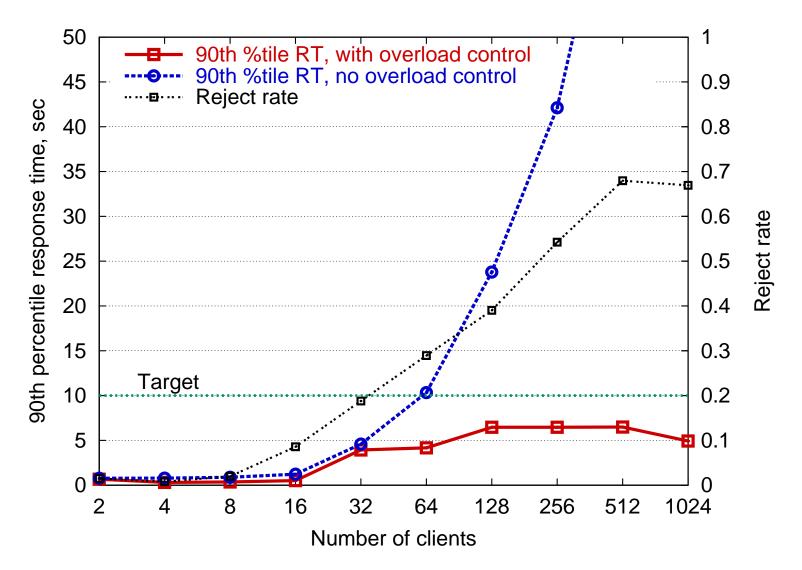
Realistic client load generator


- Traces taken from departmental IMAP server
- Markov chain model of user behavior

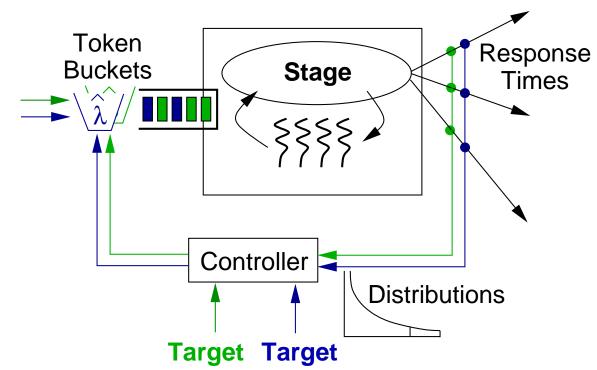
- 5								Vetscape:							X
File	Edit Vi	ew G	iO	Comm	nunicati	or									Help
	¥ 🖗 🏼	1		ø.	MU	3	É () (N
2	🞸 Bookma	ks 🤳	Loc	ation:	http	://chi	llata:	8000/li	st?ses	ssionkey=5	57ed90b6	26b1	848ef4:	2afcd2	47 🗸
Se	r ch message i arch		-	rs					A	\ ra	15	h	庐	民	2
Sh	auting massa		10.6	rom fol	lder jour	[73 ma		Diaxt: 1	0_101			Back	to folder	r liet	•
Sh	owing messa	jes O to	10 f	rom fol		a [73 me	essages]	[Next: 1	<u>0–191</u>	Subject			to <u>folde</u> late 🔺	<u>r list</u>	
Sh	owing messa From Catalin CLIN <cata@delta< td=""><td>IOV</td><td></td><td>rom fol</td><td>To</td><td>-</td><td></td><td>[Next: 1 kdown.or</td><td></td><td><u>Subject</u> <u>Re: How to</u> MakeFile 1</td><td></td><td>D 1</td><td>to <u>folder</u> Date 🔺 998-11- 8:23:20</td><td></td><td></td></cata@delta<>	IOV		rom fol	To	-		[Next: 1 kdown.or		<u>Subject</u> <u>Re: How to</u> MakeFile 1		D 1	to <u>folder</u> Date 🔺 998-11- 8:23:20		
Sh	From Catalin CLIN	IOV sinta.r	0>		<u>To</u> java-	-linux@j	java.blac		g	Re: How to	2	D 1: 1: 1: 1: 1:)ate ▲ 998-11-	-25	
	From Catalin CLIN <cata@delta Matt Welsh</cata@delta 	IOV sinta.r erkelej	₀> ∕.ED		<u>To</u> java- ninja-	- linux@j -all@w	java.blac	kdown.or S.Berkele	g	Re: How to MakeFile 3 JDK 1.2 bo	gus licens	D 1! 18 2 0000 1!	Pate ▲ 998-11- 8:23:20 998-12- 3:19:46	-25	
	From Catalin CLIN <cata@delta Matt Welsh <mdw@cs.f< td=""><td>IOV sinta.r erkelej ishdot. . Kons</td><td>o> ∕.ED org tanti</td><td>·U> nou"</td><td>To java- ninja- mdwi Matt <mdy< td=""><td>-linux@ -all@w @metal Welsh w@cs.b</td><td>java.blac arthog.C ab.unc.e erkeley.e</td><td>kdown.or S.Berkele du</td><td>g y.EDU</td><td>Re: How to MakeFile 1 JDK 1.2 bo terms Slashdot us</td><td>gus licens er passwo elsh 2 bogus</td><td>D 11 13 2 0 0 11 0 11</td><td>Pate ▲ 998-11- 8:23:20 998-12- 3:19:46 998-12-</td><td>-25 -06 -07</td><td></td></mdy<></td></mdw@cs.f<></cata@delta 	IOV sinta.r erkelej ishdot. . Kons	o> ∕.ED org tanti	·U> nou"	To java- ninja- mdwi Matt <mdy< td=""><td>-linux@ -all@w @metal Welsh w@cs.b</td><td>java.blac arthog.C ab.unc.e erkeley.e</td><td>kdown.or S.Berkele du</td><td>g y.EDU</td><td>Re: How to MakeFile 1 JDK 1.2 bo terms Slashdot us</td><td>gus licens er passwo elsh 2 bogus</td><td>D 11 13 2 0 0 11 0 11</td><td>Pate ▲ 998-11- 8:23:20 998-12- 3:19:46 998-12-</td><td>-25 -06 -07</td><td></td></mdy<>	-linux@ -all@w @metal Welsh w@cs.b	java.blac arthog.C ab.unc.e erkeley.e	kdown.or S.Berkele du	g y.EDU	Re: How to MakeFile 1 JDK 1.2 bo terms Slashdot us	gus licens er passwo elsh 2 bogus	D 11 13 2 0 0 11 0 11	Pate ▲ 998-11- 8:23:20 998-12- 3:19:46 998-12-	-25 -06 -07	
	From Catalin CLIN <cata@delta Matt Welsh <mdw@cs.e slashdot@sl "Alexander V</mdw@cs.e </cata@delta 	IOV sinta.r erkeley shdot. . Kons cs.colu n	o> ∕ED org tanti mbia	U> nou" .edu>	To java- ninja- mdwi Matt <mdy java- "moz</mdy 	-linux@j -all@w @metal Welsh v@cs.b -linux@j illa-jav	java.blac arthog.C ab.unc.e erkeley.e	kdown.or S.Berkele du edu>, kdown.or la.org"	g y.EDU	Re: How to MakeFile 1 JDK 1.2 bo terms Slashdot us for Matt W Re: JDK 1	er passwo er passwo elsh .2 hogus ns	D 11 12 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pate ▲ 998-11- 8:23:20 998-12- 3:19:46 998-12- 2:21:38 998-12- 0:33:52	-25 -06 -07 -07	

Overload control applied to *each request type* separately:

Overload prevention during a load spike



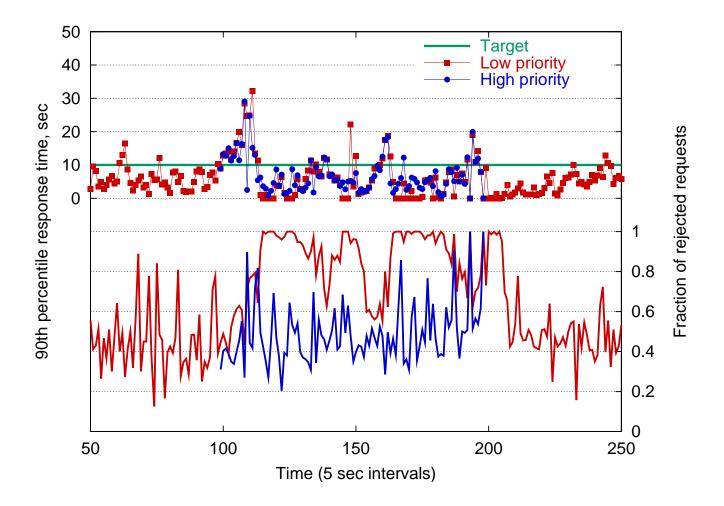
Sudden spike of 1000 users hitting Arashi service


- 7 request types, handled by separate stages with overload controller
- 90th %tile response time target: **1 second**
- Rejected requests cause clients to pause for 5 sec

Overload controller has no knowledge of the service!

Overload control with scaling load

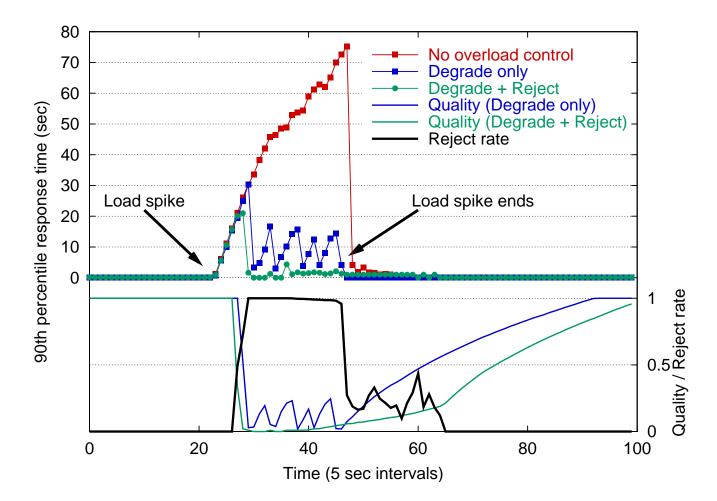
Service Differentiation


Differentiate users into multiple classes

- Give certain users higher priority than others
- Based on IP address, cookie, header field, etc.

Multiclass admission controller design

- Gather RT distributions for each class, compare to target
 - ▶ If RT below target, increase rate for this class
 - ▶ If RT above target, reduce rate of **lower priority classes**


Service differentiation at work

Two classes of users with a 10 second response time target

- 128 users in each class
- High priority requests suffer fewer rejections
- Without differentiation, both classes treated equally

Service degradation

Degrade fidelity of service in response to overload

- Artifical benchmark: Stage crunches numbers with a varying "quality level"
- Stage performs AIMD control on service quality under overload
- Enable/disable admission controller based on response time and quality

Related Overload Management Techniques

Dynamic listen queue thresholding [Voigt, Cherkasova, Kant]

- Threshold or token-bucket rate limiting of incoming SYN queues
- Problem: Dropping or limiting TCP connections is bad for clients!

Specialized scheduling techniques [Crovella, Harchol-Balter]

- e.g., Shortest-connection-first or Shortest-remaining-processing-time
- Often assumes 1-to-1 mapping of client request to server process

Class-based service differentiation [Bhoj, Voigt, Reumann]

- Kernel- and user-level techniques for classifying user requests
- Sometimes requires pushing application logic into kernel
- Adjust connection/request acceptance rate per class

▷ No feedback - static assignment acceptance rates

We argue that overload management should be an **application design primitive** and not simply tacked onto existing systems

Control theoretic resource management

Increasing amount of theoretical and applied work in this area

- Control theory for physical systems with (sometimes) well-understood behaviors
- Capture model of system behavior under varying load
- Design controllers using standard techniques (e.g., pole placement)
 - ▶ e.g., PID control of Internet service parameters [Diao, Hellerstein]
 - Feedback-driven scheduling [Stankovic, Abdelzaher, Steere]

Accurate system models difficult to derive

- Capturing realistic models is difficult
 - Highly dependent on test loads
- Model parameters change over time
 - ▶ Upgrading hardware, introducing new functionality, bit-rot

Much control theory based on linear assumptions

• Real software systems highly nonlinear

Future Work

Automatic profiling, modeling, and tuning of overload controller

- Capture traces of stage performance vs. traffic and load mix
- Offline or online tuning of admission control parameters
- Use learning algorithms?

Extend local overload controller to global actions

- Adjust "front door" admission rate based on back-end bottleneck
- Prioritize stages that release resources
- Use global information, e.g., memory availability, to help

Further explore tradeoff between request rejection and degradation

- How to build general-purpose degradation into a service?
- Tie in with complex set of service level agreements

Summary

SEDA programming model exposes overload to the application

- Break event-driven application into stages connected with queues
- Queues can reject new requests overload signal

Adaptive overload control at each stage

- Attempt to meet 90th-percentile response time target
- Adjust admission rate of each stage's queue
- Differentiated service using multiple admission controllers

Extensive evaluation in realistic overload setting

- Arashi service with highly dynamic behavior
- Realistic client load generator
- Evaluated overload control, service differentiation, and service degradation

For more information, software, and papers:

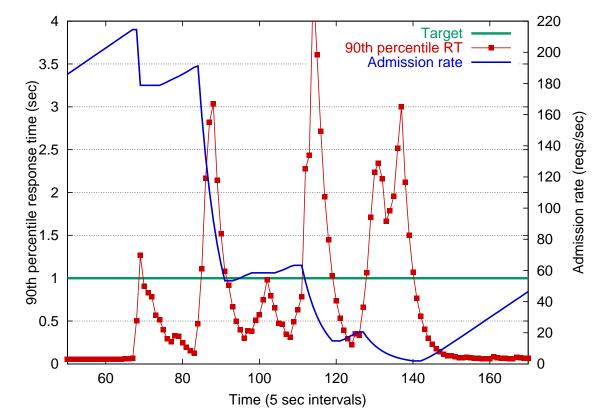
http://www.cs.berkeley.edu/~mdw/proj/seda/

Backup slides follow

Adaptive overload control algorithm

Monitor response time for each request in system

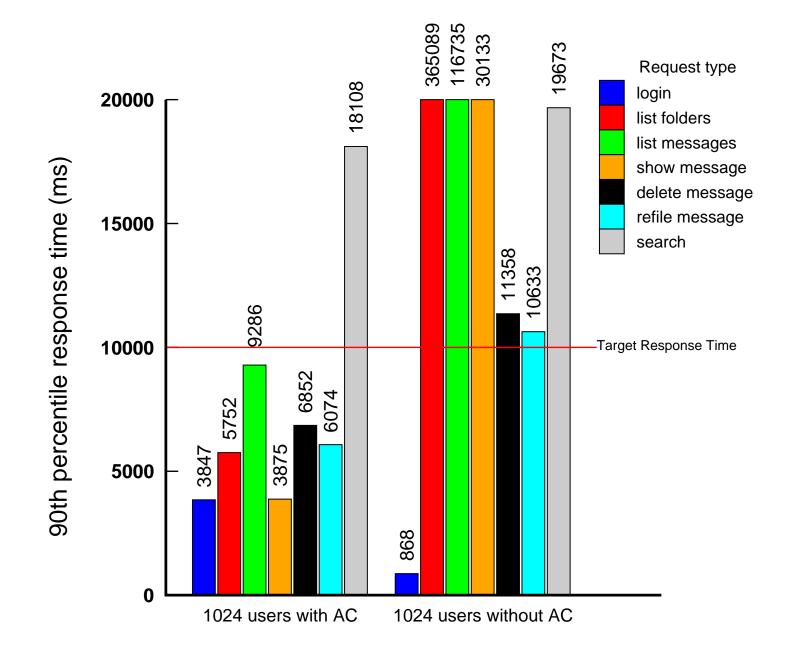
- Tag with current time on entry to service
- Gather distribution of accumulated response times at each stage

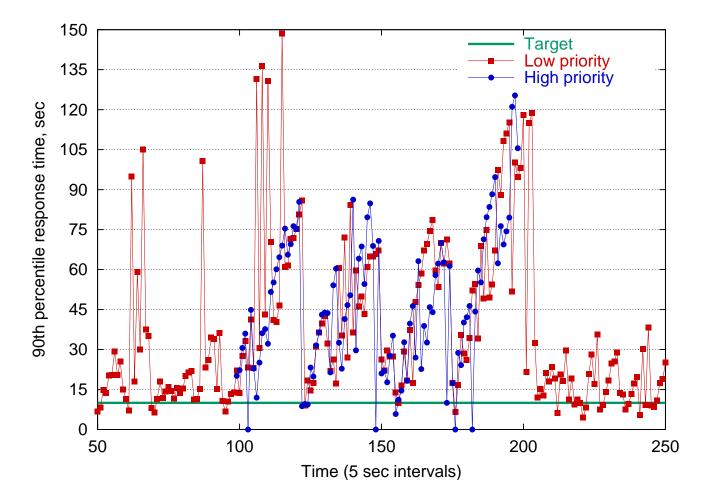

Controller adjusts admission rate of requests using token bucket

- Controller invoked after N requests processed or timeout
- EWMA filter used on 90th-percentile RT estimate
- Calculates error between current RT estimate and target
- If $err > err_d$, token bucket reduced by multiplicative factor: adj_d .
- If $err < err_i$, token bucket increased by additive factor: $-(err c_i)adj_i$.

Parameters determined through extensive experimentation

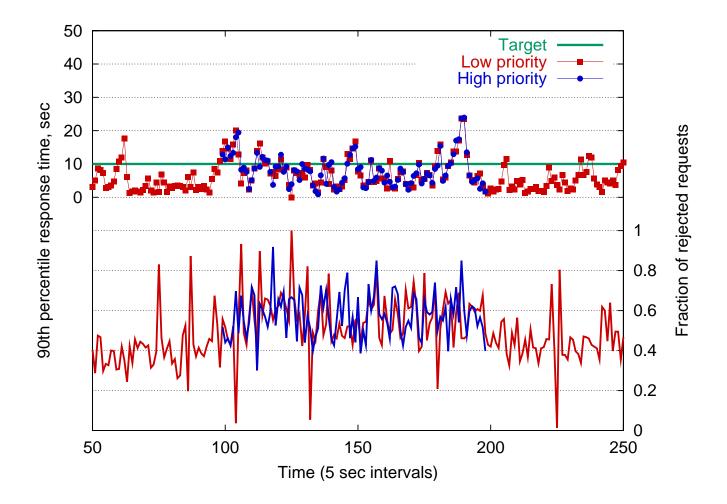
- *N* = 100, timeout = 1 sec
- EWMA filter = 0.7
- $err_i = -0.5, err_d = 0$
- $adj_i = 2.0, adj_d = 1.2$


Response Time Controller Operation


Adjust incoming token bucket using AIMD control

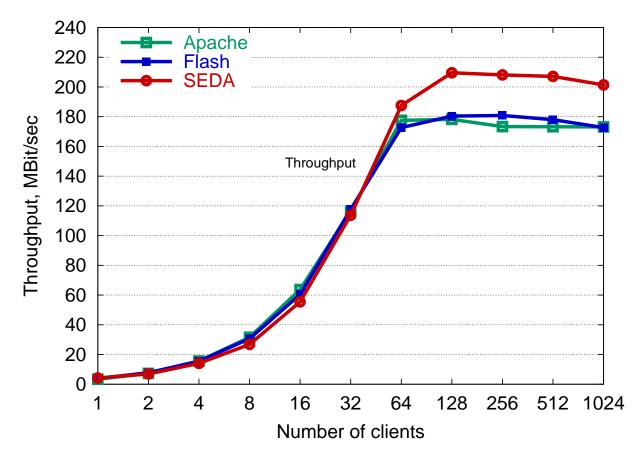
- Target response time **1 second**
- Sample response times of requests through stage
- After 100 samples or 1 second:
 - Sort measurements and measure 90th percentile
 - ▷ If 90th $RT < 0.9 \times$ target RT, add f(err) to rate
 - $\blacktriangleright If 90th RT > target RT, divide rate by 1.2$

Overload control by request type


Without response time control

Two classes of users without overload control enabled

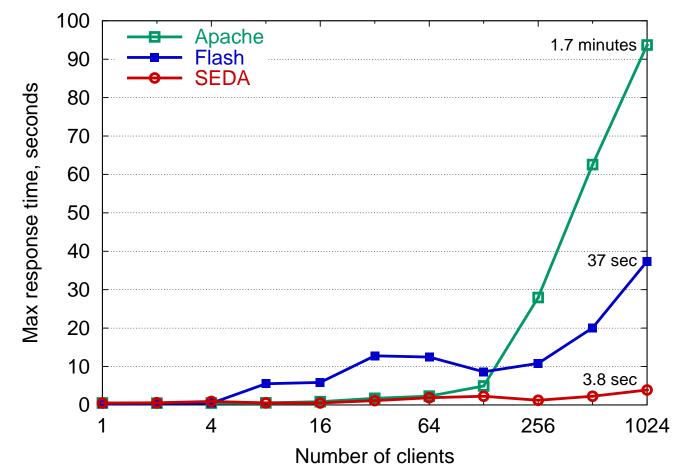
- 128 users in each class
- Terrible response time performance


Without service differentation

Two classes of users with a 10 second response time target

- 128 users in each class
- No differentiation between classes of users
- High-priority users see same loss rate as low priority

SEDA Scales Well with Increasing Load


4-way Pentium III 500 MHz, Gigabit Ethernet, 2 GB RAM, Linux 2.2.14, IBM JDK 1.3

• SEDA throughput **10% higher** than Apache and Flash (which are in C!)

▶ But higher efficiency was not really the goal!

- Apache accepts only 150 clients at once no overload despite thread model
 - ▶ But as we will see, this penalizes many clients

Max Response Time vs. Apache and Flash

• Apache and Flash are very unfair when overloaded

▶ Long response times due to exponential backoff in TCP SYN retransmit

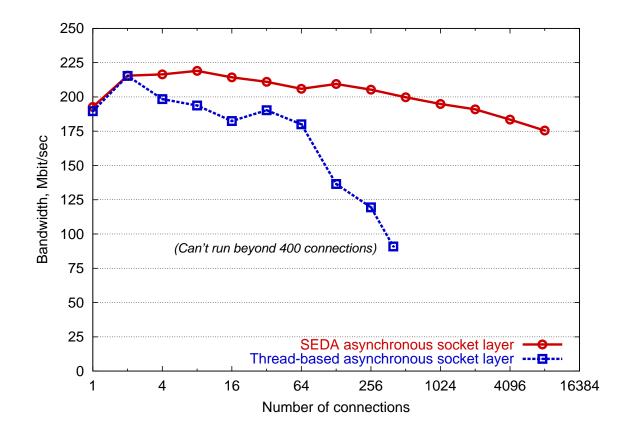
• Not accepting connections is the **wrong** approach to overload management

User-level vs. kernel-level resource management

SEDA is a user-level solution: no kernel changes

- Runs on commodity systems (Linux, Solaris, BSD, Win2k, etc.)
- In contrast to extensive work on specialized OS, schedulers, etc.
- Explore resource control on top of imperfect OS interface
- "Grey box" approach infer properties of underlying system from observed behavior

What would a SEDA-based "dream OS" look like?

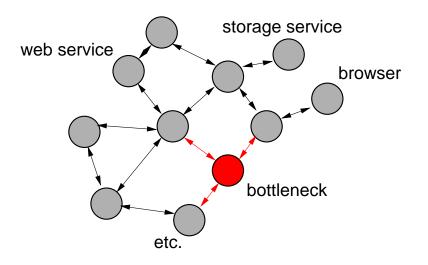

- Scalable I/O primitives: remove emphasis on blocking ops
- SEDA stage-aware scheduling algorithm?
- Greater exposure of performance monitors and knobs

Scalable concurrency and I/O interfaces

Threads don't scale, but are the wrong interface anyway

- Too coarse-grained: Don't reflect internal structure of a service
- Little control over thread behavior (priorities, kill -9)

I/O interfaces typically don't scale


Distributed programming models and protocols

HTTP pushes overload into the network

- Relies on TCP connection backoff rather than more explicit mechanisms
- Simultaneous connections, progressive download, and out-of-order requests complicate matters
- Protocol design should consider service availability

Distributed computing models generally do not express overload

- CORBA, RPC, RMI, .NET all based on RPC with "generic" error conditions
- On error, should app fail, retry, or invoke an alternate function?
- Single bottleneck in large distributed system causes cascading failure in network

Playing dodgeball with the kernel

OS resource management abstractions often inadequate

- Resource virtualization hides overload from applications
- e.g., malloc() returns NULL when no memory
- Forces system designers to focus only on "capacity planning"

Internet services require careful control over resource usage

- e.g., Avoid exhausting physical memory to avoid paging
- Back off on processing "heavyweight" requests when saturated

SEDA approach: Application-level monitoring & throttling

• Service performance monitored at a per-stage level

Request throughput, service rate, latency distributions

- Staged model permits careful control over resource consumption
 - ▷ Throttle number of threads, admission control on each stage
- Cruder than kernel modifications, but very effective (and clean!)