
Adaptive Overload Control for Busy
Internet Servers

Matt Welsh
Intel Research and Harvard University

David Culler
Intel Research and U.C. Berkeley

1



The Problem: Overload in the Internet

Overload is an inevitable aspect of systems connected to the Internet
• (Approximately) infinite user populations
• Large correllation of user demand (e.g., flash crowds)
• Peak load can be orders of magnitude greater than average

Modern Internet services as highly dynamic
• Web servers do much more than serve up static pages
• e.g., server-side scripts (CGI, PHP), SSL, database access
• Requests have highly unpredictable CPU, memory, and I/O demands
• Makes overload very difficult to predict and manage

Some high-profile (and low-profile) examples of overload
• CNN on Sept. 11th: 30,000 hits/sec, down for 2.5 hours
• E*Trade failure to execute trades during overload
• Final Fantasy XI launch in Japan: All servers down for 2 days
• Slashdot effect: daily frustration to nerds everywhere

Matt Welsh, Intel Research Berkeley 2



Outline

• Traditional approaches to overload

• The Staged Event-Driven Architecture

• Adaptive overload control in SEDA

• Service differentiation and degradation

• Performance evaluation under massive load spikes

• Conclusions

Matt Welsh, Intel Research Berkeley 3



Common approaches to overload control

Prior work on bounding system performance metrics such as:
• CPU utilization, memory, network bandwidth

. No connection to user-perceived performance

• Instead, we focus on 90th percentile response time

. Meaningful to users, closely tied to SLAs

Overload management often based on static resource limits
• e.g., Fixed limits on number of clients or CPU utilization
• Can underutilize resources (if limits set too low)
• or lead to oversaturation (if limits too high)

Static page loads or simple performance models
• e.g., Assume linear overhead in size of Web page
• Can’t account for dynamic services (scripts, SSL, etc.)

Many techniques studied only under simulation

Matt Welsh, Intel Research Berkeley 4



The Staged Event Driven Architecture (SEDA)

...

packet
parse

connection
accept

read
packet

folders
list

show
message

message
delete/refile

send
response

database
access

(some stages not shown)

Decompose service into stages separated by queues
• Each stage performs a subset of request processing
• Stages use light-weight event-driven concurrency internally
• Each stage embodies a set of states from FSM
• Queues make load management explicit

Event Handler

Thread Pool

Dynamic Resource Control

Stages contain a thread pool to drive execution
• Small number of threads per stage
• Dynamically adjust thread pool sizes

Apps don’t allocate, schedule, or manage threads

Matt Welsh, Intel Research Berkeley 5



Exposing overload to applications

Accept

Reject

?

Overload is explicit in the programming model
• Every stage is subject to admission control policy
• e.g., Thresholding, rate control, credit-based flow control

. Enqueue failure is an overload signal

• Block on full queue→ backpressure
• Drop rejected events→ load shedding

. Can also degrade service, redirect request, etc.

foreach (request in batch) {
// Process request...

try {
next_stage.enqueue(req);

} catch (rejectedException e) {
// Must respond to enqueue failure!
// e.g., send error, degrade service, etc.

}
}

Matt Welsh, Intel Research Berkeley 6



Alternatives for Overload Control

Basic idea: Apply admission control to each stage
• Expensive stages throttled more aggressively

Reject request (e.g., Error message or “Please wait...”)
• Social engineering possible: fake or confusing error message

Redirect request to another server (e.g., HTTP redirect)
• Can couple with front-end load balancing across server farm

Degrade service (e.g., reduce image quality or service complexity)

→

Deliver differentiated service
• Give some users better service; don’t reject users with a full shopping cart!

Matt Welsh, Intel Research Berkeley 7



Feedback-driven response time control

Controller

λ

Token
Bucket

Target
RT

Stage
Response

Times

Distribution

Adaptive admission control at each stage
• 90th %tile RT target supplied by administrator
• Measure stage latency and throttle incoming event rate to meet target

Additive-increase/Multiplicative-decrease controller design
• Slight overshoot in input rate can lead to large response time spikes!
• Clamp down quickly on input rate when over target
• Increase incoming rate slowly when below target

Matt Welsh, Intel Research Berkeley 8



Arashi: A Web-based e-mail service

Yahoo Mail clone - “real world” service
• Dynamic page generation, SSL
• New Python-based Web scripting language
• Mail stored in back-end MySQL database

Realistic client load generator
• Traces taken from departmental IMAP server
• Markov chain model of user behavior

Overload control applied to each request type separately:

...

packet
parse

connection
accept

read
packet

folders
list

show
message

message
delete/refile

send
response

database
access

admission control

(some stages not shown)

degrade service,
send error page, etc.

Matt Welsh, Intel Research Berkeley 9



Overload prevention during a load spike

0

20

40

60

80

100

120

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

�

R
ej

ec
t r

at
e

�

Time (5 sec intervals)

Load spike
(1000 users) Load spike ends

No overload control
With overload control
Reject rate

Sudden spike of 1000 users hitting Arashi service
• 7 request types, handled by separate stages with overload controller
• 90th %tile response time target: 1 second
• Rejected requests cause clients to pause for 5 sec

Overload controller has no knowledge of the service!

Matt Welsh, Intel Research Berkeley 10



Overload control with scaling load

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e,

 s
ec

R
ej

ec
t r

at
e

Number of clients

Target

90th %tile RT, with overload control
90th %tile RT, no overload control
Reject rate

Matt Welsh, Intel Research Berkeley 11



Service Differentiation

λ

Controller

Stage
Response

Times

Token
Buckets

Distributions

Target Target

λ

Differentiate users into multiple classes
• Give certain users higher priority than others
• Based on IP address, cookie, header field, etc.

Multiclass admission controller design
• Gather RT distributions for each class, compare to target

. If RT below target, increase rate for this class

. If RT above target, reduce rate of lower priority classes

Matt Welsh, Intel Research Berkeley 12



Service differentiation at work

0

10

20

30

40

50

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e,

 s
ec

F
ra

ct
io

n 
of

 r
ej

ec
te

d 
re

qu
es

ts

Time (5 sec intervals)

Target
Low priority
High priority

Two classes of users with a 10 second response time target
• 128 users in each class
• High priority requests suffer fewer rejections
• Without differentiation, both classes treated equally

Matt Welsh, Intel Research Berkeley 13



Service degradation

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

�

Q
ua

lit
y 

/ R
ej

ec
t r

at
e

�

Time (5 sec intervals)

Load spike Load spike ends

No overload control
Degrade only
Degrade + Reject
Quality (Degrade only)
Quality (Degrade + Reject)
Reject rate

Degrade fidelity of service in response to overload
• Artifical benchmark: Stage crunches numbers with a varying “quality level”
• Stage performs AIMD control on service quality under overload
• Enable/disable admission controller based on response time and quality

Matt Welsh, Intel Research Berkeley 14



Related Overload Management Techniques

Dynamic listen queue thresholding [Voigt, Cherkasova, Kant]
• Threshold or token-bucket rate limiting of incoming SYN queues
• Problem: Dropping or limiting TCP connections is bad for clients!

Specialized scheduling techniques [Crovella, Harchol-Balter]
• e.g., Shortest-connection-first or Shortest-remaining-processing-time
• Often assumes 1-to-1 mapping of client request to server process

Class-based service differentiation [Bhoj, Voigt, Reumann]
• Kernel- and user-level techniques for classifying user requests
• Sometimes requires pushing application logic into kernel
• Adjust connection/request acceptance rate per class

. No feedback - static assignment acceptance rates

We argue that overload management should be an application design
primitive and not simply tacked onto existing systems

Matt Welsh, Intel Research Berkeley 15



Control theoretic resource management

Increasing amount of theoretical and applied work in this area
• Control theory for physical systems with (sometimes) well-understood behaviors
• Capture model of system behavior under varying load
• Design controllers using standard techniques (e.g., pole placement)

. e.g., PID control of Internet service parameters [Diao, Hellerstein]

. Feedback-driven scheduling [Stankovic, Abdelzaher, Steere]

Accurate system models difficult to derive
• Capturing realistic models is difficult

. Highly dependent on test loads

• Model parameters change over time

. Upgrading hardware, introducing new functionality, bit-rot

Much control theory based on linear assumptions
• Real software systems highly nonlinear

Matt Welsh, Intel Research Berkeley 16



Future Work

Automatic profiling, modeling, and tuning of overload controller
• Capture traces of stage performance vs. traffic and load mix
• Offline or online tuning of admission control parameters
• Use learning algorithms?

Extend local overload controller to global actions
• Adjust “front door” admission rate based on back-end bottleneck
• Prioritize stages that release resources
• Use global information, e.g., memory availability, to help

Further explore tradeoff between request rejection and degradation
• How to build general-purpose degradation into a service?
• Tie in with complex set of service level agreements

Matt Welsh, Intel Research Berkeley 17



Summary

SEDA programming model exposes overload to the application
• Break event-driven application into stages connected with queues
• Queues can reject new requests - overload signal

Adaptive overload control at each stage
• Attempt to meet 90th-percentile response time target
• Adjust admission rate of each stage’s queue
• Differentiated service using multiple admission controllers

Extensive evaluation in realistic overload setting
• Arashi service with highly dynamic behavior
• Realistic client load generator
• Evaluated overload control, service differentiation, and service degradation

For more information, software, and papers:

http://www.cs.berkeley.edu/~mdw/proj/seda/

Matt Welsh, Intel Research Berkeley 18



Backup slides follow

Matt Welsh, Intel Research Berkeley 19



Adaptive overload control algorithm

Monitor response time for each request in system
• Tag with current time on entry to service
• Gather distribution of accumulated response times at each stage

Controller adjusts admission rate of requests using token bucket
• Controller invoked after N requests processed or timeout
• EWMA filter used on 90th-percentile RT estimate
• Calculates error between current RT estimate and target
• If err > errd, token bucket reduced by multiplicative factor: adjd.
• If err < erri, token bucket increased by additive factor: −(err− ci)adji.

Parameters determined through extensive experimentation
• N = 100, timeout = 1 sec
• EWMA filter = 0.7
• erri = -0.5, errd = 0
• adji = 2.0, adjd = 1.2

Matt Welsh, Intel Research Berkeley 20



Response Time Controller Operation

0

0.5

1

1.5

2

2.5

3

3.5

4

60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

220

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

A
dm

is
si

on
 r

at
e 

(r
eq

s/
se

c)

Time (5 sec intervals)

Target
90th percentile RT

Admission rate

Adjust incoming token bucket using AIMD control
• Target response time 1 second
• Sample response times of requests through stage
• After 100 samples or 1 second:

. Sort measurements and measure 90th percentile

. If 90th RT < 0.9× target RT, add f(err) to rate

. If 90th RT > target RT, divide rate by 1.2

Matt Welsh, Intel Research Berkeley 21



Overload control by request type

38
47

57
52

 9
28

6
38

75
68

52
60

74
18

10
8

1024 users with AC

86
8

36
50

89
11

67
35

30
13

3
11

35
8

10
63

3
19

67
3

1024 users without AC

Target Response Time

0

5000

10000

15000

20000
90

th
 p

er
ce

nt
ile

 r
es

po
ns

e 
tim

e 
(m

s)

-invisible -interval 100

Request type

login

list folders

list messages

show message

delete message

refile message

search

Matt Welsh, Intel Research Berkeley 22



Without response time control

0

15

30

45

60

75

90

105

120

135

150

50 100 150 200 250

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e,

 s
ec

Time (5 sec intervals)

Target
Low priority
High priority

Two classes of users without overload control enabled
• 128 users in each class
• Terrible response time performance

Matt Welsh, Intel Research Berkeley 23



Without service differentation

0

10

20

30

40

50

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e,

 s
ec

F
ra

ct
io

n 
of

 r
ej

ec
te

d 
re

qu
es

ts

Time (5 sec intervals)

Target
Low priority
High priority

Two classes of users with a 10 second response time target
• 128 users in each class
• No differentiation between classes of users
• High-priority users see same loss rate as low priority

Matt Welsh, Intel Research Berkeley 24



SEDA Scales Well with Increasing Load

0

20

40

60

80

100

120

140

160

180

200

220

240

1 2 4 8 16 32 64 128 256 512 1024

T
hr

ou
gh

pu
t, 

M
B

it/
se

c

�

Number of clients

Throughput

Apache
Flash
SEDA

4-way Pentium III 500 MHz, Gigabit Ethernet, 2 GB RAM, Linux 2.2.14, IBM JDK 1.3

• SEDA throughput 10% higher than Apache and Flash (which are in C!)

. But higher efficiency was not really the goal!

• Apache accepts only 150 clients at once - no overload despite thread model

. But as we will see, this penalizes many clients

Matt Welsh, Intel Research Berkeley 25



Max Response Time vs. Apache and Flash

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024

M
ax

 r
es

po
ns

e 
tim

e,
 s

ec
on

ds

Number of clients

1.7 minutes

37 sec

3.8 sec

Apache
Flash
SEDA

• Apache and Flash are very unfair when overloaded

. Long response times due to exponential backoff in TCP SYN retransmit

• Not accepting connections is the wrong approach to overload management

Matt Welsh, Intel Research Berkeley 26



User-level vs. kernel-level resource
management

SEDA is a user-level solution: no kernel changes
• Runs on commodity systems (Linux, Solaris, BSD, Win2k, etc.)
• In contrast to extensive work on specialized OS, schedulers, etc.
• Explore resource control on top of imperfect OS interface
• “Grey box” approach - infer properties of underlying system from observed behavior

What would a SEDA-based “dream OS” look like?
• Scalable I/O primitives: remove emphasis on blocking ops
• SEDA stage-aware scheduling algorithm?
• Greater exposure of performance monitors and knobs

Matt Welsh, Intel Research Berkeley 27



Scalable concurrency and I/O interfaces

Threads don’t scale, but are the wrong interface anyway
• Too coarse-grained: Don’t reflect internal structure of a service
• Little control over thread behavior (priorities, kill -9)

I/O interfaces typically don’t scale

0

25

50

75

100

125

150

175

200

225

250

1 4 16 64 256 1024 4096 16384

B
an

dw
id

th
, M

bi
t/s

ec

�

Number of connections

(Can’t run beyond 400 connections)

SEDA asynchronous socket layer
Thread-based asynchronous socket layer

Matt Welsh, Intel Research Berkeley 28



Distributed programming models and protocols

HTTP pushes overload into the network
• Relies on TCP connection backoff rather than more explicit mechanisms
• Simultaneous connections, progressive download, and out-of-order requests compli-

cate matters
• Protocol design should consider service availability

Distributed computing models generally do not express overload
• CORBA, RPC, RMI, .NET all based on RPC with “generic” error conditions
• On error, should app fail, retry, or invoke an alternate function?
• Single bottleneck in large distributed system causes cascading failure in network

bottleneck

web service
browser

storage service

etc.

Matt Welsh, Intel Research Berkeley 29



Playing dodgeball with the kernel

OS resource management abstractions often inadequate
• Resource virtualization hides overload from applications
• e.g., malloc() returns NULL when no memory
• Forces system designers to focus only on “capacity planning”

Internet services require careful control over resource usage
• e.g., Avoid exhausting physical memory to avoid paging
• Back off on processing “heavyweight” requests when saturated

SEDA approach: Application-level monitoring & throttling
• Service performance monitored at a per-stage level

. Request throughput, service rate, latency distributions

• Staged model permits careful control over resource consumption

. Throttle number of threads, admission control on each stage

• Cruder than kernel modifications, but very effective (and clean!)

Matt Welsh, Intel Research Berkeley 30


