
1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic

What Everybody Using
the Java ™ Programming
Language Should Know
About Floating−Point
Arithmetic

Joseph D. Darcy
Java Floating−Point Czar
Sun Microsystems, Inc.

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic2

Overview: Reduce Surprises,
Increase Understanding

� Understand why

� 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 != 1.0

� 0.1f != 0.1d

� Outline

� Floating−point fundamentals

� Decimal ↔ binary conversion

� Top 1.0e1 Floating−point FAQs, Mistakes,
Surprises, and Misperceptions

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic3

Objectives

� Gain accurate mental model of binary
floating−point arithmetic
� Avoid common floating−point mistakes

� Learn where to find additional information

� Use floating−point more with greater
confidence and productivity

� Inspire attendance at:

� BOF 526 What Some People Using the Java
Programming Language Want to Know About
Floating−Point Arithmetic
11:00pm, Marriot, Salon 10

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic4

My Background

� Worked on languages and numerics since 1996
� UC Berkeley master’s project:

Borneo 1.0: Adding IEEE 754 Floating Point
Support to Java™

� Active in Java™ Grande Forum, Numerics
Working Group

� Assisted in design of revised floating−point
semantics for the Java 2 platform

� Java Floating−Point Czar since
September 2000

� Participant IEEE 754 revision committee

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic5

Why Floating−point?

� Integers aren’t convenient for all calculations

� Floating−point arithmetic is a systematic
methodology for approximating arithmetic on þ
� Exponent and significand (mantissa) fields
� “Decimal point” floats according to

exponent value

� Exact multiplication can double the number
of bits manipulated at each step—must
approximate to keep computation tractable!

� Exactness rarely needed to get
usable results

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic6

What Are Real Numbers?

� Real numbers (þ) include:
� Integers (e.g., 0, −1, 32768)
� Fractions (rational numbers) (e.g., ½, ¾, 22/7)
� Irrational numbers (e.g., π, e, √2)

� Real numbers form a mathematical object called
a field; fields have certain properties, field axioms
� Addition and multiplication are

commutative (a op b = b op a) and
associative ((a op b) op c = a op (b op c))

� Closed under addition and multiplication
� Also identity elements, distributivity, 13 total

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic7

How to Approximate

� Not all approximations equally good!

� Would like approximation to be:
� Deterministic, reproducible, predictable
� Reliable, accurate

� Ideally also preserve properties of operations
� Floating−point addition and multiplication

are commutative
� Round−off precludes most other field axioms
� Floating−point is fundamentally discrete

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic8

Precision and Accuracy

� Precision ≠ Accuracy

� Precision is a measure of how
fine a distinction you can make

� Accuracy is a measure of error

� Using more precision for intermediate
results usually gives a more accurate
computed answer

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic9

Binary Floating−Point Numbers

� Infinite number of real numbers, only
finite number of floating−point numbers

� Representable numbers:
±binaryFraction⋅2exponent

� binaryFraction limited in precision,
only has a limited number of bits

� Floating−point numbers are sums
of powers of two

� Ratio of largest to smallest component
is at most 2p−1, p is significand width

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic10

Binary Floating−Point
Numbers Illustrated

� Floating−point format with 3 bits of precision

� Floating−point format with 4 bits of precision

� float has 24 bits of precision;
double has 53 bits of precision

4 5 6 7 8 10 12 14

2n 2n+1
2n−p+1

4
n=2

p=3

2n 2n+12n−p+1
4

2(n+1)−p+1

4
4.5 5.5 6.5 7.54 5 6 7 8 9 10 11 12 13 14 15

n=2

p=4

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic11

IEEE 754 Floating−Point

� IEEE 754 is the universally used
binary floating−point standard

� IEEE 754 is fundamentally simple

� Conceptually, for each of the defined
operations {+, −, *, /, √}

1. First, calculate the infinitely precise result

2. Second, round this result to the nearest
representable number in the target format

� (If two number are equally close, chose
the one with the last bit zero—round
to nearest even)

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic12

IEEE 754 Rounding Illustrated

� Round to nearest even pictorially

...00 ...01 ...10

round to ...00 round to ...10

round to ...01

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic13

Round to Nearest Even

� Locally optimal, easy to understand
and analyze

� But, still lose information, e.g., failure of
associativity of addition:
(1.0f + 3.0e−8f) + 3.0e−8f == 1.0f

 1.0f + (3.0e−8f + 3.0e−8f) == 1.0000001f

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic14

Creating Closure

� When an operation on a set of values
doesn’t have a defined result, often define
a new kind of number
� Positive integers and

subtraction ⇒ negative integers

� Integers and division ⇒ rational numbers

� Rational numbers and
square root ⇒ complex numbers

� Helps create a closed system
� Operation has defined result for all inputs

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic15

IEEE 754 Special Values

� Want floating−point arithmetic to be closed
� Can have sensible semantics for new values

� Allows computation to continue to a point
where it is convenient to detect the “error”
(e.g., root finder)

� Besides value for real numbers, IEEE 754
has infinities and NaN
� Infinity: results from overflow (MAX_VALUE*2.0)

or division by zero (1.0/0.0)

� NaN (Not a Number): represents
invalid values (0/0, ∞*0, √−1, etc.)

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic16

Base Conversion

� Integers can be represented exactly
in any base

� In general, fractional quantities exactly
representable as a finite string in one base
cannot be exactly represented as a finite
string in another base
� In base 10, 1/3 is the non−terminating

expansion 0.33333333...

� In base 3, 1/3 is 0.1
(3)

� Many floating−point surprises are related
to decimal ↔ binary conversion properties

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic17

Decimal → Binary

� Most terminating decimal fractions cannot
be exactly represented as terminating
binary fractions

� Try to convert 0.1 to a binary fraction
0.1 × 2 = 0.2 0
0.2 × 2 = 0.4 0
0.4 × 2 = 0.8 0
0.8 × 2 = 1.6 1
0.6 × 2 = 1.2 1
0.2 × 2 = 0.4 0
...

� 0.1 is 0.00011... in binary

Repeated state

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic18

Binary → Decimal

� However, all terminating binary fractions can be
expressed exactly as terminating base 10 fractions

� Intuition: 10 = 2·5 so all fractions in base 2 or
base 5 can also be expressed in base 10

� Proof:

� 5k is a representable integer; dividing by 10k just
shifts the decimal point; sums of 2i still terminate

� Floating−point numbers are sums
of power of two

1

2k
= 5k

10k

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic19

How to Convert?

� Decimal → binary (float and double literals,
{Float, Double}.valueOf and parse{Float, Double}
methods)

� Conversion must in general be inexact

� Use standard floating−point rounding:
return binary floating−point value nearest
exact decimal value of input

� Binary → decimal ({Float,Double}.toString)

� Feasible to return exact decimal string…

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic20

The Cost of Exactness

� Number of decimal digits for 2−n grows
with increasingly negative exponents

2−n Exact decimal string

2−1 0.5
2−2 0.25
2−3 0.125
2−4 0.0625
2−5 0.03125
2−6 0.015625
2−7 0.0078125
2−8 0.00390625
2−9 0.001953125

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic21

Extreme Values

� Double.MIN_VALUE = 2
–1074

� Exact decimal value:
4.9406564584124654417656879286822137236505980261432476442558568
250067550727020875186529983636163599237979656469544571773092665
671035593979639877479601078187812630071319031140452784581716784
898210368871863605699873072305000638740915356498438731247339727
316961514003171538539807412623856559117102665855668676818703956
031062493194527159149245532930545654440112748012970999954193198
940908041656332452475714786901472678015935523861155013480352649
347201937902681071074917033322268447533357208324319360923828934
583680601060115061698097530783422773183292479049825247307763759
272478746560847782037344696995336470179726777175851256605511991
315048911014510378627381672509558373897335989936648099411642057
02637090279242767544565229087538682506419718265533447265625e−
324

� Awkward and impractical, is this necessary?

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic22

Criteria for Conversions

� Want binary → decimal → binary conversion
to reproduce the original value
� Allows text to be used for reliable

data interchange

� Exact decimal value is not necessary
to recreate original value

� Decimal → binary conversion must
already deal with imprecision and rounding

� Use an inexact decimal string with enough
precision to recreate original value

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic23

Which String to Use?

� Many decimal strings map to a given
floating−point value

� "1.0" → 20

"1.0000000000000000000000000001" → 20

� Choose shortest string that rounds to
the desired floating−point value

� How much precision is needed?

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic24

How Long a String Is Needed?

� float format has 6 to 9 digits of
decimal precision

� double format has 15 to 17 digits of
decimal precision

� (Precision varies since binary and decimal
numbers have different relative densities in
different ranges)

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic25

Implications: WYSI Not WYG

� What you see is not what you get

� "0.1f" ≠ 0.1 after conversion; exact value:
0.100000001490116119384765625

� "0.1d" ≠ 0.1 after conversion; exact value:
0.1000000000000000055511151231…

� Correct digits

� Leading 8 for float

� Leading 17 for double

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic26

You Are in a Twisty Maze of Little
Passages, All Different…

� String representation of a floating−point
value is format dependent

� Float.toString(0.1f) = "0.1"

� Double.toString(0.1f) =
"0.10000000149011612"

� float approximation has 24 significand bits;
double approximation has 53 significand bits

� Double.toString(0.1d) = "0.1"

� To preserve values, must print out and read
in floating−point numbers in the same format

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic27

Base Conversion Summary

� Both decimal to binary and binary to decimal
conversions are inexact
� Decimal → binary: fundamentally inexact

� Binary → decimal: done inexactly for
practical reasons

� Roundtrip binary → decimal → binary can be
exact since the inexactness is correlated

� Can only exactly represent binary values in
floating−point numbers for the Java platform

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic

Top 1.0e1 Floating−Point
FAQs, Mistakes, Surprises,
and Misperceptions

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic29

1 – Expecting Exact Results

� 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 != 1.0

� The literal "0.1" doesn’t equal 0.1

� Limited precision of floating−point
implies roundoff

� More generally, exact results also fail from

� Limited range (overflow, underflow)

� Special values

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic30

2 – Expecting All Results
to Be Inexact

� Cases where floating−point computation
is exact

� Operations on “small” integers

� Representing in−range powers of 2
(e.g., 1.0/8.0)

� Special algorithms, e.g., techniques to extend
floating−point precision
(Learn more at the BOF!)

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic31

2.5 – Expecting All Results
to Be Inexact

� A floating−point number is not a stand−in for
nearby values

� Floating−point arithmetic operations assume
their inputs are exact

� Must use other techniques to estimate overall
error (e.g., error analysis, interval arithmetic)

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic32

3 – Using Floating−Point
For Monetary Calculations

� Fractional $, £, �, ¤ can’t be stored exactly
� Decimal → binary conversion issue

� Operations on values won’t be exact
(bad for balancing a checkbook!)

� Recommendations
� Use an integer type (int or long)

operating on cents

� Use java.math.BigDecimal for
exact calculations on decimal fractions

� If you must use floating−point, operate on cents
� Problems with limited exact range

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic33

4 – Preserving Cardinal Values of sin
and cos With Arguments in Degrees

� Why doesn’t

� sin(toRadians(180)) == 0.0

� cos(toRadians(90)) == 0.0

� toRadians ≡ angleInDegrees/180.0*Double.PI

� Conversion of degrees to radians is inexact

� Double.PI ≠ π (∴ sin(Double.PI) ≠ sin(π))

� (in general case, roundoff in multiply, divide)

� Cope with small discrepancies or use
degree−based transcendental functions

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic34

5 – Comparing Floating−Point
Numbers For Equality

� Sometimes okay to compare for equality

� When calculations are known to be exact

� To synthesize a comparison

� Compare against 0.0 to avoid division by zero

� But, floating−point computations are
generally inexact

� Comparing floating−point numbers for
equality may have undesirable results

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic35

5.5 – Comparing Floating−Point
Numbers For Equality, (Cont.)

� An infinite loop:
d = 0.0;
while(d != 1.0) {d += 0.1};

� For counted loops, use an integer loop count:
d = 0.0;
for(int i = 0; i < 10; i++)
 {d += 0.1};

� To test against a floating−point value, use
ordered comparisons (<, <=, >, >=):
d = 0.0;
while(d <= 1.0)
 {d += 0.1};

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic36

6 – Using float For Calculations

� Storing low−precision data as float is fine, but

� Generally not recommended to use float
for computations

� float has less than half the precision
of double

� Using double intermediates greatly
reduces the risk of roundoff problems
polluting the answer

� Round double value back to float to
give a float result

� (For more information see references)

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic37

7 – Trusting Venerable Formulas

� Some formulas found in text books don’t
work very well with floating−point numbers

� Formulas may implicitly assume real arithmetic

� Don’t adequately take floating−point rounding
into account

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic38

7.5 – Trusting Venerable Formulas

� Example: Heron’s formula for the area of a
triangle given the lengths of its sides:

s=((a + b)+c)/2,
Area = sqrt(s⋅(s −a)⋅(s −b)⋅(s −c))

� Formula can fail for needle like triangles
(no bits may be correct!)

� A better algebraicly equivalent formula
is available

� Can also use more intermediate precision
(see references)

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic39

8 – How to Round to
2 Decimal Places…

� May want to use “C−style” output for
floating−point numbers; e.g., limiting the
number of digits after the decimal point

� see java.text.NumberFormat

� e.g. DecimalFormat twoDigits = ne w
DecimalFormat("0.00");

� Default “%g” format conversion of
C’s printf does not print enough
digits to recover the original value

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic40

9 – What Are Distingu ishing Features
of Java ™ Programming Language
Floating−Point?

� Required use of IEEE 754 numbers

� Subnormals must be supported,
flush to zero not allowed

� Correctly rounded decimal ↔ binary conversion

� Well−defined expression evaluation rules

� Yields predictable results

� Code semantics depend on source,
not compiler flags

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic41

10 – What is strictfp ?

� Java 2 method and class qualifier

� Indicates floating−point computations must
get exactly reproducible results

� Without strictfp , some variation is allowed

� Intermediate results can have extended
exponent range

� Only makes a difference if an overflow or
underflow would occur

� Only need to use strictfp if you want
exactly reproducible results

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic42

Philosophical Note:
The Need for Speed

� At times the speed of a program is critical;
a late answer is not useful

� However, speed is not the only criterion

� Speed is comparatively easy to measure
compared to accuracy or robustness

� If you don’t care what is computed, why
do you care how fast it is computed?

� Other design values robustness, predictability,
and repeatability, not just speed

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic43

How Fast Is Java ™ Platform
Floating−Point Today?

� Much faster than it used to be :−)
� Modern vm’s can generate code similar

to static C compilers

� Benchmark results across languages vary
Benchmarking Java™ against C and
Fortran for Scientific Applications,
Bull, Smith, Pottage, Freeman
http://www.epcc.ed.ac.uk/research/publications/conference/
jgflangcomp_final.ps.gz

� PIII running NT, mean ratio to C: 1.23
� PIII running Linux, mean ratio to C: 1.07
� Solaris™ UltraSPARC™, mean ratio to C: 1.61

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic44

C and FORTRAN Comparison

� C and FORTRAN compilers have been
around longer

� The Java™ programming language has
tighter semantics than C or FORTRAN

� Can’t “optimize” floating−point as much

� Can’t assume arrays aren’t aliased

� JSRs are addressing speed
and expressibility issues

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic45

Recommendations
and Rules of Thumb

� Sometimes okay to break the rules

� Store large amounts of data no more
precisely than necessary

� Take advantage of double precision

� See references for further suggestions

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic46

Summary

� Floating−point arithmetic only approximates
real arithmetic

� Floating−point approximation is predictable

� Avoid surprises from base conversion

� Understand when exact results should
be expected

� The Java™ programming language makes
different floating−point design choices than
other languages

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic47

Conclusions

� Floating−point arithmetic follows rules;
just not the rules you are accustomed to :−)

� Use knowledge of floating−point to
� Reduce numerical surprises

� Productively use Java technology’s numerics

� Take advantage of floating−point semantics

� More floating−point material at companion BOF
What Some People Using the Java™

Programming Language Want to Know
About Floating−Point Arithmetic
11pm Marriot Salon–10

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic48

Where to Get More Information

� Professor Kahan’s webpages
� Marketing vs. Mathematics,

http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf

� What has the Volume of a Tetrahedron to do
with Computer Programming Languages?
http://www.cs.berkeley.edu/~wkahan/VtetLang.pdf

� Miscalculating Area and Angles of a
Needle−like Triangle,
http://www.cs.berkeley.edu/~wkahan/Triangle.pdf

� Lecture Notes on the Status of the IEEE Standard
754 for Binary Floating−Point Arithmetic,
http://www.cs.berkeley.edu/~wkahan/
ieee754status/ieee754.ps

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic49

Where to Get Still More Information

� What Every Computer Scientist Should Know
About Floating Point Arithmetic,David Goldberg,
(with commentary by Doug Priest)
http://www.validgh.com/goldberg/paper.ps

� Computer Arithmetic: Algorithms and
Hardware Designs, Behrooz Parhami,
ISBN 0−19−512583−5

� The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, Donald Knuth

� Java™ Grande Forum, Numerics Working Group
http://math.nist.gov/javanumerics/

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic

1789, What Everybody Using the Java Programming Language Should Know About Floating−Point Arithmetic51

