Sun's 2001 Worldwide Java Developer Confer

What Everybody Using
the Java ™ Programming
Language Should Know
About Floating—Point
Arithmetic

Joseph D. Darcy
Java Floating—Point Czar
Sun Microsystems, Inc.

Overview: Reduce Surprises,
Increase Understanding

e Understand why

— 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 1= 1.0

— 0.1f1=0.1d

* Outline
— Floating—point fundamentals
— Decimal « binary conversion

— Top 1.0el Floating—point FAQs, Mistakes,
Surprises, and Misperceptions

JavaOne

Objectives

e Galin accurate mental model of binary
floating—point arithmetic

— Avoid common floating—point mistakes
 Learn where to find additional information

« Use floating—point more with greater
confidence and productivity

* |nspire attendance at:

— BOF 526 What Some People Using the Java
Programming Language Want to Know About
Floating—Point Arithmetic
11:00pm, Marriot, Salon 10

JavaOne

My Background

* Worked on languages and numerics since 1996

 UC Berkeley master’s project:
Borneo 1.0: Adding IEEE 754 Floating Point
Support to Java™

e Active In Java™ Grande Forum, Numerics
Working Group

« Assisted in design of revised floating—point
semantics for the Java 2 platform

« Java Floating—Point Czar since
September 2000

» Participant IEEE 754 revision committee
JavaOne

Why Floating—point?

* Integers aren’t convenient for all calculations

* Floating—point arithmetic Is a systematic
methodology for approximating arithmetic on IR

— Exponent and significand (mantissa) fields

— “Decimal point” floats according to
exponent value

« Exact multiplication can double the number
of bits manipulated at each step—must
approximate to keep computation tractable!

« Exactness rarely needed to get

usable results
JavaOne

What Are Real Numbers?

e Real numbers (IR) include:
— Integers (e.g., 0, —1, 32768)
— Fractions (rational numbers) (e.q., ¥z, ¥4 22/7)
— Irrational numbers (e.g., 1, e, V2)
 Real numbers form a mathematical object called
a field; fields have certain properties, field axioms

— Addition and multiplication are
commutative (aop b =b op a) and
associative ((@aopb)opc=aop (bopc)

— Closed under addition and multiplication
— Also identity elements, distributivity, 13 total

JavaOne

How to Approximate

* Not all approximations equally good!

* Would like approximation to be:
— Deterministic, reproducible, predictable
— Reliable, accurate

 |deally also preserve properties of operations

— Floating—point addition and multiplication
are commutative

— Round-off precludes most other field axioms
— Floating—point is fundamentally discrete

JavaOne

Precision and Accuracy

* Precision # Accuracy

— I?recisiqn _is a measure of how
fine a distinction you can make

— Accuracy Is a measure of error

* Using more precision for intermediate
results usually gives a more accurate
computed answer

JavaOne

Binary Floating—Point Numbers

* Infinite number of real numbers, only
finite number of floating—point numbers

« Representable numbers:
+binaryFraction2°¥°"™

— binaryFraction limited In precision,
only has a limited number of bits

— Floating—point numbers are sums
of powers of two

* Ratio of largest to smallest component
is at most 277, pis significand width

JavaOne

Binary Floating—Point
Numbers lllustrated

* Floating—point format with 3 bits of precision
4 5 6 7 8 10 12 14

T
p=3

on T 2mt
* Floating—point format with 4 bits of precision

_ 4aPssbesl7s3 9 10 11 12 1314 15

on 2" P 2n+1 o(n+1)-p+1

« float has 24 bits of precision;

double has 53 bits of precision
JavaOne

IEEE 754 Floating—Point

 |EEE 754 is the universally used
pinary floating—point standard

« |EEE 754 is fundamentally simple

« Conceptually, for each of the defined
operations {+, —, *, /, v}

1. First, calculate the infinitely precise result

2. Second, round this result to the nearest
representable number in the target format

* (If two number are equally close, chose
the one with the last bit zero—+ound

to nearest even)
JavaOne

IEEE 754 Rounding lllustrated

* Round to nearest even pictorially

round to ...00 round to ...10

.00 | .01 | .10
round to ...01

JavaOne

Round to Nearest Even

 Locally optimal, easy to understand
and analyze

« But, still lose information, e.g., failure of
associativity of addition:

(1.0f + 3.0e-8f) + 3.0e—8f == 1.0f

1.0f + (3.0e-8f + 3.0e—8f) == 1.0000001f

JavaOne

Creating Closure

 When an operation on a set of values
doesn’'t have a defined result, often define
a hew kind of number

— Positive integers and
subtraction L negative integers

— Integers and division [rational numbers

— Rational numbers and
square root L1 complex numbers

« Helps create a closed system
— Operation has defined result for all inputs

JavaOne

IEEE 754 Special Values

« Want floating—point arithmetic to be closed
— Can have sensible semantics for new values

— Allows computation to continue to a point
where it Is convenient to detect the “error”
(e.g., root finder)

 Besides value for real numbers, IEEE 754
has infinities and NaN

— Infinity: results from overflow (MAX_VALUE*2.0)
or division by zero (1.0/0.0)

— NaN (Not a Number): represents
invalid values (0/0, ©*0, V-1, etc.)

JavaOne

Base Conversion

* |ntegers can be represented exactly
In any base

* |n general, fractional quantities exactly
representable as a finite string in one base
cannot be exactly represented as a finite
string in another base

— In base 10, 1/3 is the non—-terminating
expansion 0.33333333...

—Inbase 3, 1/3 s 0.1(3)

« Many floating—point surprises are related

to decimal ~ binary conversion properties
JavaOne

Decimal - Binary

* Most terminating decimal fractions cannot
be exactly represented as terminating
binary fractions

— Try to convert 0.1 to a binary fraction
0.1x2=0.2
02x2=04
04x2=0.8
0.8x2=1.6
0.6 x2=1.2
02x2=04

Repeated state

OFrRrFRLROOO

— 0.11s 0.00011... in binary

JavaOne

Binary - Decimal

 However, all terminating binary fractions can be
expressed exactly as terminating base 10 fractions

 Intuition: 10 = 2-5 so all fractions in base 2 or
base 5 can also be expressed in base 10

1 5

* Proof: =
2“ 10

« 5¥is a representable integer; dividing by 10 just
shifts the decimal point; sums of 2’ still terminate

* Floating—point numbers are sums

of power of two
JavaOne

How to Convert?

 Decimal - binary (float and double literals,

{Float, Double}.valueOf and parse{Float, Double}
methods)

— Conversion must in general be inexact

— Use standard floating—point rounding:
return binary floating—point value nearest
exact decimal value of input

e Binary - decimal ({Float,Double}.toString)

— Feasible to return exact decimal string...

JavaOne

The Cost of Exactness

 Number of decimal digits for 27" grows
with increasingly negative exponents

27" Exact decimal string
27t |05

2% 10.25

27 10.125

2% 10.0625

2>]0.03125

27° 10.015625

27" 10.0078125

2% 10.00390625

27 10.001953125

JavaOne

Extreme Values

 Awkward and impractical, is this necessary?

Double.MIN_VALUE = 27"

Exact decimal value:
4.9406564584124654417656879286822137236505980261432476442558568
250067550727020875186529983636163599237979656469544571773092665
671035593979639877479601078187812630071319031140452784531716784
898210368871863605699873072305000638740915356498438731247339727
316961514003171538539807412623856559117102665855668676818703956
031062493194527159149245532930545654440112748012970999954193198
940908041656332452475714786901472678015935523861155013480352649
347201937902681071074917033322268447533357208324319360923828934
583680601060115061698097530783422773183292479049825247307763759
272478746560847782037344696995336470179726777175851256605511991
315048911014510378627381672509558373897335989936648099411642057
02637090279242767544565229087538682506419718265533447265625e—
324

JavaOne

Criteria for Conversions

 Want binary - decimal — binary conversion
to reproduce the original value

— Allows text to be used for reliable
data interchange

 Exact decimal value Is not necessary
to recreate original value

 Decimal - binary conversion must
already deal with imprecision and rounding

 Use an inexact decimal string with enough
precision to recreate original value

JavaOne

Which String to Use?

* Many decimal strings map to a given
floating—point value

—"1.0" - 2°
*1.0000000000000000000000000001" - 2°

e Choose shortest string that rounds to
the desired floating—point value

 How much precision Is needed?

JavaOne

How Long a String Is Needed?

C

oat format has 6 to 9 digits of

decimal precision

ouble format has 15 to 17 digits of
ecimal precision

Precision varies since binary and decimal

numbers have different relative densities In

Ifferent ranges)

JavaOne

Implications: WYSI Not WYG

 What you see is not what you get

—"0.1f" # 0.1 after conversion; exact value:
0.100000001490116119384765625

—"0.1d" #0.1 after conversion:; exact value:
0.1000000000000000055511151231...

« Correct digits
— Leading 8 for float

— Leading 17 for double

JavaOne

You Are In a Twisty Maze of Little
Passages, All Different...

e String representation of a floating—point
value Is format dependent

— Float.toString(0.1f) = "0.1"

— Double.toString(0.1f) =
"0.10000000149011612"

 float approximation has 24 significand bits;
double approximation has 53 significand bits

— Double.toString(0.1d) = "0.1"

e To preserve values, must print out and read
In floating—point numbers in the same format

JavaOne

Base Conversion Summary

» Both decimal to binary and binary to decimal
conversions are inexact

— Decimal - binary: fundamentally inexact

— Binary — decimal: done inexactly for
practical reasons

« Roundtrip binary — decimal - binary can be
exact since the inexactness is correlated

e Can only exactly represent binary values In
floating—point numbers for the Java platform

JavaOne

Top 1.0el Floating—Point
FAQs, Mistakes, Surprises,
and Misperceptions

1 — EXxpecting Exact Results

e 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.2 1= 1.0

— The literal "0.1" doesn’t equal 0.1

— Limited precision of floating—point
Implies roundoff

« More generally, exact results also fail from
— Limited range (overflow, underflow)
— Special values

JavaOne

2 — Expecting All Results
to Be Inexact

« Cases where floating—point computation
IS exact

— Operations on “small” integers

— Representing in—range powers of 2
(e.g., 1.0/8.0)

— Special algorithms, e.g., technigues to extend
floating—point precision
(Learn more at the BOF!)

JavaOne

2.5 — Expecting All Results
to Be Inexact

A floating—point number is not a stand-in for
nearby values

— Floating—point arithmetic operations assume
their inputs are exact

— Must use other techniques to estimate overall
error (e.g., error analysis, interval arithmetic)

JavaOne

3 — Using Floating—Point
For Monetary Calculations

« Fractional $, £, €, @ can’t be stored exactly
— Decimal - binary conversion issue

* Operations on values won’t be exact
(bad for balancing a checkbook!)

« Recommendations

— Use an integer type (int or long)
operating on cents

— Use java.math.BigDecimal for
exact calculations on decimal fractions

— If you must use floating—point, operate on cents

e Problems with limited exact range
JavaOne

4 — Preserving Cardinal Values of sin
and cos With Arguments in Degrees

 Why doesn’t
— sin(toRadians(180)) == 0.0
— cos(toRadians(90)) == 0.0

* toRadians = anglelnDegrees/180.0*Double.PI
— Conversion of degrees to radians Is inexact
e Double.PI # (O sin(Double.PIl) # sin(m))

* (in general case, roundoff in multiply, divide)

e Cope with small discrepancies or use

degree—based transcendental functions
JavaOne

5 — Comparing Floating—Point
Numbers For Equality

« Sometimes okay to compare for equality
— When calculations are known to be exact
— To synthesize a comparison
— Compare against 0.0 to avoid division by zero

« But, floating—point computations are
generally inexact

— Comparing floating—point numbers for
equality may have undesirable results

JavaOne

5.5 — Comparing Floating—Point
Numbers For Equality, (Cont.)

* An Infinite loop:
d = 0.0;
while(d != 1.0) {d += 0.1};

o dFor counted loops, use an integer loop count:
= 0.0;
for(inti = 0; i< 10; i++)
{d+=0.1};

* To test against a floating—point value, use
g)rdoe(r)ed comparisons (<, <=, >, >=):
while(d <= 1.0)

{d += 0.1},

JavaOne

6 — Using float For Calculations

« Storing low—precision data as float Is fine, but

e Generally not recommended to use float
for computations

— float has less than half the precision
of double

— Using double intermediates greatly

reduces the risk of roundoff problems
polluting the answer

— Round double value back to float to
give a float result

— (For more information see references)
JavaOne-

/ — Trusting Venerable Formulas

« Some formulas found in text books don’t
work very well with floating—point numbers

« Formulas may implicitly assume real arithmetic

« Don’t adequately take floating—point rounding
Into account

JavaOne

7.5 — Trusting Venerable Formulas

 Example: Heron’s formula for the area of a
triangle given the lengths of its sides:

s=((a+ b)+0)/2,

Area = sqrt(sl{s —a)l(s —b)[{s —c))

— Formula can fall for needle like triangles
(no bits may be correct!)

— A better algebraicly equivalent formula
IS available

— Can also use more intermediate precision

(see references)
JavaOne

8 — How to Round to
2 Decimal Places...

 May want to use “C-style” output for
floating—point numbers; e.qg., limiting the
number of digits after the decimal point

— see java.text. NumberFormat

— e.g. DecimalFormat twoDigits = ne W
DecimalFormat("0.00");

« Default “%g” format conversion of
C's printf does not print enough
digits to recover the original value

JavaOne

Y — what Are Distinguishing Features
of Java = Programming Language
Floating—Point?

* Required use of IEEE 754 numbers

— Subnormals must be supported,
flush to zero not allowed

e Correctly rounded decimal — binary conversion

« Well-defined expression evaluation rules
— Yields predictable results

— Code semantics depend on source,
not compiler flags

JavaOne

10 — What Is strictfp ?

e Java 2 method and class qualifier

 Indicates floating—point computations must
get exactly reproducible results

o Without strictfp , Some variation is allowed

— Intermediate results can have extended
exponent range

— Only makes a difference if an overflow or
underflow would occur

* Only need to use strictfp If you want

exactly reproducible results .-

Philosophical Note:
The Need for Speed

« At times the speed of a program is critical,
a late answer Is not useful

 However, speed is not the only criterion

e Speed Is comparatively easy to measure
compared to accuracy or robustness

 |f you don’t care what is computed, why
do you care how fast it is computed?

e Other design values robustness, predictability,
and repeatability, not just speed

JavaOne

How Fast Is Java ™ Platform
Floating—Point Today?

* Much faster than it used to be :-)

— Modern vm’s can generate code similar
to static C compilers

 Benchmark results across languages vary
Benchmarking Java™ against C and
Fortran for Scientific Applications,

Bull, Smith, Pottage, Freeman
http://www.epcc.ed.ac.uk/research/publications/conference/
jgflangcomp _final.ps.gz

— PIIl running NT, mean ratio to C: 1.23
— PIII running Linux, mean ratio to C: 1.07
— Solaris™ UltraSPARC™, mean ratioto C: 1.61

JavaOne

C and FORTRAN Comparison

 C and FORTRAN compilers have been
around longer

 The Java™ programming language has
tighter semantics than C or FORTRAN

— Can’t “optimize” floating—point as much
— Can’t assume arrays aren’t aliased

 JSRs are addressing speed
and expressibility issues

JavaOne

Recommendations
and Rules of Thumb

e Sometimes okay to break the rules

Store large amounts of data no more
precisely than necessary

Take advantage of double precision

See references for further suggestions

JavaOne

Summary

Floating—point arithmetic only approximates
real arithmetic

— Floating—point approximation is predictable
* Avoid surprises from base conversion

 Understand when exact results should
be expected

 The Java™ programming language makes
different floating—point design choices than
other languages

JavaOne

Conclusions

* Floating—point arithmetic follows rules;
just not the rules you are accustomed to :-)

« Use knowledge of floating—point to
— Reduce numerical surprises
— Productively use Java technology’s numerics
— Take advantage of floating—point semantics

« More floating—point material at companion BOF
What Some People Using the Java™
Programming Language Want to Know
About Floating—Point Arithmetic
11pm Marriot Salon—-10

JavaOne

Where to Get More Information

* Professor Kahan's webpages

— Marketing vs. Mathematics,
http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf

— What has the Volume of a Tetrahedron to do
with Computer Programming Languages?

http://www.cs.berkeley.edu/~wkahan/VtetLang.pdf

— Miscalculating Area and Angles of a
Needle-like Triangle,
http://www.cs.berkeley.edu/~wkahan/Triangle.pdf

— Lecture Notes on the Status of the IEEE Standard

754 for Binary Floating—Point Arithmetic,

http://www.cs.berkeley.edu/~wkahan/
leee754status/ieee754.ps

JavaOne

Where to Get Still More Information

 What Every Computer Scientist Should Know
About Floating Point Arithmetic,David Goldberg,
(with commentary by Doug Priest)
http://www.validgh.com/goldberg/paper.ps

 Computer Arithmetic: Algorithms and
Hardware Designs, Behrooz Parhami,
ISBN 0-19-512583-5

* The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, Donald Knuth

e Java™ Grande Forum, Numerics Working Group
http://math.nist.gov/javanumerics/

JavaOne

Sun's 2001 Worldwide Java Developer Conference”

I

Javane“

Sun's 2001 Worldwide Java Developer Conference’

