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Overview: Reduce Surprises,
Increase Understanding

e Understand why

— 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 1= 1.0

— 0.1f1=0.1d

* Outline
— Floating—point fundamentals
— Decimal « binary conversion

— Top 1.0el Floating—point FAQs, Mistakes,
Surprises, and Misperceptions
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Objectives

e Galin accurate mental model of binary
floating—point arithmetic

— Avoid common floating—point mistakes
 Learn where to find additional information

« Use floating—point more with greater
confidence and productivity

* |nspire attendance at:

— BOF 526 What Some People Using the Java
Programming Language Want to Know About
Floating—Point Arithmetic
11:00pm, Marriot, Salon 10
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My Background

* Worked on languages and numerics since 1996

 UC Berkeley master’s project:
Borneo 1.0: Adding IEEE 754 Floating Point
Support to Java™

e Active In Java™ Grande Forum, Numerics
Working Group

« Assisted in design of revised floating—point
semantics for the Java 2 platform

« Java Floating—Point Czar since
September 2000

» Participant IEEE 754 revision committee
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Why Floating—point?

* Integers aren’t convenient for all calculations

* Floating—point arithmetic Is a systematic
methodology for approximating arithmetic on IR

— Exponent and significand (mantissa) fields

— “Decimal point” floats according to
exponent value

« Exact multiplication can double the number
of bits manipulated at each step—must
approximate to keep computation tractable!

« Exactness rarely needed to get

usable results
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What Are Real Numbers?

e Real numbers (IR) include:
— Integers (e.g., 0, —1, 32768)
— Fractions (rational numbers) (e.q., ¥z, ¥4 22/7)
— Irrational numbers (e.g., 1, e, V2)
 Real numbers form a mathematical object called
a field; fields have certain properties, field axioms

— Addition and multiplication are
commutative (aop b =b op a) and
associative ((@aopb)opc=aop (bopc)

— Closed under addition and multiplication
— Also identity elements, distributivity, 13 total
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How to Approximate

* Not all approximations equally good!

* Would like approximation to be:
— Deterministic, reproducible, predictable
— Reliable, accurate

 |deally also preserve properties of operations

— Floating—point addition and multiplication
are commutative

— Round-off precludes most other field axioms
— Floating—point is fundamentally discrete
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Precision and Accuracy

* Precision # Accuracy

— I?recisiqn _is a measure of how
fine a distinction you can make

— Accuracy Is a measure of error

* Using more precision for intermediate
results usually gives a more accurate
computed answer
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Binary Floating—Point Numbers

* Infinite number of real numbers, only
finite number of floating—point numbers

« Representable numbers:
+binaryFraction2°¥°"™

— binaryFraction limited In precision,
only has a limited number of bits

— Floating—point numbers are sums
of powers of two

* Ratio of largest to smallest component
is at most 277, pis significand width
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Binary Floating—Point
Numbers lllustrated

* Floating—point format with 3 bits of precision
4 5 6 7 8 10 12 14

T
p=3

on T 2mt
* Floating—point format with 4 bits of precision

_ 4aPssbesl7s3 9 10 11 12 1314 15

on 2" P 2n+1 o(n+1)-p+1

« float has 24 bits of precision;

double has 53 bits of precision
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IEEE 754 Floating—Point

 |EEE 754 is the universally used
pinary floating—point standard

« |EEE 754 is fundamentally simple

« Conceptually, for each of the defined
operations {+, —, *, /, v}

1. First, calculate the infinitely precise result

2. Second, round this result to the nearest
representable number in the target format

* (If two number are equally close, chose
the one with the last bit zero—+ound

to nearest even)
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IEEE 754 Rounding lllustrated

* Round to nearest even pictorially

round to ...00 round to ...10

.00 | .01 | .10
round to ...01
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Round to Nearest Even

 Locally optimal, easy to understand
and analyze

« But, still lose information, e.g., failure of
associativity of addition:

(1.0f + 3.0e-8f) + 3.0e—8f == 1.0f

1.0f + (3.0e-8f + 3.0e—8f) == 1.0000001f
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Creating Closure

 When an operation on a set of values
doesn’'t have a defined result, often define
a hew kind of number

— Positive integers and
subtraction L negative integers

— Integers and division [ rational numbers

— Rational numbers and
square root L1 complex numbers

« Helps create a closed system
— Operation has defined result for all inputs
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IEEE 754 Special Values

« Want floating—point arithmetic to be closed
— Can have sensible semantics for new values

— Allows computation to continue to a point
where it Is convenient to detect the “error”
(e.g., root finder)

 Besides value for real numbers, IEEE 754
has infinities and NaN

— Infinity: results from overflow (MAX_VALUE*2.0)
or division by zero (1.0/0.0)

— NaN (Not a Number): represents
invalid values (0/0, ©*0, V-1, etc.)
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Base Conversion

* |ntegers can be represented exactly
In any base

* |n general, fractional quantities exactly
representable as a finite string in one base
cannot be exactly represented as a finite
string in another base

— In base 10, 1/3 is the non—-terminating
expansion 0.33333333...

—Inbase 3, 1/3 s 0.1(3)

« Many floating—point surprises are related

to decimal ~ binary conversion properties
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Decimal - Binary

* Most terminating decimal fractions cannot
be exactly represented as terminating
binary fractions

— Try to convert 0.1 to a binary fraction
0.1x2=0.2
02x2=04
04x2=0.8
0.8x2=1.6
0.6 x2=1.2
02x2=04

Repeated state

OFrRrFRLROOO

— 0.11s 0.00011... in binary
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Binary - Decimal

 However, all terminating binary fractions can be
expressed exactly as terminating base 10 fractions

 Intuition: 10 = 2-5 so all fractions in base 2 or
base 5 can also be expressed in base 10

1 5

* Proof: =
2“ 10

« 5¥is a representable integer; dividing by 10 just
shifts the decimal point; sums of 2’ still terminate

* Floating—point numbers are sums

of power of two
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How to Convert?

 Decimal - binary (float and double literals,

{Float, Double}.valueOf and parse{Float, Double}
methods)

— Conversion must in general be inexact

— Use standard floating—point rounding:
return binary floating—point value nearest
exact decimal value of input

e Binary - decimal ({Float,Double}.toString )

— Feasible to return exact decimal string...
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The Cost of Exactness

 Number of decimal digits for 27" grows
with increasingly negative exponents

27" Exact decimal string
27t |05

2% 10.25

27 10.125

2% 10.0625

2> ]0.03125

27° 10.015625

27" 10.0078125

2% 10.00390625

27 10.001953125
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Extreme Values

 Awkward and impractical, is this necessary?

Double.MIN_VALUE = 27"

Exact decimal value:
4.9406564584124654417656879286822137236505980261432476442558568
250067550727020875186529983636163599237979656469544571773092665
671035593979639877479601078187812630071319031140452784531716784
898210368871863605699873072305000638740915356498438731247339727
316961514003171538539807412623856559117102665855668676818703956
031062493194527159149245532930545654440112748012970999954193198
940908041656332452475714786901472678015935523861155013480352649
347201937902681071074917033322268447533357208324319360923828934
583680601060115061698097530783422773183292479049825247307763759
272478746560847782037344696995336470179726777175851256605511991
315048911014510378627381672509558373897335989936648099411642057
02637090279242767544565229087538682506419718265533447265625e—
324
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Criteria for Conversions

 Want binary - decimal — binary conversion
to reproduce the original value

— Allows text to be used for reliable
data interchange

 Exact decimal value Is not necessary
to recreate original value

 Decimal - binary conversion must
already deal with imprecision and rounding

 Use an inexact decimal string with enough
precision to recreate original value
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Which String to Use?

* Many decimal strings map to a given
floating—point value

—"1.0" - 2°
*1.0000000000000000000000000001" - 2°

e Choose shortest string that rounds to
the desired floating—point value

 How much precision Is needed?
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How Long a String Is Needed?

C

oat format has 6 to 9 digits of

decimal precision

ouble format has 15 to 17 digits of
ecimal precision

Precision varies since binary and decimal

numbers have different relative densities In

Ifferent ranges)
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Implications: WYSI Not WYG

 What you see is not what you get

—"0.1f" # 0.1 after conversion; exact value:
0.100000001490116119384765625

—"0.1d" #0.1 after conversion:; exact value:
0.1000000000000000055511151231...

« Correct digits
— Leading 8 for float

— Leading 17 for double
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You Are In a Twisty Maze of Little
Passages, All Different...

e String representation of a floating—point
value Is format dependent

— Float.toString(0.1f) = "0.1"

— Double.toString(0.1f) =
"0.10000000149011612"

 float approximation has 24 significand bits;
double approximation has 53 significand bits

— Double.toString(0.1d) = "0.1"

e To preserve values, must print out and read
In floating—point numbers in the same format
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Base Conversion Summary

» Both decimal to binary and binary to decimal
conversions are inexact

— Decimal - binary: fundamentally inexact

— Binary — decimal: done inexactly for
practical reasons

« Roundtrip binary — decimal - binary can be
exact since the inexactness is correlated

e Can only exactly represent binary values In
floating—point numbers for the Java platform
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Top 1.0el Floating—Point
FAQs, Mistakes, Surprises,
and Misperceptions




1 — EXxpecting Exact Results

e 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.2 1= 1.0

— The literal "0.1" doesn’t equal 0.1

— Limited precision of floating—point
Implies roundoff

« More generally, exact results also fail from
— Limited range (overflow, underflow)
— Special values

JavaOne



2 — Expecting All Results
to Be Inexact

« Cases where floating—point computation
IS exact

— Operations on “small” integers

— Representing in—range powers of 2
(e.g., 1.0/8.0)

— Special algorithms, e.g., technigues to extend
floating—point precision
(Learn more at the BOF!)
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2.5 — Expecting All Results
to Be Inexact

A floating—point number is not a stand-in for
nearby values

— Floating—point arithmetic operations assume
their inputs are exact

— Must use other techniques to estimate overall
error (e.g., error analysis, interval arithmetic)
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3 — Using Floating—Point
For Monetary Calculations

« Fractional $, £, €, @ can’t be stored exactly
— Decimal - binary conversion issue

* Operations on values won’t be exact
(bad for balancing a checkbook!)

« Recommendations

— Use an integer type (int or long)
operating on cents

— Use java.math.BigDecimal for
exact calculations on decimal fractions

— If you must use floating—point, operate on cents

e Problems with limited exact range
JavaOne



4 — Preserving Cardinal Values of sin
and cos With Arguments in Degrees

 Why doesn’t
— sin(toRadians(180)) == 0.0
— cos(toRadians(90)) == 0.0

* toRadians = anglelnDegrees/180.0*Double.PI
— Conversion of degrees to radians Is inexact
e Double.PI # (O sin(Double.PIl ) # sin(m))

* (in general case, roundoff in multiply, divide)

e Cope with small discrepancies or use

degree—based transcendental functions
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5 — Comparing Floating—Point
Numbers For Equality

« Sometimes okay to compare for equality
— When calculations are known to be exact
— To synthesize a comparison
— Compare against 0.0 to avoid division by zero

« But, floating—point computations are
generally inexact

— Comparing floating—point numbers for
equality may have undesirable results
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5.5 — Comparing Floating—Point
Numbers For Equality, (Cont.)

* An Infinite loop:
d = 0.0;
while(d != 1.0) {d += 0.1};

o dFor counted loops, use an integer loop count:
= 0.0;
for(inti = 0; i< 10; i++)
{d+=0.1};

* To test against a floating—point value, use
g)rdoe(r)ed comparisons (<, <=, >, >=):
while(d <= 1.0)

{d += 0.1},
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6 — Using float For Calculations

« Storing low—precision data as float Is fine, but

e Generally not recommended to use float
for computations

— float has less than half the precision
of double

— Using double intermediates greatly

reduces the risk of roundoff problems
polluting the answer

— Round double value back to float to
give a float result

— (For more information see references)
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/ — Trusting Venerable Formulas

« Some formulas found in text books don’t
work very well with floating—point numbers

« Formulas may implicitly assume real arithmetic

« Don’t adequately take floating—point rounding
Into account
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7.5 — Trusting Venerable Formulas

 Example: Heron’s formula for the area of a
triangle given the lengths of its sides:

s=((a+ b)+0)/2,

Area = sqrt(sl{s —a)l(s —b)[{s —c))

— Formula can fall for needle like triangles
(no bits may be correct!)

— A better algebraicly equivalent formula
IS available

— Can also use more intermediate precision

(see references)
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8 — How to Round to
2 Decimal Places...

 May want to use “C-style” output for
floating—point numbers; e.qg., limiting the
number of digits after the decimal point

— see java.text. NumberFormat

— e.g. DecimalFormat twoDigits = ne W
DecimalFormat( "0.00" );

« Default “%g” format conversion of
C's printf  does not print enough
digits to recover the original value
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Y — what Are Distinguishing Features
of Java = Programming Language
Floating—Point?

* Required use of IEEE 754 numbers

— Subnormals must be supported,
flush to zero not allowed

e Correctly rounded decimal — binary conversion

« Well-defined expression evaluation rules
— Yields predictable results

— Code semantics depend on source,
not compiler flags
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10 — What Is strictfp ?

e Java 2 method and class qualifier

 Indicates floating—point computations must
get exactly reproducible results

o Without strictfp , Some variation is allowed

— Intermediate results can have extended
exponent range

— Only makes a difference if an overflow or
underflow would occur

* Only need to use strictfp If you want

exactly reproducible results .-



Philosophical Note:
The Need for Speed

« At times the speed of a program is critical,
a late answer Is not useful

 However, speed is not the only criterion

e Speed Is comparatively easy to measure
compared to accuracy or robustness

 |f you don’t care what is computed, why
do you care how fast it is computed?

e Other design values robustness, predictability,
and repeatability, not just speed
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How Fast Is Java ™ Platform
Floating—Point Today?

* Much faster than it used to be :-)

— Modern vm’s can generate code similar
to static C compilers

 Benchmark results across languages vary
Benchmarking Java™ against C and
Fortran for Scientific Applications,

Bull, Smith, Pottage, Freeman
http://www.epcc.ed.ac.uk/research/publications/conference/
jgflangcomp _final.ps.gz

— PIIl running NT, mean ratio to C: 1.23
— PIII running Linux, mean ratio to C: 1.07
— Solaris™ UltraSPARC™, mean ratioto C: 1.61
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C and FORTRAN Comparison

 C and FORTRAN compilers have been
around longer

 The Java™ programming language has
tighter semantics than C or FORTRAN

— Can’t “optimize” floating—point as much
— Can’t assume arrays aren’t aliased

 JSRs are addressing speed
and expressibility issues
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Recommendations
and Rules of Thumb

e Sometimes okay to break the rules

Store large amounts of data no more
precisely than necessary

Take advantage of double precision

See references for further suggestions
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Summary

Floating—point arithmetic only approximates
real arithmetic

— Floating—point approximation is predictable
* Avoid surprises from base conversion

 Understand when exact results should
be expected

 The Java™ programming language makes
different floating—point design choices than
other languages
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Conclusions

* Floating—point arithmetic follows rules;
just not the rules you are accustomed to :-)

« Use knowledge of floating—point to
— Reduce numerical surprises
— Productively use Java technology’s numerics
— Take advantage of floating—point semantics

« More floating—point material at companion BOF
What Some People Using the Java™
Programming Language Want to Know
About Floating—Point Arithmetic
11pm Marriot Salon—-10
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Where to Get More Information

* Professor Kahan's webpages

— Marketing vs. Mathematics,
http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf

— What has the Volume of a Tetrahedron to do
with Computer Programming Languages?

http://www.cs.berkeley.edu/~wkahan/VtetLang.pdf

— Miscalculating Area and Angles of a
Needle-like Triangle,
http://www.cs.berkeley.edu/~wkahan/Triangle.pdf

— Lecture Notes on the Status of the IEEE Standard

754 for Binary Floating—Point Arithmetic,

http://www.cs.berkeley.edu/~wkahan/
leee754status/ieee754.ps
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Where to Get Still More Information

 What Every Computer Scientist Should Know
About Floating Point Arithmetic,David Goldberg,
(with commentary by Doug Priest)
http://www.validgh.com/goldberg/paper.ps

 Computer Arithmetic: Algorithms and
Hardware Designs, Behrooz Parhami,
ISBN 0-19-512583-5

* The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, Donald Knuth

e Java™ Grande Forum, Numerics Working Group
http://math.nist.gov/javanumerics/
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