What Everybody Using the Java ${ }^{\text {Tw }}$ Programming Language Should Know About Floating-Point Arithmetic

Joseph D. Darcy
Java Floating-Point Czar Sun Microsystems, Inc.

Overview: Reduce Surprises, Increase Understanding

- Understand why
$-0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 \quad!=1.0$
$-0.1 \mathrm{f}!=0.1 \mathrm{~d}$
- Outline
- Floating-point fundamentals
- Decimal \leftrightarrow binary conversion
- Top 1.0e1 Floating-point FAQs, Mistakes, Surprises, and Misperceptions

Objectives

- Gain accurate mental model of binary floating-point arithmetic
- Avoid common floating-point mistakes
- Learn where to find additional information
- Use floating-point more with greater confidence and productivity
- Inspire attendance at:
- BOF 526 What Some People Using the Java Programming Language Want to Know About Floating-Point Arithmetic 11:00pm, Marriot, Salon 10

My Background

- Worked on languages and numerics since 1996
- UC Berkeley master's project: Borneo 1.0: Adding IEEE 754 Floating Point Support to Java ${ }^{\text {TM }}$
- Active in Java ${ }^{\text {TM }}$ Grande Forum, Numerics Working Group
- Assisted in design of revised floating-point semantics for the Java 2 platform
- Java Floating-Point Czar since September 2000
- Participant IEEE 754 revision committee

Why Floating-point?

- Integers aren't convenient for all calculations
- Floating-point arithmetic is a systematic methodology for approximating arithmetic on \mathbb{R}
- Exponent and significand (mantissa) fields
- "Decimal point" floats according to exponent value
- Exact multiplication can double the number of bits manipulated at each step-must approximate to keep computation tractable!
- Exactness rarely needed to get usable results

What Are Real Numbers?

- Real numbers (\mathbb{R}) include:
- Integers (e.g., 0, -1, 32768)
- Fractions (rational numbers) (e.g., $1 / 2,3 / 4,22 / 7$)
- Irrational numbers (e.g., π, e, $\sqrt{ } 2$)
- Real numbers form a mathematical object called a field; fields have certain properties, field axioms
- Addition and multiplication are commutative (a op $b=b$ op a) and associative ((aop b) op $c=a$ op (bop c))
- Closed under addition and multiplication
- Also identity elements, distributivity, 13 total

How to Approximate

- Not all approximations equally good!
- Would like approximation to be:
- Deterministic, reproducible, predictable
- Reliable, accurate
- Ideally also preserve properties of operations
- Floating-point addition and multiplication are commutative
- Round-off precludes most other field axioms
- Floating-point is fundamentally discrete

Precision and Accuracy

- Precision $=$ Accuracy
- Precision is a measure of how fine a distinction you can make
- Accuracy is a measure of error
- Using more precision for intermediate results usually gives a more accurate computed answer

Binary Floating-Point Numbers

- Infinite number of real numbers, only finite number of floating-point numbers
- Representable numbers: \pm binaryFraction. $2^{\text {exponent }}$
- binaryFraction limited in precision, only has a limited number of bits
- Floating-point numbers are sums of powers of two
- Ratio of largest to smallest component is at most $2^{\rho^{-1}}, p$ is significand width

Binary Floating-Point Numbers Illustrated

- Floating-point format with 3 bits of precision

- Floating-point format with 4 bits of precision

- float has 24 bits of precision; double has 53 bits of precision

IEEE 754 Floating-Point

- IEEE 754 is the universally used binary floating-point standard
- IEEE 754 is fundamentally simple
- Conceptually, for each of the defined operations $\left\{+,-,{ }^{*}, /, \sqrt{ }\right\}$

1. First, calculate the infinitely precise result
2. Second, round this result to the nearest representable number in the target format

- (If two number are equally close, chose the one with the last bit zero-found to nearest even)

IEEE 754 Rounding Illustrated

- Round to nearest even pictorially

Round to Nearest Even

- Locally optimal, easy to understand and analyze
- But, still lose information, e.g., failure of associativity of addition:
$(1.0 \mathrm{f}+3.0 \mathrm{e}-8 \mathrm{f})+3.0 \mathrm{e}-8 \mathrm{f}=\mathbf{= 1 . 0 f}$
$1.0 f+(3.0 \mathrm{e}-8 \mathrm{f}+3.0 \mathrm{e}-8 \mathrm{f})==1.0000001 \mathrm{f}$

Creating Closure

- When an operation on a set of values doesn't have a defined result, often define a new kind of number
- Positive integers and subtraction \Rightarrow negative integers
- Integers and division \Rightarrow rational numbers
- Rational numbers and square root \Rightarrow complex numbers
- Helps create a closed system
- Operation has defined result for all inputs

IEEE 754 Special Values

- Want floating-point arithmetic to be closed
- Can have sensible semantics for new values
- Allows computation to continue to a point where it is convenient to detect the "error" (e.g., root finder)
- Besides value for real numbers, IEEE 754 has infinities and NaN
- Infinity: results from overflow (MAX_VALUE*2.0) or division by zero (1.0/0.0)
- NaN (Not a Number): represents invalid values ($0 / 0, \infty * 0, \sqrt{-1}$, etc.)

Base Conversion

- Integers can be represented exactly in any base
- In general, fractional quantities exactly representable as a finite string in one base cannot be exactly represented as a finite string in another base
- In base 10, $1 / 3$ is the non-terminating expansion 0.33333333...
_ In base $3,1 / 3$ is 0.1
(3)
- Many floating-point surprises are related to decimal \leftrightarrow binary conversion properties

Decimal \rightarrow Binary

- Most terminating decimal fractions cannot be exactly represented as terminating binary fractions
- Try to convert 0.1 to a binary fraction $0.1 \times 2=0.2$ $0.2 \times 2=0.4$ $0.4 \times 2=0.8$
$0.8 \times 2=1.6$ $0.6 \times 2=1.2$
$0.2 \times 2=0.4$
-0.1 is $0.0 \overline{0011} \ldots$ in binary

Binary \rightarrow Decimal

- However, all terminating binary fractions can be expressed exactly as terminating base 10 fractions
- Intuition: $10=2.5$ so all fractions in base 2 or base 5 can also be expressed in base 10
- Proof: $\frac{1}{2^{k}}=\frac{5^{k}}{10^{k}}$
- 5^{k} is a representable integer; dividing by 10^{k} just shifts the decimal point; sums of 2^{i} still terminate
- Floating-point numbers are sums of power of two

How to Convert?

- Decimal \rightarrow binary (float and double literals, \{Float, Double\}.valueOf and parse\{Float, Double\} methods)
- Conversion must in general be inexact
- Use standard floating-point rounding: return binary floating-point value nearest exact decimal value of input
- Binary \rightarrow decimal (\{Float,Double\}.toString)
- Feasible to return exact decimal string...

1789, What Everybody Using the Java Programming Language Should Know About Floating-Point Arithmetic

The Cost of Exactness

- Number of decimal digits for 2^{-n} grows with increasingly negative exponents

2^{-n}	Exact decimal string
2^{-1}	0.5
2^{-2}	0.25
2^{-3}	0.125
2^{-4}	0.0625
2^{-5}	0.03125
2^{-6}	0.015625
2^{-7}	0.0078125
2^{-8}	0.00390625
2^{-9}	0.001953125

Extreme Values

- Double.MIN_VALUE $=2^{-1074}$
- Exact decimal value:
4.9406564584124654417656879286822137236505980261432476442558568 250067550727020875186529983636163599237979656469544571773092665 671035593979639877479601078187812630071319031140452784581716784 898210368871863605699873072305000638740915356498438731247339727 316961514003171538539807412623856559117102665855668676818703956 031062493194527159149245532930545654440112748012970999954193198 940908041656332452475714786901472678015935523861155013480352649 347201937902681071074917033322268447533357208324319360923828934 583680601060115061698097530783422773183292479049825247307763759 272478746560847782037344696995336470179726777175851256605511991 315048911014510378627381672509558373897335989936648099411642057 $02637090279242767544565229087538682506419718265533447265625 \mathrm{e}-$ 324
- Awkward and impractical, is this necessary?

Criteria for Conversions

- Want binary \rightarrow decimal \rightarrow binary conversion to reproduce the original value
- Allows text to be used for reliable data interchange
- Exact decimal value is not necessary to recreate original value
- Decimal \rightarrow binary conversion must already deal with imprecision and rounding
- Use an inexact decimal string with enough precision to recreate original value

Which String to Use?

- Many decimal strings map to a given floating-point value
- "1.0" $\rightarrow \mathbf{2 0}^{0}$
"1.0000000000000000000000000001" $\rightarrow \mathbf{2}^{0}$
- Choose shortest string that rounds to the desired floating-point value
- How much precision is needed?

How Long a String Is Needed?

- float format has 6 to 9 digits of decimal precision
- double format has 15 to 17 digits of decimal precision
- (Precision varies since binary and decimal numbers have different relative densities in different ranges)

Implications: WYSI Not WYG

- What you see is not what you get
- "0.1f" $=\mathbf{0 . 1}$ after conversion; exact value: 0.100000001490116119384765625
- "0.1d" $=0.1$ after conversion; exact value: 0.1000000000000000055511151231...
- Correct digits
- Leading 8 for float
- Leading 17 for double

You Are in a Twisty Maze of Little Passages, All Different...

- String representation of a floating-point value is format dependent
- Float.toString(0.1f) = "0.1"
- Double.toString(0.1f) = "0.10000000149011612"
- float approximation has 24 significand bits; double approximation has 53 significand bits
- Double.toString(0.1d) = "0.1"
- To preserve values, must print out and read in floating-point numbers in the same format

Base Conversion Summary

- Both decimal to binary and binary to decimal conversions are inexact
- Decimal \rightarrow binary: fundamentally inexact
- Binary \rightarrow decimal: done inexactly for practical reasons
- Roundtrip binary \rightarrow decimal \rightarrow binary can be exact since the inexactness is correlated
- Can only exactly represent binary values in floating-point numbers for the Java platform

Top 1.0e1 Floating-Point FAQs, Mistakes, Surprises, and Misperceptions

1 - Expecting Exact Results

- $0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1$! $=1.0$
- The literal " 0.1 " doesn't equal 0.1
- Limited precision of floating-point implies roundoff
- More generally, exact results also fail from
- Limited range (overflow, underflow)
- Special values

2 - Expecting All Results to Be Inexact

- Cases where floating-point computation is exact
- Operations on "small" integers
- Representing in-range powers of 2 (e.g., 1.0/8.0)
- Special algorithms, e.g., techniques to extend floating-point precision (Learn more at the BOF!)

2.5 - Expecting All Results to Be Inexact

- A floating-point number is not a stand-in for nearby values
- Floating-point arithmetic operations assume their inputs are exact
- Must use other techniques to estimate overall error (e.g., error analysis, interval arithmetic)

1789, What Everybody Using the Java Programming Language Should Know About Floating-Point Arithmetic

3 - Using Floating-Point For Monetary Calculations

- Fractional \$, £, €, a can't be stored exactly
- Decimal \rightarrow binary conversion issue
- Operations on values won't be exact (bad for balancing a checkbook!)
- Recommendations
- Use an integer type (int or long) operating on cents
- Use java.math.BigDecimal for exact calculations on decimal fractions
- If you must use floating-point, operate on cents
- Problems with limited exact range

4 - Preserving Cardinal Values of sin and cos With Arguments in Degrees

- Why doesn't
$-\sin ($ toRadians(180)) $=\mathbf{0 . 0}$
$-\cos ($ toRadians(90)) $=\mathbf{0 . 0}$
- toRadians \equiv angleInDegrees/180.0*Double.PI
- Conversion of degrees to radians is inexact
- Double.PI $\neq \pi(\therefore \sin ($ Double.PI $) \neq \sin (\pi))$
- (in general case, roundoff in multiply, divide)
- Cope with small discrepancies or use degree-based transcendental functions

5 - Comparing Floating-Point Numbers For Equality

- Sometimes okay to compare for equality
- When calculations are known to be exact
- To synthesize a comparison
- Compare against 0.0 to avoid division by zero
- But, floating-point computations are generally inexact
- Comparing floating-point numbers for equality may have undesirable results

1789, What Everybody Using the Java Programming Language Should Know About Floating-Point Arithmetic

5.5 - Comparing Floating-Point Numbers For Equality, (Cont.)

- An infinite loop:
$\mathrm{d}=0.0$;
while(d != 1.0) \{d += 0.1\};
- For counted loops, use an integer loop count: $\mathrm{d}=0.0$; for(int $i=0 ; i<10 ; i++)$

$$
\{d+=0.1\} ;
$$

- To test against a floating-point value, use ordered comparisons (<, <=, >, >=):
$\mathrm{d}=0.0$; while(d <= 1.0)
\{d += 0.1\};

6 - Using float For Calculations

- Storing low-precision data as float is fine, but
- Generally not recommended to use float for computations
- float has less than half the precision of double
- Using double intermediates greatly reduces the risk of roundoff problems polluting the answer
- Round double value back to float to give a float result
- (For more information see references)

7 - Trusting Venerable Formulas

- Some formulas found in text books don't work very well with floating-point numbers
- Formulas may implicitly assume real arithmetic
- Don't adequately take floating-point rounding into account

1789, What Everybody Using the Java Programming Language Should Know About Floating-Point Arithmetic

7.5 - Trusting Venerable Formulas

- Example: Heron's formula for the area of a triangle given the lengths of its sides:

$$
\begin{aligned}
& s=((a+b)+c) / 2 \\
& \text { Area }=\operatorname{sqrt}(s \cdot(s-a) \cdot(s-b) \cdot(s-c))
\end{aligned}
$$

- Formula can fail for needle like triangles (no bits may be correct!)
- A better algebraicly equivalent formula is available
- Can also use more intermediate precision (see references)

8 - How to Round to 2 Decimal Places...

- May want to use "C-style" output for floating-point numbers; e.g., limiting the number of digits after the decimal point
- see java.text. NumberFormat
-e.g. DecimalFormat twoDigits $=$ new DecimalFormat ("O.00");
- Default "\%g" format conversion of C's printf does not print enough digits to recover the original value
- Required use of IEEE 754 numbers
- Subnormals must be supported, flush to zero not allowed
- Correctly rounded decimal \leftrightarrow binary conversion
- Well-defined expression evaluation rules
- Yields predictable results
- Code semantics depend on source, not compiler flags

1789, What Everybody Using the Java Programming Language Should Know About Floating-Point Arithmetic

10 - What is strictfp?

- Java 2 method and class qualifier
- Indicates floating-point computations must get exactly reproducible results
- Without strictfp, some variation is allowed
- Intermediate results can have extended exponent range
- Only makes a difference if an overflow or underflow would occur
- Only need to use strictfp if you want exactly reproducible results

Philosophical Note: The Need for Speed

- At times the speed of a program is critical; a late answer is not useful
- However, speed is not the only criterion
- Speed is comparatively easy to measure compared to accuracy or robustness
- If you don't care what is computed, why do you care how fast it is computed?
- Other design values robustness, predictability, and repeatability, not just speed

How Fast Is Java ${ }^{\text {TM }}$ Platform Floating-Point Today?

- Much faster than it used to be :-)
- Modern vm's can generate code similar to static C compilers
- Benchmark results across languages vary Benchmarking Java ${ }^{\text {TM }}$ against C and Fortran for Scientific Applications, Bull, Smith, Pottage, Freeman
http://www.epcc.ed.ac.uk/research/publications/conference/ jgflangcomp_final.ps.gz
- PIII running NT, mean ratio to C: 1.23
- PIII running Linux, mean ratio to C: 1.07
- Solaris ${ }^{T M}$ UltraSPARC ${ }^{T M}$, mean ratio to C: 1.61

C and FORTRAN Comparison

- C and FORTRAN compilers have been around longer
- The Java ${ }^{\text {TM }}$ programming language has tighter semantics than C or FORTRAN
- Can't "optimize" floating-point as much
- Can't assume arrays aren't aliased
- JSRs are addressing speed and expressibility issues

Recommendations and Rules of Thumb

- Sometimes okay to break the rules
- Store large amounts of data no more precisely than necessary
- Take advantage of double precision
- See references for further suggestions

Summary

- Floating-point arithmetic only approximates real arithmetic
- Floating-point approximation is predictable
- Avoid surprises from base conversion
- Understand when exact results should be expected
- The Java ${ }^{T M}$ programming language makes different floating-point design choices than other languages

Conclusions

- Floating-point arithmetic follows rules; just not the rules you are accustomed to :-)
- Use knowledge of floating-point to
- Reduce numerical surprises
- Productively use Java technology's numerics
- Take advantage of floating-point semantics
- More floating-point material at companion BOF What Some People Using the Java ${ }^{\text {p }}$ Programming Language Want to Know About Floating-Point Arithmetic 11pm Marriot Salon-10

Where to Get More Information

- Professor Kahan’s webpages
- Marketing vs. Mathematics, http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf
- What has the Volume of a Tetrahedron to do with Computer Programming Languages? http://www.cs.berkeley.edu/~wkahan/VtetLang.pdf
- Miscalculating Area and Angles of a Needle-like Triangle, http://www.cs.berkeley.edu/~wkahan/Triangle.pdf
- Lecture Notes on the Status of the IEEE Standard 754 for Binary Floating-Point Arithmetic, http://www.cs.berkeley.edu/~wkahan/ ieee754status/ieee754.ps

Where to Get Still More Information

- What Every Computer Scientist Should Know About Floating Point Arithmetic,David Goldberg, (with commentary by Doug Priest) http://www.validgh.com/goldberg/paper.ps
- Computer Arithmetic: Algorithms and Hardware Designs, Behrooz Parhami, ISBN 0-19-512583-5
- The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Donald Knuth
- Java ${ }^{\text {Tw }}$ Grande Forum, Numerics Working Group http://math.nist.gov/javanumerics/

